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Abstract

Let m be a vector measure with values in a Banach space X . If Ll(m) denotes the space of all
m integrable functions then, with respect to the mean convergence topology, Ll (m) is a Banach
space. A natural operator associated with m is its integration map Im which sends each / of
Ll(m) to the element ffdm (of X). Many properties of the (continuous) operator Im are

closely related to the nature of the space L (m). In general, it is difficult to identify L (m).
We aim to exhibit non-trivial examples of measures m in (non-reflexive) spaces X for which
L (m) can be explicitly computed and such that Im is not weakly compact. The examples
include some well known operators from analysis (the Fourier transform on Ll([-n, n\), the
Volterra operator on l) ([0, 1]), compact self-adjoint operators in a Hilbert space); such opera-
tors can be identified with integration maps Im (or their restrictions) for suitable measures m .

1991 Mathematics subject classification [Amer. Math. Soc.): 28B05, 47B05, 45P05.

Introduction

Given a Banach space X and an X-valued vector measure m, there is an as-
sociated Banach space L (m) of w-integrable functions. From its definition
(see Section 1) it is clear that properties of the space Ll(m) are closely tied
to those of X. So, even though L (m) has certain properties in common
with the classical i'-spaces (such as completeness [5], separability [9] and
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order completeness [1, 5]) it is also to be expected that other Banach space
properties are exhibited which are not typical of the classical situation (see
Sections 1 and 2).

Our particular interest is in the integration map Im: Ll(m) -> X defined
by Imf = J fdm, for every / e Ll(m). Just as for scalar measures it turns
out that Im is always bounded and linear. So, if X is reflexive, then Im

is necessarily weakly compact. If we admit non-reflexive spaces X it can
happen that Im is weakly compact for some measures m and not weakly
compact for others. In this article we wish to concentrate on exhibiting
non-trivial (and, hopefully, interesting) examples of non-weakly compact in-
tegration maps Im. The case of maps Im which are weakly compact (or
even compact) will be taken up elsewhere.

The authors wish to thank Ben de Pagter for some useful discussions on
this topic.

1. The Banach space Lx{m)

Let X be a Banach space. By a vector measure in X is meant a a-additive
map m: £ -+ X, where Z is a er-algebra of subsets of some non-empty set
Q. For each x e X' (the continuous dual space of X), the complex measure
E i-> (m(E), x), E e £, is denoted by (m, JC') ; its variation measure is
denoted by \(m, x')\. The semivariation |||m|||, of m, is defined by

\\\m\\\(E) = sup{\(m,x')\(E);x'eX', \\x\\<l}, Eel-

it satisfies the inequality [3; Proposition 1.11],

sup{||m(if)||; ECF, E e 1} < \\\m\\\(F)

<4sup{||m(£)||; ECF, Eel.},

for every F e l .
A Z-measurable function / : Q -» C is called m-integrable if it is inte-

grable for each complex measure {m, x), JC' e X', and if, for every Eel.,
there exists an element of X, denoted by fE fdm, such that

= Jfd{m,x), x'eX'

The Orlicz-Pettis lemma guarantees that the indefinite integral of / with
respect to m, that is, the set function fm: E •-• JEfdm, E e I , is again
a vector measure in X. Identifying two /n-integrable functions / and g if
|||m|||({e<; e Q; /(&>) / g(co)}) = 0, we obtain a linear space (of equivalence
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[3] Non-weak compactness of the integration map 289

classes) which we denote by Ll(m). With respect to the semivariation norm

(2)

the space Ll(m) is a Banach space.
Spaces of the kind Lx{m) have been around for quite a while, although

many of their Banach space properties have been investigated more recently.
We include a brief summary of those properties which are related to this
note.

The completeness of the spaces Ll(m), even for more general locally
convex spaces X, is well known; see [5, Chapter III], for example. If
/ e Ll(m) and g is a Z-measurable function satisfying \g\ < | / | , then
also g e Ll(m). Furthermore, the Monotone convergence and the Domi-
nated convergence theorems are valid for m. In addition, every bounded,
Z-measurable function is /n-integrable and the inclusion of L°°(m) into
L\m) satisfies ||/||L,(m) < |||m|||(Q) • H/l^ , for every / e L°°(m). These
facts, all of which can be found in Chapter II of [5], for example, imply that
Ll(m) is a (complex) Banach lattice with order continuous norm; see also
[1; Theorem 1].

If £(m) denotes the set {xE; Eel.}, considered as a part of Ll(m),
then the norm of Lx{m) induces a metric dm in Z(m) in the obvious way,
that is,

Analogous to the case for scalar measures, we say that the vector measure m
is separable whenever (£(m), dm) is a separable metric space. Then, just as
for the classical l) -spaces, it turns out that m is a separable measure if, and
only if, Ll{m) is a separable Banach space, [9].

The spaces L\m) are always weakly compactly generated and, if X does
not contain an isomorphic copy of c0, then neither does Lx(m); see [1; §1].
We will see later that there are certain types of measures m and Banach
spaces X such that L (m) is actually isomorphic to X; this often allows
one to show that Ll(m) does not (or does!) have certain properties exhibited
by the i) -spaces of scalar measures m.

Finally, we make some remarks concerning the dual space L (m)'. The
first comment is that it is not so well understood. For measures m with
bounded variation the space L (m)' was considered in [4] where, unfortu-
nately, the main result is false. For the case of vector measures induced by
spectral measures via evaluation, a concrete description of L (m)' is given
in [8]. One description of the individual elements of Ll(m)' for an arbitrary
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vector measure m is presented in [6]. We give here a further description of
a different (but related) kind; the method of proof is quite different to that
given in [6].

Let v = \(m, x')\, where x is some Rybakov functional for m, [5; p.
121]. Since m and u have the same null sets we have L°°(m) — L°°(v).
Let Jf(L) denote the linear space of all Immeasurable functions on Q, in
which case L (m) is an ideal in J?(L) in the sense of (complex) Riesz
spaces, [11]. The order continuity of the norm in Ll(m) guarantees that
the order continuous linear functionals are actually continuous. Also, the
natural inclusion of Lx{m) into Ll[y) is continuous. So it follows from
(the complexified version of) the results in [11; §112] that Lx(m)' can be
identified with a certain space of E-measurable functions as follows.

PROPOSITION 1.1. Let X be a Banach space, m: Z —» X be a vector mea-
sure and v = \(m, x')\, where x is a Rybakov functional for m. Then
£ e Ll(m)' if, and only if, there exists a function g^ e ^(L) such that
la \fsA dv < oo, for every f € L (m), in which case the duality is given by

= / feL\m).

REMARK 1. (a) If z is another Rybakov functional, then \(m, z')\ and
v are mutually absolutely continuous and so the Radon-Nikodym theorem
allows the description of Lx(m)', which is dependent on the particular Ry-
bakov functional chosen, to be formulated in terms of a different Rybakov
functional.

(b) Since the linear map x' i-» { , , x € X', is a contraction from X1

into Lx{m)', where £x> is the function / i-> Jafd(m, x), / e Lx{m), it
follows that X' is always continuously imbedded in Lx(m)'. By considering
scalar measures m (that is, X = C) it is clear that this imbedding need not
be onto.

2. The integration map

Let A" be a Banach space, m: 2 -> X be a vector measure and
Im: Lx(m) -» X be the associated integration map defined by

Uf) = Ifdm, feL\m).
Ja

The continuity of the linear operator Im is clear from (1) applied to the mea-
sure fm: £ —> X, from (2) and from the observation that /_.(/) = ( /
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Since bounded subsets of reflexive Banach spaces are necessarily relatively
weakly compact it is immediate that Im is a weakly compact operator when-
ever the range space X is reflexive.

So, suppose that X is a non-reflexive space. The first observation is that
it suffices to consider the closed subspace Xm , of X, generated by the range
m(L) = {m(E); E e Z} , of m . For, since the Z-simple functions are dense
in Lx(m) and Im is continuous, it is clear that Im assumes all of its values in
Xm . Since m(L) is always relatively weakly compact, [3; p. 14], it follows
that Xm is a weakly compactly generated space. So, we may restrict our
attention to non-reflexive, weakly compactly generated Banach spaces X.
We remark that all separable spaces are weakly compactly generated.

Of course, we will be looking for "genuine examples" of integration maps
Im: Ll(m) -> X in non-reflexive spaces X, meaning that Xm should not
be reflexive. We now exhibit some non-trivial examples of such "genuine"
maps. The first example comes from classical Fourier analysis, the second
from the theory of integral operators and the final two from the theory of
spectral operators.

EXAMPLE 1. (THE FOURIER TRANSFORM). Let X denote Lebesgue measure
in Q = [-n, n], let X = co(Z) where Z is the set of all integers, and let
fF:l}(X)-*X denote the Fourier transform. That is,

= f <p{w)e~inwdX(w),
Ja

Xfor every p e L ( l ) . Define m: X —• X by m(E) — ^(xE), E el., where
£ is the cr-algebra of Borel subsets of Q. The tr-additivity of m is clear
from the continuity of f?, or, from the inequalities 2re||m(£')|| < X(E), for
all f e l . It is routine to check that Ll(m) = Ll(X) as linear spaces and
that

f€Ll(m).

Furthermore, the integration map Im is just the map &~ (consider Z-simple
functions). Since the elements in X which have finite support are the image
under lm of the trigonometric polynomials it follows that Xm = X.

It remains to check that Im = &~ is not weakly compact. The following
result is a consequence of the Riemann-Lebesgue lemma and the identities

valid for each £ € L°°(A).

LEMMA 1.1. Thesequence {e"1'*'}^, is weakly convergent to zero in Ll(X).

A simple calculation establishes the following
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L E M M A 1 .2 . W{etH{m))\\ = 1 , for every n e Z .

So, suppose that & is weakly compact. Since L\X) has the Dunford-
Pettis property 9~ maps weakly convergent sequences to norm convergent
sequences, [2; p. 113]. This contradicts Lemmas 1.1 and 1.2 above. Accord-
ingly, Im=&' is not weakly compact.

EXAMPLE 2. (THE VOLTERRA INTEGRAL OPERATOR). Let Ci — [0, 1] and

let Z denote the a-algebra of Borel subsets of Q.. Let X denote Lebesgue
measure on Z and let X — i)(A). Then the Volterra operator F : i ' ( A ) - » I
is denned by

(Vf){t)= f f{s)dX{s), ten,
Jo

for every / e Ll (X). Since V is bounded (actually its operator norm \\V\\ <
1) it follows that the set function m : I - t J defined by m(E) = V{xE),
E € 2 , is ex-additive; it is also absolutely continuous with respect to X (note
that ||m(£)|| < X{E), £ g l ) . Even though X does not have the Radon-
Nikodym property we have the following result; for the definition of the
variation measure \m\, of m, we refer to [3, pp. 2-3].

LEMMA 2.1. The function g:£l->X given by g(s) = Xis n . s € Cl, is
Bochner X-integrable and satisfies

m(E)= / gdX, E&I..
JE

That is, g is the Radon-Nikodym derivative of m with respect to X. In
particular, the variation \m\ satisfies

(3) \m\{E)= I \\g{s)\\ds, EeZ.
JE

PROOF. Since \\g(s) - g(w)\\ — \s - w\, for every s, w e Q, it is clear that
g: Cl —• X is continuous and hence, its range g(il) is a compact subset of X.
In particular, g is strongly measurable and /J \\g(s)\\ ds = /o'(l -s) ds < oo,
so that g is Bochner A-integrable. Let £ g l . An application of the Fubini
theorem and the identities £[0 t^{s) = %,s ^(0 , valid for all s, t e Q, shows
that

(4) (m(E),£) = ( f gdX,t

where JEgdX = Jo xE(s)s(s) ds. Accordingly, JEgdX = m(E).
The statement and formula concerning the finite variation \m\ of m now

follows from [3; Chapter II, Theorem 2.4].
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LEMMA 2.2. The Volterra operator V: Ll{k) —> X is representable, that is,
for every f e Ll(X), the function fg: SI ^ X is Bochner k-integrable and
Vf = JQ fg dk. Moreover, V is a compact operator.

PROOF. The first statement follows from [3; Chapter III, Lemma 1.4]. The
second statement follows from the compactness of g{Sl)—see the proof of
Lemma 2.1—and [3; Chapter III, Theorem 2.2].

LEMMA 2.3. Let <p(s) — 1 - 5 , for every s € SI, and let 1 denote the
function constantly equal to I on SI, interpreted as an element of X' = L°°(k).
Then

= f(g,l)dX = [ <pdk = \m\(E),
JE JE
f [

JE JE

PROOF. Direct computation.

LEMMA 2.4. Let f: SI —> C be a ^.-measurable function. The following
statements are equivalent.

(i) fg: SI —> X is Bochner k-integrable.
(ii) fg: SI-* X is Pettis k-integrable.

(iii) / is \m\-integrable.
(iv) / is m-integrable.

PROOF. Clearly (i) implies (ii).
So, assume that (ii) holds, in which case (fg, 1) is A-integrable. Lemma

2.3 implies that

[ \(fg,l)\dk= f \ f \ . \ ( g , l ) \ d k = f' \f\<pdk
Ja Ja Ja

from which (iii) follows via (3) and the identity

(5)

Clearly (iii) implies (iv); use Lemma 2.3 and (4).
Finally, assume that (iv) holds. Since g is continuous on the compact

space SI and / is Immeasurable, it is clear that fg is weakly measurable
and hence, by the separability of X, it is strongly measurable. As (iv) implies
that (m, l)-integrability of / it follows that

[\\(fg)(s)\\ds= f \f\'\\g(')\\dk= I \f\d\m\= f \f\d\(m,l)\
Ja Ja Ja Ja

is finite. This shows that fg is Bochner A-integrable.
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LEMMA 2.5. With the notation of Lemma 2.3 we have

(6) L\m) = L\(pX) = L\\m\)

as equalities of vector spaces. In addition, Lx(m) and Lx{\m\) = Lx(<pk) are
isometric as Banach spaces. In particular, the inclusion Ll(X) c Ll{m) is
proper. Moreover,

(7) / fdm= I fgdX, feL\m).
Ja Ja

PROOF. The equalities of the linear spaces in (6) follow directly from
Lemma 2.4. Let J: Lx{m) —> Z,'(|m|) be the identity map. It follows from
(2) and Lemma 2.3 that

\\JfW = II/IIL'(I*|) = jQ\f\d\(m,1}| -

for every / e Lx{m).
Suppose t h a t t e X1 = L°°(A) a n d UW^ < 1 . T h e n , for every E e l ,

t h e inequa l i ty

J XlsA](t)Z(t)dt < J xlSyl]\(g(s),t)\ =

for each s e f l , implies that

\(m,O\(E)= f\(g{s),t)\ds< i
JE JE

Accordingly, if f e Lx(m), then

/ \f\d\(m,Z)\ < I \f\<Pdk = M )

a Ja
It follows from (2) that | | | /w| | | (n) < \\Jf\\. This establishes that J is an
isometry.

The natural injection of LX(X) into Lx{m), which is a contraction since

H/IIL'(«) = H/IIL'(N) = jQ f I/I dx<jQ |/| di = \\f\\L>w,

is clearly not surjective as l/<p e Lx(m) but \/<p $ Lx(k).
The identity (7), which actually holds for all E e X and not just Q,

follows from Lemma 2.3 and the identities

(8) [ fd(m,£)= f f(g,Z)dk=([ fgdk,£),
Ja Ja \Ja I

valid for any / € Lx[m) and £ e X' = L°°(A).
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LEMMA 2.6. The integration map Im: Ll(m) -> X has the property that
Imf > 0 whenever f e Ll(m) satisfies / > 0.

PROOF. We note that h e L\X) is non-negative if, and only if, (h, £) =
Ja£hdX > 0, for all £ e L°°(X) such that £ > 0. So, choose such a £ > 0.
If / > 0 is an element of L1 (/n), then clearly (Imf, <*) = / n / ( g , £) dl > 0
and so Imf > 0.

We now have the main result.

PROPOSITION 2.7. The integration map Im: Ll(m) —> X is not weakly
compact.

PROOF. For every k e N, let fk — (k/'<p)XE(k) > where <p is denned in the
statement of Lemma 2.3 and E{k) - [1 - k~i, 1). By Lemma 2.5 it follows
that ||/fc||tl(m) = ||/fc||Li(fA) = 1, for every k e N. Fix n € N. By Lemma
2.6

(9) / \ I m f k \ d k = j I m f k d X = { I J k , x E ( n ) ) , k€N.
JE(n) JE(n)

Substituting Imfk = Ja fkg dX (see (7)) and the definition of g into (9) gives

/ I V * I ^ = [ fk(s)X(E(n)n[s, l])ds> f <p(s)fk(s)ds,
JE(ri) JSl JE(n)

for every k e N. Accordingly,

S U P S / \Tmfk\dX;keN\> / q>(s)f(s)ds = 1 ,
[JE(n) J JE(n)

for every n e N, which shows that {/m.4}!fcti is not a uniformly integrable
subset of X = Ll(X), in the sense of Definition 10 in [3; p. 74]. Accordingly,
the Im-image of the unit ball of Ll(m) is not a relatively weakly compact
subset of X = L\X); see [3; Chapter III, Theorem 2.15].

REMARK 2. (a) Even though the measure m has very strong properties (it
is of bounded variation and has relatively compact range) and the Banach
space Ll(m) is rather "nice" (it is a classical //-space by Lemma 2.5, which
is not the case for all spaces of the type V(m)—see Example 3 below), the
associated integration map Im: L (m) —* X is not even weakly compact.

(b) It may be worth recording that Im is the (unique) extension of the
Volterra operator V: Ll(X) —> X from the dense subspace Ll(X) of Lx(m)
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to all of Ll(m). This follows from the identities

mf,Z) = f
valid for every / e Lx(m) and ^ € Ll(m)' = £°°(m); see Lemma 2.5. That
is, given f eLl(m),

= ff(s)ds, forA-a.e. teil.
Jo

These identities can be established from (8) and the Fubini theorem, which
is applicable because

Jo [Jo
I/WI ' \i(t)\X[s n M ^ U ' ^ H o o / / \f(s)\<P(s)ds dt<00 .

(c) Since the range of Im contains all C°°-functions with compact support
in (0, 1), a dense subspace of X = Lx (A), it follows that Xm = X.

(d) The lemma showing that Ll(m) — l}{\m\) played an important role.
This is a special feature of this example and is not generally true for vector
measures of bounded variation. Indeed, let X be any infinite dimensional
Banach space. Let {xn}™={ be an unconditionally summable sequence which
is not absolutely summable, [2; p. 59]. If £ denotes the cr-algebra of all
subsets of Q = N, then the set function m : I - > I defined by

m(E) = '£(2n\\xn\\)-
lxn, Eel,

neE

is a vector measure of bounded variation. Then

n€E

The space Lx(m) consists of those functions / : Q, -* C such that
{(2"||jcn||)~1/(«)J[:

n}^i is unconditionally summable in X whereas h e
Ll(\m\) ifandonlyif {(2"| |xn| |)"1/!(n)^}~1 is absolutely summable. Hence,
/ («) = 2n||x;i||, n G Q, is an example of an element in L1(m)\L1(|m|).

(e) Let Y = C(£2), equipped with its supremum norm || • H^ . Then the

Volterra operator V: LX{X) -* Y can formally be defined as for the case

when X was the range space. That V actually assumes its values in Y is

clear from the inequality,

\(Vf)(t)-(Vf)(s)\< f \f(u)\du,
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valid for every s, t € Q with s < t, and the Lemma that |/|A is a a-
additive measure whenever / e Ll(X). Then again m: Z —> Y, denned by
m{E) — V(xE), E e E , is a y-valued vector measure since

It turns out that L1 (A) is a linear subspace of L1 (m) and that the integration

map / m : Ll(m) —> 7 is the (unique) extension of K from L^/l) to all

of Ll(m). It may be of interest to determine whether or not Im is weakly

compact and to identify the Banach space Ll(m) more precisely. Of course,

the Radon-Nikodym derivative g which is available when the range space
is X is not available in Y. Rather than pursue this example we wish to
concentrate on an example of a different nature.

EXAMPLE 3. (EVALUATIONS OF SPECTRAL MEASURES.) The space of all
continuous linear operators of a Banach space X into itself is denoted by
L(X). If we wish to indicate that the uniform (resp. strong) operator topology
is to be considered we will write LU(X), (resp. Ls(X)). Of course, Ls(X)
is no longer normable (if X is infinite dimensional); it is a quasicomplete,
locally convex Hausdorff space.

A spectral measure in X is a (x-additive map />:£—> LS(X), where X is
a tr-algebra of subsets of some non-empty set Q,, such that P(Q) = / (the
identity operator in X) and P(E n f ) = P(E)P(F), for every E,F e l .
The range P(Z) is always a uniformly bounded set in LU(X). The spectral
measure P is called closed if P(L) is a closed subset of LS(X). If X is
separable, then every spectral measure in X is a closed measure. For each
x e X, we denote by Px: S —> X the X-valued measure E »-> P{E)x,
Eel.. Given * e A", the closed subspace

P(Z)[x] = span{P(£)jt; £ e Z } ,

of X (the bar denotes closure), is called the cyclic space generated by x with
respect to P.

A Banach space X is called cyclic if there exist a closed spectral measure
P: 1 -»• L5(X) and x e X such that X = />(S)[x]. This agrees with the
standard definition, as given in [10], for example.

LEMMA 3.1. (see [8]). Let X be a cyclic Banach space. Let P:Z^> Ls(X)
be any closed spectral measure and x e X any vector such that P(L)[x] = X.
Then the integration map IPx: Ll(Px) -> X given by

IPxf=ffdPx, feL\Px),
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is a Banach space isomorphism of L {Px) onto X.

This result illustrates immediately how different Banach spaces of the type
Ll(m), for m a vector measure, can be from classical L1-spaces. For in-
stance, the spaces Lp([0, 1]), 1 < p < oo, are cyclic Banach spaces. Ac-
cordingly, there exist vector measures m (of the form Px for suitable P
and x) such that Lx(m) is reflexive! Consequently, unlike the classical Lx-
spaces Lx(m) need not have the Dunford-Pettis property in general. Since
cQ is a cyclic Banach space it follows that spaces Ll(m) need not be weakly
sequentially complete.

Getting back to integration maps, we have the following result.

PROPOSITION 3.2. Let X be a non-reflexive, cyclic Banach space. Then
there always exist vector measures m:~L —> X with Xm = X such that the
integration map Im: Ll{m) -> X is not weakly compact.

PROOF. Let P: £ -»• LS(X) be a closed spectral measure and x e X a
vector such that P(L)[x] = X. Then m = Px satisfies Xm = X. By Lemma
3.1 the integration map Im: Lx{m) —> X is a Banach space isomorphism.
Since the set {Imf; f e Ll(m), ||/||Li(m) < 1} contains a multiple of the
unit ball of X it cannot be relatively weakly compact (as X is non-reflexive).

This result makes it easy to produce specific examples of non-weakly com-
pact integration maps of this type. Indeed, let X = / ' , Q = N and Z = 2N .
Define a closed spectral measure P: £ —> LS(X) by P(E)x - y, for every
x = {xn}™=\ G x* w h e r e y n = X E { n ) x n , n e N , f o r e v e r y E e l . T h e n
x = { n " 2 } ^ ! is a cyclic vector for X with respect to P. Accordingly, if
ien\ln=i a r e t n e standard unit basis vectors in / ' , then the vector measure
m: 2 - + / 1 given by

m{E) = P(E)x =
n€E

has the property that its integration map Im: Lx{m) -> X is not weakly
compact. Similarly, if X = c0 and P: Z —> /^(A") and x are defined
by using the "same formulae" as those used for / ' , then P is also a closed
spectral measure in c0 with x a cyclic vector for P. Accordingly, the "same"
m, now interpreted as co-valued, has a non-weakly compact integration map.

REMARK 3 (a). It may be worth noting that the vector measure m of
Example 2 is not of the form Pf, for any spectral measure P in X — LX(X)
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and f e X. To establish this claim we need the following result; the notation
is as in Example 2.

LEMMA 3.3. The integration map Im: Ll(m) -> X - L\X) of Example 2
is injective, but not an isomorphism onto its range.

PROOF. Let / e Ll(m) and suppose that Imf - 0. By Remark 2(b) we
have fcf{s)ds = 0, for A-a.e. t e [0, 1] and hence, / = 0 in L\X). So,
Im is injective.

The only constant function in the range of Im is zero. However, the
closure of the range of Im includes all constant functions. Indeed, let c > 0.
Given e e (0,c) define fE{s) = 2e~V.sx[0 e/c](s), for every s e [0, 1].

Since /0' f(s) ds — c3e~ V if 0 < t < e/c and equals c otherwise, it follows
from Remark 2(b) that

It follows that the closure of the range of Im contains all (complex) constant
functions, and so Im is not an isomorphism onto its range.

That m is not an evaluation of some spectral measure at a point of X now
follows from Lemma 3.3 and [6; Theorem 10], which states that the integra-
tion map / ^ Z - t Z (of a Banach space valued vector measure v: Z —• Z)
is an isomorphism onto a closed subspace of Z if and only if there exists
a closed subspace Y of Z , a closed spectral measure P: 2 —» LS(Y) and a
vector y eY such that v = J o Py (where J is the natural inclusion of Y
into Z) . Of course, one also needs to use the fact that the integration map
Ip : Lx{Py) -* Y is an isomorphism of Ll(Py) onto the closed linear span
of {P(E)y; £ e l } , [ 8 ] .

REMARK 3 (b). It is a well known fact from harmonic analysis that the
(Fourier transform) map Im of Example 1 is injective but not isomorphic
onto its range. A similar argument as above shows that m (of Example 1) is
not the evaluation of any spectral measure in X.

EXAMPLE 4. (SCALAR-TYPE SPECTRAL OPERATORS.) Let Z be a Banach
space (infinite dimensional) and T e L(Z) be a scalar-type spectral opera-
tor. That is, if 3S denotes the c-algebra of Borel subsets of C, then there
exists a (unique) spectral measure P: 3S —• LS(Z), with support equal to
the spectrum a{T) of T, such that T = /ff( r ) w dP(w). This integral is de-
fined in the usual way for a locally convex space valued (in this case Ls(Z))
measure, [5]. The measure P is called the resolution of the identity of T.
In addition, let us suppose that a{T) is a countable set with no limit points
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except, possibly, zero. Let 2. = & n o(T). Define an operator-valued set
function m: Z —> L(Z) by

(10) m(E)= f wdP(w) = TP(E) = P{E)T, Eel,.
JE

Then m is tr-additive in LU(Z); see [7]. It is also shown in [7] that the
range of m is a separable subset of LU(Z). Accordingly, if X denotes the
closed subspace of LU(Z) generated by /n(X), then X is a separable Banach
space.

Suppose a(T) = {0} U {Xn}™=l, where {Xn}^L{ is the set of non-zero
eigenvalues of T, and that Xn —> 0 as n -> oo. Let Sn denote the Dirac
point mass at Xn (put Ao = 0) and let Pn = P({Xn}), n e N. If 0 belongs
to the continuous spectrum of T let PQ = 0. Otherwise 0 is an eigenvalue
of T in which case Po will denote the associated eigenprojection. We note
that m({0}) = 0.

The space Ll(m) consists of all functions cp: a{T) -* C such that the
series Y^Lo 9(^)^7 *s unconditionally summable in X (or Lu(Z)), in
which case

f H()9(n)PJ, EeZ.

But, the identities Sn(E)Pn = P(E)Pn , n € N U {0} , and the continuity of
P(E) imply, for every £ e l , that

n=0 n=0

= P{E)Im{<p).= P(E)f
Ja(
f
Ja(T)

Accordingly, we have established that

(11) j <pdm = P(E)Im{<p) = Im{<p)P{E), Eel.

LEMMA 4.1. A function <p: a(T) —> C belongs to L}(m), if and only if,

(12) n n

PROOF. Suppose that <p e Ll(m), in which case Y^=Q 9(K)^n"^ *s u n c o n -
ditionally summable in LJZ). In particular, \\(p{Xn)PnT\\ -»0 as n -» oo.
Since PnPj = 0, if n ± j , and T = Yl%i^jPj it is a routine calcula-
tion to check that PnT = XnPn , n € N U {0} . Accordingly, HA^AJPJ =
\\(p{kn)PnT\\ -» 0 as n -» oo. Since ||Pn|| > 1, for every n e N, property
(12) follows.
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Conversely, suppose that (12) holds for a function tp: a(T) —> C. Then
y/:o(T)->C denned by

(13) ¥{XH) = X n f { k n ) , n = 0 , 1 , 2 , . . . ,

is P-essentially bounded and so is P-integrable in LS(Z). In particular, the
series Y^=i kn9(kn)Pn is unconditionally summable in LS(Z). To show that
<p e Lx(m) it suffices to show that the series S^=op(An)m({An}) is uncon-
ditionally summable in X. So, let {«(£)}£!, be an increasing sequence of
non-negative integers. If N > M, then

A'

k=M

N

E K(

lAfwhere a = max{||P(£')||; E C {An(jfc)}£=M} . We have used the fact from the
theory of spectral operators that | | / Q ^ ^ Q | | < 4/?||£||G, with
P = sup{||(2(F)||; F e A}, whenever Q: A -• Ls{Z) is a spectral mea-
sure on a cr-algebra A, g is a Q-essentially bounded function and || • ||G is
the Q-essentially supremum norm. Since a< K = sup{ \\P{E) \\; E el,} we
conclude that

AT

(14)
k=M

<AK max

with A" independent of the sequence {«(fc)}fcli • Since kn<p{kn) -* 0 as
« -» oo and each term <p{kn(k))in{{Xn(k)}), k - 1 , 2 , . . . , belongs to X,

it follows from (14) that the series Yl'kLi ?(K(k))m({^n(k)}) *s summable in
X.

Let us equip Ll(m) with the equivalent norm (see (1) and (2))

= sup eL(m).

LEMMA 4.2. The integration map Im: L (m) -* X is a Banach space iso-
morphism of Lx (m) onto X.

PROOF. Let K be as in the proof of Lemma 4.1. It follows from (11) that

Since E = a{T) € Z and P{o(T)) = 1 it is clear from the definition of | • |
that \\Im(p\\ < | (p | , for every <p e Lx(m). Accordingly, we have

(15) <peLl(m),
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which shows that Im is a bicontinuous isomorphism of Ll(m) onto its range
in X.

To see that this range is all of X, let S e X. Then S = limJt_oo Sk (in
LU{Z)) where each Sk is in the linear span of m(E). Accordingly, there
exist S-simple functions fk , k e N, such that Sk — $O,T, fk dm = Imfk . It

follows from (15) and the completeness of L (m) that there is / e L (m)
such that fk -» / in Ll{m). Then Imf = S.

PROPOSITION 4.3. Whenever a(T) is infinite, the integration map
Im: Ll{m) -> X is not compact.

PROOF. If Im were compact it would follow from Lemma 4.2 that X is
finite dimensional.

PROPOSITION 4.4. Suppose that a(T) is a countably infinite set with zero
as only limit point. Then both Ll(m) and X are isomorphic to cQ. In
particular, the integration map Im: Ll(m) -> X is not weakly compact.

PROOF. Let F be the vector space

{<p:o(T)-+C; Urn Xn<p{kn) =

equipped with the seminorm q(<p) = sup{|A^(A)|; A 6 a(T)} . Since m({0})
= 0 it follows that Lx{m) coincides with the quotient space Y - F/q~l(0);
see Lemma 4.1. The quotient space is then a Banach space with norm

Ae<7(r)\{0}}, <peY;

the equivalence class of <p e F, which is again denoted by q>, can be inter-
preted as a function on a(T)\{0}.

Given q> € Y, let y/ be denned by (13). Then, with K as in the proof of
Lemma 4.2, we have that

But, from the theory of spectral operators it is known that || J,T) y/dP\\ <
4K\\t/s\\p, where || • ||p is the P-essential supremum norm. Since {0} is the
only possible P-null set and y/(0) = 0 we conclude that

Accordingly,
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which shows that the identity map from Y onto Ll(m) is continuous. Since
it is also injective, the open mapping theorem implies that Lx(m) and Y
are isomorphic Banach spaces. Since Y is isomorphic to c0 the proof is
complete.

REMARK 4. If we choose T to be compact, in addition to being a scalar-
type spectral operator, then it is clear from (10) and the definition of X that
X consists entirely of compact operators.
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