
HOMOTOPY GROUPS OF TRANSFORMATION GROUPS 

F. RHODES 

1. Introduction. In a previous paper (2) I defined the fundamental group 
<r(X, xo, G) of a group G of homeomorphisms of a space X, and showed that if 
the transformation group admits a family of preferred paths, then a(X, x0, G) 
can be represented as a group extension of 7Ti(X, X0) by G. In this paper the 
homotopy groups of a transformation group are defined. The nth absolute 
homotopy group of a transformation group which admits a family of preferred 
paths is shown to be representable as a split extension of the nth. absolute torus 
homotopy group rn(X, x0) by G. 

In § 6 it is shown that the action of G on X induces a homomorphism of G into 
a quotient group of a subgroup of the group of automorphisms of rn(X, x0). 
This homomorphism is used to obtain a necessary condition for the embedding 
of one transformation group in another, in particular, for the embedding of a 
discrete flow in a continuous flow with the same phase space. 

The relative homotopy groups of a transformation group are defined only in 
relation to an invariant subspace F of X and a particular family of preferred 
paths. They are shown to be representable as split extensions of the relative 
torus homotopy groups by G. The homotopy sequence of a transformation 
group which admits a family of preferred paths is an extension of the torus 
homotopy sequence by G. Its structure is complex, partly because the torus 
homotopy sequence has a spiral character and is only exact within each twist of 
the spiral. However, the sequence contains as a subsequence the extension of 
the ordinary homotopy sequence of X by G, and this subsequence is at every 
point "under-exact" relative to G in the sense defined in § 8. 

2. Notation. The notation for the w-dimensional cube will be 

p = {(/i, . . . , 0 1 , 

where 0 S tt ^ 1 for 1 ^ i S n. By identifying corresponding points of 
pairs of opposite faces of the cube we obtain as a quotient space the 
^-dimensional torus Tn. I t will be convenient to use the notation ît = tt (mod 1), 
T71 — {(h, . . . , tn)) .The quotient spaces obtained by identifying corresponding 
points on some pairs of opposite faces of the cube are ^-dimensional cylinders. 
The cylinders Cn = {(h, t2,..., ln)} obtained by identifying corresponding points 
on all but the first pair of opposite faces of the cube will be used in the definition 
of the absolute homotopy groups. The cylinders Dn = {(h, h, . . . , £n_i, tn)} 
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1124 F. RHODES 

obtained by identifying corresponding points on all but the first and last pairs 
of opposite faces of the cube will be used in the definition of the relative 
homotopy groups. 

Let X be a topological space with base-point x0. The maps Cn —» x0 and 
Dn —> x0 will both be denoted by in. If r < n, a map / : Cr —•> X gives rise to a map 
f1: C1 —> X defined by fn(h, t2, . . . , 4) = f(h, U, • • . , £*•)• The same notation 
will be used for the map f: Dn -> XJn(th î2l . . . , L-i, O = /(*i, h , K). 
The inverse maps C71 —> C1, (h, î2, . . . , 4) —-> (1 — /i, 22, • • • , 4 ) , and 
Dn __> Dn^ ^ t2, . . . , tn) -> (1 - tu h, . . . , Q, will both be denoted by pri. 

3. Transformation groups. Whereas in (2) it was convenient to consider a 
transformation group to be a pair (X, G), where G was a group of homeo-
morphisms of a space X, in this paper it is necessary to take the more general 
standpoint that a transformation group is a triple {X, G, T), where X is a 
topological space, G is a topological group with identity element e, and w is a 
continuous map TT: X X G —» X, ir: (x, g) —> g(x), such that ir(x} e) — x and 
n(x, gig2) — gi(g2(x)). In the study of the absolute homotopy groups of 
transformation groups, use is made of base-points in the space X. Thus the 
objects of the category under consideration are of the form (X, x0} G, TT), while 
a category mapping 

(*, * ) : (X, xo, G, TT) -> (X', xo', G', *') 

consists of a continuous map <£: X —» X ' such that </>x0 = x</ and a homo-
morphism ^ such that the following diagram is commutative: 

X ' X G'« 

A category mapping ($, ^) will be called an embedding if 0 is a homeomorphism 
of X into X' , and ^ is a monomorphism of G into G'. The transformation groups 
will be said to be of the same homotopy type if there exist category mappings 
(<*>, $) : (X, xo, G, TT) -> (X', xo', G', TT') and (0', f ) : (X', x0', G', TT') - • (X, x0, G, TT) 

such that \p and ^ are isomorphisms, and #'# and <W>' are homotopic to the 
identity maps of X and X', respectively. 

A transformation group (X, G, ir) is said to be free if the abstract group G is 
free. With each transformation group (X, G, T) there is associated a free 
transformation group in the following way. The group G can be expressed as a 
quotient group F/Fo, where F is an abstract free group. Let e: F —> G denote 
the natural epimorphism. Then the topology of G is lifted by e to a topology 
for F with respect to which F is a topological group. Moreover, if J denotes the 
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identity map of X and if TT' = ?r • (/, c): X X F->X, then (Z, F, v') is a 
transformation group, and (/, e): (X, #0, -F, 7r') —» (X, x0, G, 7r) is a category 
mapping. If g' Ç F and 6g' = g Ç G, then for all x G -ST, g'(x) = g(x). In 
particular, if g0 € F0, then for all x 6 X, go(#) = x, so that every element of FQ 
acts as the identity mapping of X. 

4. Absolute homotopy groups. Given a transformation group (X, x0, G, TT), 
for each element g of G, let the set Cn(X, x0, g) consist of all the continuous maps 
fiC^-^X such that / (0 , *h, . . . , 2») = #o and / ( l , /2, . . . , tn) = g(x0). The 
elements of the set will be called maps of C1 of order g. Two sets C'iX, xo, gi) 
and (^{X, #0, g2) are formally distinct even if gi{xo) = g2(#o). 

Two maps/o and / i of C" of order g are said to be homotopic if there exists a 
continuous map F: Cn X I —> X such that 

F(h, h, . . . , 4, 0) = /o(/i, £2, . . . , O» 

-F(*i, /2, . . . , 4, 1) = / i (h , 2̂, . . . , 4)> (h, h, . . • , 4) 6 C*; 

7^(0, h, • • • , 4, /) = #o, 

F(l,*2 , . . . , £ . , 0 = g(*o), O ^ / ^ l , 0 ^ 2 « < 1 , 2 g i g n . 

The homotopy class of a m a p / of order g will be denoted by [/; g]. 
If / i , / 2 : Cn -> Z are such that 

/ 1 : (1, 22, . . . , în) = / , (0 , h . . . X), 0 £ I, < 1, 2 ^ f ^ », 

then the sum of the two maps, (Ji + /2) : C^ —> X, can be defined by the 
equations: 

f-p\t\ttt +\ ffifài, h,.. . , O» 0 = *i = i» 
l/2(2/i — 1, h,... , J») 1 1 ^ * 1 ^ 1 . 

Thus if/1 G C*(X, Xo, gi) a n d / 2 6 C*(X", x0, £2), /1 + gi/2 is defined and is a 
map of C1 of order gig2. 

The homotopy class of/i + g 1/2 depends only on the homotopy classes of/1 
and/2. Thus the equation 

Lfii gi] * [/2Î 22] = [f 1 + gi/2; gig2] 

defines a rule of composition for maps of C1 of prescribed order, and the 
composition is associative. The element [tw; e] is an identity for this rule of 
composition, and each element [f; g] has an inverse element [g~lJpn\ g""1]. Thus 
the set of homotopy classes of maps of C1 of prescribed order with this rule of 
composition forms a group which will be denoted by <rn(X, Xo, G, T). 

The results on base-point invariance and naturality of the fundamental 
group of a transformation group which were proved in (2) extend immediately 
to the absolute homotopy groups. Thus a category mapping 

(*, * ) : (X, xo, G, TT) -> (X', xo', G', *') 
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induces a homomorphism 

(0, ^ ) # : an(X, x0, G, TT) —» <rM(X', x0', G', TT'), 

(*,*).:[f;«] ->[*/; M 
such that if 

(0', * ' ) : (X', xo, G', TT') -» (X", x0", G", TT") 

is another category mapping, 

and if (X, x0, G, 7r) and (X', x0', G', 7r') are of the same homotopy type, then 
<rn(X, Xo, G, 7r) and o-w(X', X(/, G', 7r') are isomorphic. Also, a path X from x0 

to Xi induces a natural isomorphism 

X*: <rn(X, Xo, G, 7r) —> (^(X, Xi, G, 7r), 

X*:[f;^]-^[XV+/ + ^ ; ^ ] ; 

while if G is abelian and Xi = gx0, then g induces a natural isomorphism 

g\>\ <rn(X, Xo, G, 7r) —> an(X, Xi, G, 7r), 

gl>: Lfiîgi]-» [gfiîgi]. 

The set of homotopy classes of maps of order e forms a subgroup of 
<rn(X, Xo, G, 7r) which is isomorphic to the nth torus homotopy group rw(X, Xo) 
described by Fox (1). In the notation introduced in § 2 of this paper, the group 
rn(X, Xo) is the set of homotopy classes of maps of the cylinder Cn into X such 
that 

/ (0 , î2, • • • , In) = / ( I , 2̂, • • • , k) = *0, 

with the rule of composition induced by the usual rule for addition of maps 
using the first coordinate. 

For n = 1, TI(X, x0) = TI(X, X 0 ) . For n ^ 2, a m a p / : Cw_1 —> X gives rise 
to a m a p / : C" -> X, 

fHh,.--/tn) =/ (*! , . . . , t_i) 

and a m a p / : Cw —» X gives rise to a map/*: Cw-1 —» X, 

/*(/!, . . . , L - i ) = / ( / i , . . . , 4 - i , 0 ) . 

These induce a monomorphism <£: rw_i(X, x0) —> rw(X, x0) and an epimorphism 
SF: rn(X, Xo) —» rw_i(X, Xo) such that SF^ is the identity automorphism. The 
group rn(X, Xo) is an extension by rn_i(X, x0) of a product of higher homotopy 
groups; precisely, there is an exact sequence (see 1, (9.3)) 

/n -2 \ 

2^ i^n 3> 
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The group irn (X, x0) can be embedded isomorphically in rn (X, x0) in a number 
of ways depending on the permutations of the coordinates used (see 1, § 7). 
However, in this paper Tn(X, x0) will be regarded as that subgroup of rn(X, x0) 
which consists of homotopy classes of maps of C1 —> X subject to the additional 
restriction that n 

f(tly... jn) = xo, n u = o. 
i=2 

Now the map 
iG

n: Tn(X, Xo) —> <rn(X, x0, G, TT), 

ion: If] - If; e], 

is a monomorphism. Moreover, if X is path-connected, the map 
j G

n : an(X, xo, G, TT) ->G, 
JGn:lf;g]-+g, 

is an epimorphism, and these two homomorphisms give rise to a short exact 
sequence. I t will be assumed in the remainder of the paper that X is path-
connected. 

If G is represented as a quotient group F/F0, where F is a free group, then 
there is a corresponding short exact sequence for an(X, x0, F, IT') which fits into 
the following commutative diagram in which the monomorphism of Fo into 
an(X, Xo, F, T') is the map go —> [C1; g0]: 

0 

0-*Tn(X,Xo) 

<rn(X, xo, F, x') 

(J, 0* 

JF 

an(X, xo, G, tr)-

I 
0 

Jo 

•+F >-0 

• * G -

Ï 
0 

• * 0 

It is easy to see that iG
nTn(X, x0) is a normal subgroup of <rn(X, x0, G, ir). The 

same is true of i0
nirn{X, x0). 

THEOREM 4.1. The group iG
nTn(X, x0) is a normal subgroup of an(X} XQ, G, TT). 

Proof. Suppose that [fi] G ?rn(X, x0) and [f\ g] 6 <rn{X> x0, G, 7r). Then 

[/; g] * [/i; e] * [g-i/p»; g-i] = [f + gft + /p»; e] = [/2; «], say. 

We have to prove that [f2; e] Ç iG
nirn{X, x0), i.e. that there exists [/'] 6 ?rn(X, x0) 

such that [f';e] = [f2î tf] G crw(X, x0, G, 7r). The result follows immediately for 
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n = 1. I sketch the geometrical idea for n = 2 which gives rise to the required 
homotopy for n ^ 2. I t will be convenient to consider the element fi of 
C2(X, x0, g) as a map of J2 into X subject to the appropriate conditions on the 
boundary, and to consider a representative of an element of 7r2(X) as a map of 
P into X or a map of £ 2 into X. Introduce the following notation for the 
boundary of P, 

at = {/o = i}, 

bi = {0 S to ^ h h = i], 

a = {§ ^ /o ^ M i = *}, * = 0 , 1 . 

There is a map of J2 onto E2 which maps a0 U a\ onto the boundary of E2 and 
identifies Z?0 with c0 and 6i with ci in £2 , and a homotopy of E2 which expands a 
central disc so as to push the images of 50 and b\ onto the boundary of E2. The 
map/2, regarded as a map from E2 into X, is modified by this homotopy to a 
m a p / ' of the required type. 

It was proved in (2) that if G is a group of simplicial transformations of a 
polyhedron X, then the fundamental group of the orbit space X/G is isomorphic 
to a quotient group of <r(X, x0, G). The corresponding quotient group can be 
defined for vn(X, x0, G, w). Unfortunately, the example discussed in (2, § 9) 
shows t h a t there is no connection between ir2{X/G) and the quot ien t group of 
(72(X, X0, G, 7r). 

5. Groups of operators of crn. In this section it is shown that if the trans­
formation group (X, x0, G, 7r) admits a family of preferred paths, then G acts as 
a group of operators on an(X, XQ, G, T), on rn(Xy x0), and on 7rw(X, X 0 ) . Thus 
<rn(X, Xo, G, 7r) can be represented as a split extension of rw(X, x0) by G and 
contains a subgroup isomorphic to the split extension of Tn (X, x0) by G. 

Let the groups of automorphisms of an(X, x0, G, 7r), rn(X, x0), and 7rw(X, X0) 
be denoted by An(X, x0, G, 7r), ^4n(X, x0), and-5w(X, x0), respectively. If r S n, 
the mapping 

Qr
n: <Tr(X, Xo, G, 7r) —» <rn(X, x0, G, 7r), 

is a monomorphism. Let [f1; g]* denote the inner automorphism 

[f ; g]*Lfi; gi] = [f ; g]*Ui\ gi\ * k r W ; s"1] 

= If + gfi + ggig-Tfiggig-1]. 
Then the map 

Or
n: <rr(X, Xo, G, 7r) —» ^4W(X, x0, G, 7r), 

is a homomorphism. Since for every category mapping (<£, ̂ ) , 

[*/;**].(*,*). = (4>,^)*[/;g]*, 
the homomorphism is natural. 
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Now iG
nrn(X, Xo) is a normal subgroup of <rn(X, x0, G, ir). Thus an element 

[f> g] £ <rr(X, Xo, G, ir) induces a map 

[f;«ln = (io*)-1 • [/; g], • t0», 

tf;2]n:[/i]->[/* + g f i + / V L 

which is an automorphism of rn(X, x0). Moreover, the map 

P f": ar(X, xo, G, T) -»• ^„ (Z , x0), 

i V : [ / ; g ] - > [ / ; ^ , 

is a natural homomorphism. 
Again, in view of Theorem 4.1, iG

nirn(X, x0) is a normal subgroup of 
<ra(X, Xo, G, 7r), SO that [/; g]t̂  restricted to 7rw(X, X0) is also an automorphism; 
and the map 

Qr
n:<TT(X9xo,G,ic)-->BH(X,x<i), 

Q,n:lf;g]-+Un;g]*Mx,xo), 

is a natural homomorphism. 
It was proved in (2) that if a transformation group (X, x0, G, T) admits a 

family of preferred paths at x0, then the fundamental group (ri(X, X0, G, 7r) can 
be represented in terms of TTI{X, xo). 

Recall that a family ï = {kg\ g Ç G} of paths in X is said to be & family 
of preferred paths at x0 if for each element g of G, k0 is a path from gxQ to x0, if 
ke ~ i, and if for every pair of elements gi, g2 of G, i ^ ^ gi^^2 + &^. Recall 
also that every free transformation group admits a family of preferred paths. 

PROPOSITION 5.1.-4 transformation group (X, XQ, G, IT) admits a family of 
preferred paths at x0 if and only if ci(X, x0, G, IT) is a split extension of r i(X, x0) 
by G. 

Proof. An extension B of A by C is said to be split if C can be regarded as a 
subgroup of B, i.e. if in the short exact sequence there is a monomorphism from 
C to B which commutes with the epimorphism from B to C. Thus the proposi­
tion follows from the observation that if ï is a family of preferred paths at x0j 

then 
ï*: G —> <TI(X, xo, G, 7r), 

is a monomorphism such that jVf*: G —» G is the identity map. 

THEOREM 5.2. If the transformation group (X, x0, G, TT) admits a family I of 
preferred paths at x0, then G acts as a group of operators of the groups 
<rn(X, Xo, G, 7r), Tn(X, Xo), and 7rw(X, X 0 ) . 

Proof. The mappings Oinï*, Pinï*, and (?inï* are homomorphisms of G into 
appropriate groups of automorphisms. 
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COROLLARY 5.3. For each element g of G, the following diagram is commutative: 

•! n 

rn(X, Xo) C Tn(X, xo) » <rn(X, x0, G, ir) 

Q"t. P?Ug ort.g 
7rw(X, Xo) C rn(X, Xo) > <rn(X, Xo, G, IT) 

The proof follows immediately from the definitions. 

In conformity with the notation of (2), the homomorphism Pint* will be 
denoted by ®n, and the automorphism ®ng will be denoted by Kg

n. No con­
fusion will be caused by denoting the homomorphism Qint* also by ®n. The 
explicit equation for the action of Kg

n on an element [f] £ Tn(X, x0) is 

K.nU\= [k0
nPn + gf+ Kl 

The homomorphism $în: G —» An(X, x0) enables one to define a split extension 
of rn (Xt Xo) by G. The set of ordered pairs {a ; g}, where a G rn (X, x0) and g G G 
with the rule of composition 

is a group which will be denoted by {rn{X, x0); $n}. If a = [/], then the 
notation {/; g} may be used in place of {a; g}. The set of ordered pairs {a; g}, 
where a G 7rn(X, x0) and g Ç: G with the same rule of composition is a group 
{irn{X, Xo); $w}, which is a subgroup of {r„(X, x0) ; $tn\. 

THEOREM 5.4. If the transformation group (X, x0, G, w) admits a family t of 
preferred paths at x0, then <Tn(X, x0, G, T) is isomorphic to the group {rn{X, x0) ; $

n} 
and contains a subgroup isomorphic to \irn(Xt XQ) ; $n}. 

Proof. The map 

V : <rn(X, xo, G, TT) -» {rw(X, *0) ; «"}, 

V1: [/;«]-> {/ + **;*}. 

is easily seen to be an isomorphism. The inverse image of {wn(X, x0) ; $tn] under 
this isomorphism is a subgroup of the required kind. 

Note, however, that this representation of <rn(X, x0, G, w) is not categorical 
for the category of transformation groups. 

Now since G is a topological group, (G, G, 7r0), 7r0(g, gf) = g'g, is a trans­
formation group. If (G, G, 7T0) admits a family Ï) of preferred paths at e, then 
(X, G, 7r) admits a family ï of preferred paths at x0 defined by the equation 
k0t = (hgt)(x0). Certainly, the additive group R of real numbers admits a 
family of preferred paths, hence a transformation group (X, R, T) admits a 
family of preferred paths. In this case Theorem 5.4 can be strengthened 
considerably. 
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THEOREM 5.5. If (G, G, T0) admits a family of preferred paths at e, then 

(Tn(X, X0, G, 7r) ^ TH(X, X0) X G. 

Proof. The proof of this theorem is the same as that of (2, Theorem 7) and 
consists of proving that the homomorphism ®n: G —•> ^4W(X, x0) is trivial. 

6. Embedding. One of the outstanding problems of topological dynamics is 
that of embedding a discrete flow in a continuous flow with the same phase 
space. The work of the previous section gives rise to a necessary condition for 
such an embedding to be possible. The group of integers will be denoted by Z, 
the additive group of real numbers by R, and the natural monomorphism of Z 
into R will be denoted by ^o. Then an embedding of a discrete flow in a 
continuous flow is a category mapping 

(/,*„): (X,Z,T)^(X,R,TT'). 

The necessary condition for such an embedding will arise as a special case of a 
more general embedding theorem which depends on the following theorem. 

THEOREM 6.1. Let (X, G, T) be a transformation group and set 

An'(X, xo) = PiViCY, xo, G, ir) C An(X, xQ), 

An"{X, xo) = P i ' V n p T , xo) C An'(X, x0), 

Ân(X, xo) = An'(X, xQ)/An"(X, xo). 

Then w induces a homomorphism 

Tm
n:G->Ân(X,Xo). 

Proof. For convenience in the proof, the superfix will be omitted from the 
symbol ir*. Since i^niX, x0) is a normal subgroup of ai(X, x0, G, T), the group 
An"(X,Xo) is a normal subgroup of An'(X, Xo). Let G be represented as a 
quotient group P/Po of a free group F, and let (X, F, 7r') be the corresponding 
free transformation group. Let Ï and I be two families of preferred paths at x0 in 
(X, F> 71-'), and let $n, %n: F —> An'(X, x0) be the homomorphisms induced by 
them. Then for each element g of F, PiSa^kgp + lg] = 0, say, is an element of 
An"(X, Xo) such that $tng = /3 • 2ng, since for each [f] of rn(X, x0), we have: 

fi . L,»[f] = 0 . [Z,V + tf + hn] 

= [*,V + h* + (W + «f + hn) + W + K\ 
= K*\f\. 

Hence, if ôn: An
f(X, x0) —> Ân(X, x0) is the natural epimorphism, 

«•«" = 4.8": P - > A ( X , x 0 ) . 

Thus this homomorphism depends only on -K' and will be denoted by irj. 
Since every element of F0 acts as the identity mapping of X, if g Ç P0, then 
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Lfî &]t] = Lfî e \ s o A a t ®n: F0 —» An"(X, x0) and x / : Fo —> 0. Thus x / induces 
a homomorphism x*: G —» Ân(X, #o). 

To show that this homomorphism depends only on x, suppose that G is also a 
quotient group H/H0 of another free group i î , and let (X, if, x") be the 
corresponding free transformation group. Thenx" induces 71%/': H—> An(X, Xo), 
IT/': HO —» 0, and hence a homomorphism of G into An{X, x0). Let e': F—>G, 
e": H —* G be the natural epimorphisms, and let f and I be families of preferred 
paths at x0 for (X, F, TT') and (X, H, >ir"). Given g Ç G, let g ' G ^ and g" G i î 
be elements such that ergf = e"g" = g. Since for all points x of X, 

g(x) = g'(x) = g"(x), 
we have 

« V = Pi*iV[*,'P + I,»] • 8 Y ' . 

Thus ôn$tng' = àn2
ngf\ and this automorphism depends only on the element g 

of G. 
I t does not seem to be possible to derive from each category mapping a 

natural map between the corresponding groups An which commutes with the 
homomorphisms x*. However, the following theorem gives a result in this 
direction which covers the important case of embeddings. 

THEOREM 6.2. A category mapping 

(<£, yf/)'. (Xi, Xi, Gi , x i ) —» ( X 2 , X2, G2 , x 2 ) , 

such that the homomorphism 

<£*: T„(-X"I, Xi) —• r „ ( X 2 , x 2 ) 

is epimorphic, induces a homomorphism 

O, )̂fc,: i în(Xi, Xi) -> ,4n(X2, X2) 

Proof. Let [fl5 gl\ = \fs;gs]^ € A ' (Xx, *i), and [f] G r„(X2, x2). Then 
there exists [f] Ç rK(Xi, Xi) such that [0/] = [/']. Hence, the equality 
UùgihU] = I/2; g2]fcil/] guarantees the equality [<£/i; ^i]t^[/] = [0/2; feW']. 
Thus the map (0, ^ ) b : A ' (Xx, Xx) -> i4n'CY2, x2), (0, ^ : [/; g]t, -» [0/; ^ ] q 

is a well-defined homomorphism. Since (0, ^)(^4w"(Xx, Xx) C ^4n"(X2, x2), the 
homomorphism (</>, i/O^ induces a homomorphism of the quotient groups 

(0, f\: In(Xl9 xi) -> An(X2, x2). 

Let {gi} be a family of generators for Gi and let {g /} be a family of generators 
for G2 which includes the family {\f/gi}. Let F± and F2 be the free groups on 
these families of generators. Then \f/ induces a monomorphism \pi. Fi —» F2 and 
there is a homomorphism 

(0, ^1)*: (rx(Xx, Xi, Fi, x / ) —> (7i(X2, x2, F2i x2 ')-
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If ï is a family of preferred paths for (Xi, #1, ft, 7r/), then the homo-
morphism 

\pi: ft —> (Ti(X2l x2, ft, T2'), 

^ i : (gii • • • gin) "» (<£> ̂ l)J*(£tl • • • gin)y 

can be extended to a homomorphism 

U: ft —• (ri(Z2> x2, ft, ^2') 
which gives rise to a family I of preferred paths for (X21 x2, ft, 7r2'). 

If ®n = Piw!*: ft -> An'(Xl9 xi) and 8" = Pi%: ft -> ^« ' (Z , , * , ) , then 

(0, M A = U i 
ensures that 

and also 
(<£, ^)b]7ri* = 7r2*^. 

The condition imposed in the theorem is certainly satisfied in the case of an 
embedding (7, yp)\ (X, Gi, n) —> (X, G2, 7r2). In this case, (J, yf/)\\ is the 
identity and thus the theorem shows that an embedding is only possible if for 
every positive integer n, the homomorphisms 7n*w and 7r2*

w commute with ^. As 
a special case of this we have the following theorem. 

THEOREM 6.3. The discrete flow (X, Z, T) can be embedded in a continuous flow 
(Xf R, 7r') only if for every positive integer n, ir*n: Z —» 0. 

Proof. The proof of Theorem 5.5 contains the result that (X, R, irf) admits a 
preferred family of paths ï such that, for all n, W1: R —•> 0 6 An'(Xy XQ). Thus 
71-/: i? —» 0 6 Ân(X, #0). I t follows therefore from the previous theorem that 
T*:Z-*0 G lw(Z,Xo). 

7. Relative homotopy groups. The theorems of §§ 4 and 5 have analogues 
for relative homotopy groups which will now be given. Some of the details of 
the proofs will be suppressed in order to avoid undue repetition of arguments and 
complexity of notation. 

The relative homotopy groups of a transformation group (X, XQ, G, IT) are 
defined relative to an invariant subspace F of X and a family ï of preferred 
paths at Xo in F. Thus, the appropriate category for relative homotopy groups 
is that whose objects are of the form (X, F, ï, G} ic) and whose mappings 
(<£, \p): (X, F, Ï, G, IT) —> {Xf, F', f, G', irf) consist of a continuous map 
<t>: X —» X' and a homomorphism ^: G—* G' with the following properties: 
(i) 0: F—> F', (ii) 07r = 7r'(<£, ^ ) , (iii) for every element g, < ^ ~ £^/. As 
always, the homotopy is to keep the end points of the paths fixed. 

For each integer n ^ 2 and each element g of G and its associated preferred 
path kg, let the set Dn(X, Y, kg, g) consist of all the continuous maps 
/ : Dn-*X such that /|(*i = 0) = x0, f\(h = 1) = gx0, f\(tn = 0) Ç F and 
/ | (£n = 1 ) = jf'(/i) G F, where/ ' is a path which is homo topic in F to kgp. Two 
such maps/o a n d / i are said to be homotopic if there exists a continuous map 
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F: Dn X I-+X such that F\(t = 0) = /<>, F\(t = 1) = jft, and for every X, 
F\(t = X) G Dn(X, F, &<,, g). The homotopy class of such a m a p / will be denoted 
by [ft g]. With the rule of composition [ft; gi] * [ft; g2] = [ft + gift; gig2], these 
form the relative homotopy group <rn(X, F, ï, G, 7r). 

The map iG
n: [f] —> [/; e] is a monomorphism of the relative torus homotopy 

group Tn(X, F, xo) into cw(X, F, ï, G, 7r). Here, 7rw(X, F, X0) will be regarded as 
a subgroup of rn(X, Y, x0), just as in § 4, 7rw(X, X0) was regarded as a subgroup 
of rn(X, Xo). By a proof similar to that of Theorem 4.1, it can be shown that 
iG

nrn(X, F, Xo) and iG
nirn(X, F, x0) are normal subgroups of <rn(X, Y, f, G, 7r). 

THEOREM 7.1. The group G acts as a group of operators of the groups 
<jn(X, F, Ï, G, TT), rn(-X", F, xo) and Tn(X, F, x0). 

Proof. Given an element g of G, ï*g = [& p̂; g] is an element of <T\{X, XQ, G, TT), 

and [&/V*; g] can be regarded as an element of an(X, F, ï, G, ?r). The inner 
automorphism [fe/P*ï g]* of ov(X, F, f, G, 7r) leaves invariant the normal sub­
groups iG

nTn(X, Y, x0) and iG
n7rn(X, F, x0), and thus induces automorphisms of 

rn{X, Y, Xo) and irn(X, Y,x0), both of which will be denoted by the same 
symbol K0

n which was used in § 5 to denote automorphisms of rn(X, XQ) and 
Tn(X, Xo). The maps $n: g —•> Kg

n are homomorphisms of G into the groups of 
automorphisms of rn(X, F, x0) or irn(X, Y, x0). 

The homomorphism ®n gives rise to the group extension {rn(X, Y, xQ); $n} 
and its subgroup {7rw(X, F, X0) ; $

w}, as in § 5. 

THEOREM 7.2. 77ze groz^ <rw(X, F, ï, G, 7r) is isomorphic to the group 

Proof. The map ft>w: If', g] ~> {/ + kg', g] is an isomorphism. 
A category mapping ($, ̂ ) induces homomorphisms ($, i/O* of the relative 

homotopy groups. Moreover, we have the following result. 

THEOREM 7.3. A category mapping (#, \f/) induces homomorphisms 

(4>,*)V {rw(X, Y,x0);®}-+{Tn(X', Y',xo');$'} 

such that 

(*,*)fc,: {irn(Xy F, * < > ) ; « } - • { * » ( * ' , F ' f *<>'); « ' } , 

awd corresponding homomorphisms for the extensions of the absolute homotopy 
groups. 

Proof. For each element g of G, Kfg'fa = <M^> where <£*: [f] —> [0/]. One can 
now check that (#, if/)^: {/; g} —> {<£f; ^g} is a homomorphism. 

Within the category of transformation groups with families of preferred 
paths, the representations of the an as split extensions of the rn are natural in 
that (*,iWt,!b = Vfo , i/0*. 

8. The homotopy sequence. The inclusion map i: Y —+ X gives rise to 
homomorphisms 

in: crn(Y, xo, G, IT) —» <rw(X, x0, G, x ) , 
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and 
V { r w ( F , X o ) ; r } - ^ { r w ( X , X o ) ; r } 

such t h a t 4 : {x n (F , x 0 ) ; ®n} -+{wn(X, x0)', ®n}. 
T h e inclusion homomorphism j n

f : irn{X, x0) —> 7rw(X, F, X0) commutes with 
Kg

n for each element g of G, and hence induces a homomorphism 

j n : {Tn(X, x 0 ) ; ®n} -> {T%(X, Y, x 0 ) ; «»}. 

On the other hand, there is in general no homomorphism of rn(Xf x0) into 
rw(X, F , x 0 ) , o r o f <Tn(X, Xo, G, ir) into<rn(X, F , ï, G, IT). However, rn(X, x0) has 
a subgroup rw (X, x0, x0) (see 1, § 11) which admits a na tura l homomorphism 
into rn(X, F , Xo). Similarly, an(X} Xo, G, T) contains as a subgroup the group 
crn(X, f, G, 7r) of homotopy classes of continuous maps / : Cn —> X of 
prescribed order which satisfy the conditionsf\ (h = 0) = x0}f\(ti = 1) = gx0, 
f\ (4 = 0) = f'(h) € F, w h e r e / ' is a pa th which is homotopic in F to k0p. Th i s 
group contains rn(X, x0, x0) as a subgroup and is isomorphic to a split extension 
{Tn(Xy Xo, Xo); $n} defined in the same way as the previous extensions. Since 
7rn(X, Xo) is a subgroup of rn(X, x0, x 0) , {irn(X, XQ)\ §tn] is a subgroup of 
{ r n ( X , x 0 , x 0 ) ; ^ } . 

T h e na tura l homomorphism of crn(X, f, G, w) into <rn(X, F , f, G, 7r) will be 
denoted by j n . T h e na tura l homomorphism of r n ( X , Xo, x0) into rn{Xy F , xo) 
commutes with the automorphisms Kg for each element g of G, and thus induces 
a homomorphism of the split extensions which may also be denoted by j n . 

Now a m a p / in Dn+1(X, F, k0, g) gives rise to a map 5/ = /|(£n+i = 0) in 
C*(F, xo, g) ; and [/'; g] -> [ôf; g] and {/; g} - » {5/; g} are homomorphisms 

dw+i: o-n+iC-X", F , 1, G, ?r) —> crw(F, x0, G, TT), 

and 

aw+1: {rw + 1(X, F , xo); r + 1 } - * {rn(Y, x 0 ) ; « "} , 

respectively, such t h a t 

dn+1: {TTW + 1(X, F , X O ) ; ^ + 1 } K(F,x0); £*} 
T h e isomorphisms % commute with the homomorphisms i, j , and d. Thus , we 
have the following commuta t ive diagram, in which, to save space, the symbols 
for the groups have been abbreviated by the suppression of the symbols G, x, 
a n d $ . 

<rw+i(X, x0) D vn+1(X, Î) - t e vn+1(X, F, Ï) -^±i* *n(Y, x0) - * U <rn(X, x0) 

k 
Jn+l 

I . 

{ r n + 1 (X ,Xo)}D{r T O + 1 (Z ,Xo ,x 0 )}^± i>{r w + 1 (Z , F, x 0 ) } - ^ ± M r „ ( F , x0)} - = U { r„(X, x0)} 

U U U U 

[7TM+1(Z,X0)} - ^ {7Tn+1(Z, F,X0)} - ^ {7Tw(F,Xo)} - ^ U {7TW(X,X0)J 
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The lower sequence is a split extension by G of the homotopy sequence of 
(X, Y, x0), while the middle sequence is a split extension by G of the torus 
homotopy sequence. 

n+ > Tn+i(X, Xo) 

u 
• t «J f ' t 

Tn+l(X, XQ, Xo) -^—> Tn+l(X, F , XQ) U+1> Tn(Y, XQ) : ^-» TW(X, tf0) 

U 
jn 

This sequence has a spiral character, in that rn(X, x0) C Tn+i(X, XQ) and is 
exact at each level in that Ker dn+i = lmjn+i'y Ker in

f = Im ^ + / , and 
Kerjn = T»CX\ xo, x0) H Im in\ 

The equalities here can be regarded as inclusions in both directions. The split 
extensions of the sequences give inclusion in one direction only, namely 
Ker dn+i C Imjn+i. 

Definition 8.1. A sequence 

will be said to be under-exact at B if Ker j C I m i, and under-exact relative to 
a subgroup G at B if G Ker j = Imi. The following lemma can be proved by 
standard arguments. 

LEMMA 8.2. A split extension of an exact sequence by a group G is under-exact 
relative to G. 

Using these notions, the structure of the homotopy sequence of a transforma­
tion group can be described in the following way. 

THEOREM 8.3. If (X, Y, Î, G, ir) is a transformation group with a family of 
preferred paths, then its homotopy sequence is under-exact relative to G at 
(rn+i(X, F, Ï, G, 7r) and at vn(Y, Xo, G, IT), that is to sayy 

G Ker dn+1 = Im; n + i , G Ker in = Im dn+1. 

Moreover, it contains a subsequence which is under-exact relative to G at every 
point. 
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