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AN INVERSE MAPPING THEOREM FOR BLOW-NASH
MAPS ON SINGULAR SPACES

JEAN-BAPTISTE CAMPESATO

Abstract. A semialgebraic map f :X→ Y between two real algebraic sets is

called blow-Nash if it can be made Nash (i.e., semialgebraic and real analytic)

by composing with finitely many blowings-up with nonsingular centers.

We prove that if a blow-Nash self-homeomorphism f :X→X satisfies a

lower bound of the Jacobian determinant condition then f−1 is also blow-Nash

and satisfies the same condition.

The proof relies on motivic integration arguments and on the virtual

Poincaré polynomial of McCrory–Parusiński and Fichou. In particular, we need

to generalize Denef–Loeser change of variables key lemma to maps that are

generically one-to-one and not merely birational.
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§1. Introduction

Blow-analytic maps were introduced in the early 1980s by Kuo in order to

classify real singularities [26–28]. A map f :X → Y between real algebraic

Received November 7, 2014. Revised May 13, 2015. Accepted July 31, 2015.
2010 Mathematics subject classification. Primary 14P99, 14E18; Secondary 14P05,

14P20, 14B05.

c© 2016 by The Editorial Board of the Nagoya Mathematical Journal

https://doi.org/10.1017/nmj.2016.29 Published online by Cambridge University Press

http://dx.doi.org/10.1017/nmj.2016.29
https://doi.org/10.1017/nmj.2016.29


A BLOW-NASH INVERSE MAPPING THEOREM 163

sets is called blow-analytic if there exists σ :M →X a finite sequence of

blowings-up with nonsingular centers such that f ◦ σ is analytic. In the same

vein a semialgebraic map between real algebraic sets is called blow-Nash if

the composition with some finite sequence of blowings-up with nonsingular

centers is Nash (i.e., semialgebraic and analytic). Arc-analytic maps were

introduced by Kurdyka [29]. A map f :X → Y between two real algebraic

sets is called arc-analytic if every real analytic arc on X is mapped by f to a

real analytic arc on Y . By a result of Bierstone and Milman [5] in response

to a question of Kurdyka, if f :X → Y is semialgebraic (i.e., its graph is

semialgebraic) and if X is nonsingular then f is arc-analytic if and only if it

is blow-Nash. When X is nonsingular, the set of points where such a map is

analytic is dense [29, 5.2] and thus the Jacobian determinant of f is defined

everywhere except on a nowhere dense subset of X.

The following Inverse Function theorem is known for X nonsingular [13]:

if the Jacobian determinant of a blow-Nash self-homeomorphism h :X →X

is locally bounded from below by a nonzero constant, on the set it is defined,

then h−1 is blow-Nash and its Jacobian determinant is also locally bounded

from below by a nonzero constant on the set it is defined.

In this paper, we generalize this theorem to singular algebraic sets.

We first introduce, in Section 2.3, the notion of generically arc-analytic

maps which are maps f :X → Y between real algebraic sets such that there

exists a nowhere dense subset S of X with the property that every arc on X

not entirely included in S is mapped by f to a real analytic arc on Y . When

dim Sing(X) > 1, we see that this condition is strictly weaker than being

arc-analytic, otherwise a continuous generically arc-analytic map is an arc-

analytic map. Then we show that the semialgebraic generically arc-analytic

maps are exactly the blow-Nash ones.

Given f :X →X a blow-Nash self-map on a real algebraic set X, we have

the following diagram

M
σ

~~

σ̃

  
X

f

// X

with σ given by a sequence of blowings-up with nonsingular centers and σ̃

a Nash map.
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We may now give an analogue of the lower bound of the Jacobian

determinant condition: we say that f satisfies the Jacobian hypothesis if the

Jacobian ideal of σ is included in the Jacobian ideal of σ̃. This condition

does not depend on the choice of σ.

We are now able to state the main theorem of this paper: let f :X →X

be a semialgebraic self-homeomorphism with X an algebraic subset then f is

blow-Nash and satisfies the Jacobian hypothesis if and only if f−1 satisfies

the same conditions.

Heuristically, the main idea of the proof consists in comparing the

“motivic volume” of the set of arcs on X and the “motivic volume” of

the set of arcs on X coming from arcs on M by σ̃. This allows us to prove

that we can uniquely lift by σ̃ an arc not entirely included in some nowhere

dense subset of X. Thereby, such an arc is mapped to an analytic arc by

f−1. Thus f−1 is generically arc-analytic and so blow-Nash.

Therefore, we first define the arc space on an algebraic subset X of

RN as the set of germs of analytic arcs on RN which lie in X, that is,

γ : (R, 0)→X such that for all f ∈ I(X), f(γ) = 0. For n ∈ N, we define the

space of n-jets on X as the set of n-jets γ on RN such that for all f ∈
I(X), f(γ(t))≡ 0 mod tn+1. The Section 2.4 contains some general prop-

erties of these objects and some useful results for the proof of the main

theorem.

The additive invariant used in order to apply motivic integration argu-

ments is the virtual Poincaré polynomial which associates to a set of a

certain class, denoted AS, a polynomial with integer coefficients. We recall

the main properties of the collection AS in Section 2.1. The virtual Poincaré

polynomial was constructed by McCrory and Parusiński [36] and Fichou

[11]. The Section 2.2 contains the main properties of this invariant and

motivates its use.

In order to compute the above-cited “motivic volumes”, we first prove

a version of Denef–Loeser key lemma for the motivic change of variables

formula which fulfills our requirements and with a weaker hypothesis: we

do not assume the map to be birational but only generically one-to-one.

Based on these results, we may finally prove there exists a subset on X

such that every analytic arc on X not entirely included in this subset may

be uniquely lifted by σ̃. This part relies on real analysis arguments and on

the fact that an arc not entirely included in the center of a blowing-up may

be lifted by this blowing-up.
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§2. Preliminaries

2.1 Constructible sets and maps

Arc-symmetric sets have been first defined and studied by Kurdyka in

[29]. A subset of an analytic manifold M is arc-symmetric if all analytic arcs

on M meet it at isolated points or are entirely included in it. Semialgebraic

arc-symmetric sets are exactly the closed sets of a Noetherian topology AR
on RN . We work with a slightly different framework defined by Parusiński

in [41] and consider the collection of sets AS defined as the Boolean algebra

generated by semialgebraic arc-symmetric subsets of PnR. The advantages of

AS over AR are that we get a constructible category in the sense of [41]

as explained below and a better control of the behavior at infinity. We refer

the reader to [31] for a survey.

Definition 2.1. [41, 2.4] Let C be a collection of semialgebraic sets. A

map between two C-sets is a C-map if its graph is a C-set. We say that C is

a constructible category if it satisfies the following axioms:

(A1) C contains the algebraic sets.

(A2) C is stable by Boolean operations ∩, ∪ and \.
(A3) (a) The inverse image of a C-set by a C-map is a C-set.

(b) The image of a C-set by an injective C-map is a C-set.

(A4) Each locally compact X ∈ C is Euler in codimension 1, that is, there

is a semialgebraic subset Y ⊂X with dim Y 6 dimX − 2 such that

X\Y is Euler1.

Remark 2.2. A locally compact semialgebraic set X is Euler in codi-

mension 1 if and only if it admits a fundamental class for the homology with

coefficient in Z2. For instance, this property is crucial in the construction of

the virtual Poincaré polynomial in order to use the Poincaré duality.

Given a constructible category C, we have a notion of C-closure.

Theorem 2.3. [41, 2.5] Let C be a constructible category and let X ∈ C
be a locally closed set. Then for any subset A⊂X there is a smallest closed

subset of X which belongs to C and contains A. It is denoted by A
C
. Any

other closed subset of X that is in C and contains A must contain A
C
.

1A locally compact semialgebraic set X is Euler if for every x ∈X the Euler–Poincaré
characteristic of X at x, χ(X, X\x) =

∑
(−1)i dimHi(X, X\x; Z2), is odd.
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Remark 2.4. [41, 2.7] If A is semialgebraic then dimA
C

= dimA. In

particular, if A ∈ C then A
C

=A ∪A\A
C

and hence dim
(
A
C\A

)
< dimA.

Definition 2.5. [41, Section 4.2] A semialgebraic subset A⊂ PnR is an

AS-set if for every real analytic arc γ : (−1, 1)→ PnR such that γ((−1, 0))⊂
A there exists ε > 0 such that γ((0, ε))⊂A.

Using the proof of [41, Theorem 2.5], we get the following proposition.

Proposition 2.6. There exists a unique Noetherian topology on PnR
whose closed sets are exactly the closed AS-subsets.

Theorem 2.7. [41]

• The algebraically constructible sets form a constructible category denoted

by AC.

• AS is a constructible category.

• Every constructible category contains AC and is contained in AS. This

implies that each locally compact set in a constructible category is Euler.

• AS is the only constructible category which contains the connected com-

ponents of compact real algebraic sets.

In what follows, constructible subset stands for AS-subset, constructible

map stands for map with constructible graph and constructible isomorphism

stands for AS-homeomorphism.

In our proof of Lemma 4.5 we need the following result which is, in some

sense, a replacement of Chevalley’s theorem for Zariski-constructible sets

over an algebraically closed field.

Theorem 2.8. [41, 4.3] Let A be a semialgebraic subset of a real

algebraic subset X of PnR. Then A ∈ AS if and only if there exist a regular

morphism of real algebraic varieties f : Z→X and Z ′ the union of some

connected components of Z such that

x ∈A⇔ χ
(
f−1(x) ∩ Z ′

)
≡ 1 mod 2

x /∈A⇔ χ
(
f−1(x) ∩ Z ′

)
≡ 0 mod 2

where χ is the Euler characteristic with compact support.

In particular the image of an AS-subset by a regular map whose Euler

characteristics with compact support of all the fibers are odd is an AS-subset.
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In this paper, we need to work with AS-sets in order to use the virtual

Poincaré polynomial discussed below.

In our settings, the Noetherianity of the AS topology will also allow us

to prove a version of Denef and Loeser key lemma for the motivic change of

variables formula with a weaker hypothesis. Indeed, we will not assume that

the map is birational but only Nash, proper and generically one-to-one.

2.2 The virtual Poincaré polynomial

McCrory and Parusiński proved in [36] there exists a unique additive

invariant of real algebraic varieties which coincides with the Poincaré poly-

nomial for (co)homology with Z2 coefficients for compact and nonsingular

real algebraic varieties. Moreover, this invariant behaves well since its degree

is exactly the dimension and the leading coefficient is positive. This virtual

Poincaré polynomial has been generalized to AS-subsets by Fichou in [11].

Furthermore Nash-equivalent AS-subsets have the same virtual Poincaré

polynomial. These proofs use the weak factorization theorem [1, 49] in a way

similar of what has been done by Bittner in [7] to give a new description of

the Grothendieck ring in terms of blowings-up.

Theorem 2.9. [11] There is an additive invariant β :AS → Z[u], called

the virtual Poincaré polynomial, which associates to an AS-subset a poly-

nomial with integer coefficients β(X) =
∑
βi(X)ui ∈ Z[u] and satisfies the

following properties:

• β
(⊔k

i=1 Xi

)
=
∑k

i=1 β(Xi).

• β(X × Y ) = β(X)β(Y ).

• For X 6= ∅, deg β(X) = dimX and the leading coefficient of β(X) is

positive2.

• If X is nonsingular and compact then βi(X) = dimHi(X, Z2).

• If X and Y are Nash-equivalent then β(X) = β(Y ).

The virtual Poincaré polynomial is a more interesting additive invariant

than the Euler characteristic with compact support since it stores more

information, like the dimension. Notice that it is well known that if we forget

the arc-symmetric hypothesis and work with all semialgebraic sets, the Euler

characteristic with compact support is the only additive invariant [45].

2β(∅) = 0.
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2.3 Geometric settings

For the sake of convenience, we recall some basics of Nash geometry and

arc-analytic maps before introducing generically arc-analytic maps.

A Nash function on an open semialgebraic subset of RN is an analytic

function which satisfies a nontrivial polynomial equation. This notion

coincides with C∞ semialgebraic functions. We can therefore define the

notion of Nash submanifold in an obvious way. This notion is powerful

since we can use tools from both algebraic and analytic geometries, for

example, we have a Nash implicit function theorem. For more details on

Nash geometry, we refer the reader to [8] and [47].

Arc-analytic maps were first introduced by Kurdyka in relation with

arc-symmetric sets in [29]. These are maps that send analytic arcs to

analytic arcs by composition and hence it is suitable to work with arc-

analytic maps between arc-symmetric sets. A semialgebraic map f :M →N

is blow-Nash if there is a finite sequence of blowings-up with nonsingular

centers σ : M̃ →M such that f ◦ σ : M̃ →N is Nash. Let M be an analytic

manifold and f :M → R a blow-analytic map, since we can lift an analytic

arc by a blowing-up with nonsingular center of a nonsingular variety, f is

clearly arc-analytic. Kurdyka conjectured the converse with an additional

semialgebraicity3 hypothesis and Bierstone and Milman brought us the

proof in [5]. Parusiński gave another proof in [40]. We refer the reader to

[31] for a survey on arc-symmetric sets and arc-analytic maps.

Definition 2.10. Let U be a semialgebraic open subset of RN . Then

an analytic function f : U → R is said to be Nash if there are polynomials

a0, . . . , ad with ad 6= 0 such that

ad(x) (f(x))d + · · ·+ a0(x) = 0.

Theorem 2.11. [8, Proposition 8.1.8] Let U be a semialgebraic open

subset of RN . Then f : U → R is a Nash function if and only if f is

semialgebraic and of class C∞.

Definition 2.12. A Nash submanifold of dimension d is a semialgebraic

subset M of Rp such that every x ∈M admits a Nash chart (V, ϕ),

that is, there are U an open semialgebraic neighborhood of 0 ∈ Rp, V

3The question is still open for the general case: is a map blow-analytic if and only if it
is subanalytic and arc-analytic?

https://doi.org/10.1017/nmj.2016.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.29


A BLOW-NASH INVERSE MAPPING THEOREM 169

an open semialgebraic neighborhood of x in Rp and ϕ : U → V a Nash-

diffeomorphism satisfying ϕ(0) = x and ϕ((Rd × {0}) ∩ U) =M ∩ V .

Remark 2.13. A nonsingular algebraic subset M of Rp has a natural

structure of Nash submanifold given by the Jacobian criterion and the Nash

implicit function theorem.

Definition 2.14. [29] Let X and Y be arc-symmetric subsets of two

analytic manifolds. Then f :X → Y is arc-analytic if for all analytic arcs

γ : (−ε, ε)→X the composition f ◦ γ : (−ε, ε)→ Y is again an analytic arc.

Theorem 2.15. [5] Let f be a semialgebraic map defined on a nonsin-

gular algebraic subset. Then f is arc-analytic if and only if f is blow-Nash.

Remark 2.16. Let f :X → Y be a semialgebraic arc-analytic map

between algebraic sets. Then f is blow-Nash even if X is singular. Indeed

we may first use a resolution of singularities ρ : U →X given by a sequence

of blowings-up with nonsingular centers [19] and apply Theorem 2.15 to

f ◦ ρ : U → Y .

Remark 2.17. If M is a nonsingular algebraic set and ρ : M̃ →M the

blowing-up of M with a nonsingular center, it is well known that we can lift

an arc on M by ρ to an arc on M̃ . This result is obviously false for a singular

algebraic set as shown in the following examples. However, if X is a singular

algebraic set and ρ : X̃ →X the blowing-up of X with a nonsingular center

we can lift an arc on X not entirely included in the center4 and this lifting

is unique.

Example 2.18. Consider the Whitney umbrella X = V (x2 − zy2) and

ρ : X̃ →X the blowing-up along the singular locus I(Xsing) = (x, y). Then

we cannot lift by ρ an arc included in the handle {x= 0, y = 0, z < 0} (ρ is

not even surjective).

Example 2.19. This phenomenon still remains in the pure dimensional

case. Let X = V (x3 − zy3). Then X is of pure dimension 2 and the

blowing-up ρ : X̃ →X along the singular locus I(Xsing) = (x, y) is surjective.

However we cannot lift the (germ of) analytic arc γ(t) = (0, 0, t) to an

analytic arc. In the y-chart,X̃ = {(X, Y, Z) ∈ R3, X3 = Z} and ρ(X, Y, Z) =

(XY, Y, Z). Then the lifting of γ should have the form γ̃(t) = (t
1
3 , 0, t).

4Such an arc meets the center only at isolated points since it is algebraic and hence
arc-symmetric.
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Remark 2.20. A continuous subanalytic map f : U → V is locally

Hölder, that is, for each compact subset K ⊂ U , there exist α > 0 and C > 0

such that for all x, y ∈K, ‖f(x)− f(y)‖6 C‖x− y‖α. See for instance [17],

it is a consequence of [20, Section 9, Inequality III]. See also [4, Corollary

6.7]. Or we can directly use  Lojasiewicz inequality [4, Theorem 6.4] with

(x, y) 7→ |f(x)− f(y)| and (x, y) 7→ |x− y|.

The following result will be useful.

Proposition 2.21. Let f :X → Y be a surjective proper subanalytic

map (resp. proper semialgebraic map) and γ : [0, ε)→ Y a real analytic

(resp. Nash) arc. Then there exist m ∈ N>0 and γ̃ : [0, δ)→X analytic (resp.

Nash) with δm 6 ε such that f ◦ γ̃(t) = γ(tm).

Proof. The proof is divided into two parts. First we use the properness of

f to lift γ to an arc on X and then we conclude thanks to Puiseux theorem.

Consider the following diagram

X

f

��

X̃ =X ×Y [0, ε)
prXoo

f̃
��

Y [0, ε)
γ

oo

Let X1 = f̃−1((0, ε)). Since f is proper, X1\X1 ⊂ X̃. Let x0 ∈X1\X1, then

by the curve selection lemma ([8, Proposition 8.1.13] for the semialgebraic

case) there exists γ1 : [0, η)→ X̃ analytic (resp. Nash) such that γ1(0) = x0

and γ1((0, η))⊂X1. We have the following diagram

X̃

f̃
��

[0, η)
γ1

oo

h||
[0, ε)

Then, h(0) = 0 and h((0, η))⊂ (0, ε). Hence there exists α ∈ (0, η) such that

h : [0, α)→ [0, β) is a subanalytic (resp. semialgebraic) homeomorphism.

By Puiseux theorem ([8, Proposition 8.1.12] for the semialgebraic case;

see also [42]), there exist m ∈ N>0 and δ 6 β
1
m such that h−1(tm) is analytic

(resp. Nash) for t ∈ [0, δ).
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Finally, γ̃ : [0, δ)→X defined by γ̃(t) = prXγ1h
−1(tm) satisfies f ◦ γ̃(t) =

γ(tm).

In the singular case we will work with a slightly different framework.

Definition 2.22. Let X and Y be two algebraic sets. A map f :X → Y

is said to be generically arc-analytic in dimension d= dimX if there exists

an algebraic subset S of X with dim S < dimX such that for all analytic arc

γ : (−ε, ε)→X not entirely included5 in S, f ◦ γ : (−ε, ε)→ Y is analytic.

If X is nonsingular, these maps are exactly the arc-analytic ones.

Lemma 2.23. Let X be a nonsingular algebraic set of dimension6d and

Y an algebraic set. Let f :X → Y be a continuous semialgebraic map. If f

is generically arc-analytic in dimension d then f is arc-analytic.

Proof. Let S be as in Definition 2.22. By the Jacobian criterion and the

Nash implicit function theorem we may assume that S is locally a Nash

subset of Rd. Taking the Zariski closure we may moreover assume that S

is an algebraic subset of Rd since it does not change the dimension. Let

γ : (−ε, ε)→ Rd be an analytic arc entirely included in S.

As in [30, Corollaire 2.7], by Puiseux theorem, we may assume that

f(γ(t)) =
∑
i>0

bit
i/p, t> 0

f(γ(t)) =
∑
i>0

ci(−t)i/r, t6 0.

By [30, Corollaire 2.8 and Corollaire 2.9], two phenomena may prevent

f(γ(t)) from being analytic: either one of these expansions has a noninteger

exponent or these expansions do not coincide.

To handle the first case, we assume that one of these expansions, for

instance for t> 0, has a noninteger exponent, that is,

f(γ(t)) =
m∑
i=0

bit
i + bt

p
q + · · · , b 6= 0, m <

p

q
<m+ 1, t> 0.

It follows from Remark 2.20 there exists N ∈ N such that for every analytic

arc δ we have f(γ(t) + tNδ(t))≡ f(γ(t)) mod tm+1. We are going to prove

5γ−1(S) 6= (−ε, ε).
6We mean that every point of X is nonsingular of dimension d.
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that for η ∈ Rd generic, the arc γ̃(t) = γ(t) + tNη is not entirely included in

S in order to get a contradiction since f(γ̃(t))≡ f(γ(t)) mod tm+1.

Let t0 ∈ (−ε, ε)\{0}. Since dim S < d, there is η̃ ∈ Rd\Cγ(t0)S where

Cγ(t0)S is the tangent cone of S at γ(t0). Thus there exists F ∈ I(S)

with F (γ(t0) + x) = Fµ(x) + · · ·+ Fµ+r(x) where deg Fi = i and such that

Fµ(η̃) 6= 0. Then F
(
γ(t0) + stN0 η̃

)
=
(
stN0
)µ
Fµ(η̃) +

(
stN0
)µ+1

G(s, t) and

hence for s small enough the arc γ(t) + tNsη̃ is not entirely included in

S.

Then we prove that the expansions coincide in a similar way. Assume

that the expansions are different, that is,

f(γ(t)) =

m−1∑
i=0

ait
i + btm + · · · , t> 0

f(γ(t)) =

m−1∑
i=0

ait
i + ctm + · · · , t6 0

with b 6= c. As in the previous case, we may construct an arc γ̃ not entirely

included in S such that fγ(t) and fγ̃(t) coincide up to order m+ 1. That

leads to a contradiction.

Remark 2.24. If dim Sing(X) = 0 then a generically arc-analytic map

X → Y is also arc-analytic since the analytic arcs contained in the singular

locus are constant.

Remark 2.25. The previous proof fails when X is not assumed to be

nonsingular. Let X = V (x3 − zy3) and S =Xsing =Oz. Consider (germ of)

analytic arc γ(t) = (0, 0, t) entirely included in S. Given any N ∈ N we

cannot find η(t) such that γ̃(t) = γ(t) + tNη(t) is not entirely included in S.

Indeed, if we inject the coordinates of γ̃ in the equation x3 = zy3 we get a

contradiction considering the orders of vanishing.

Remark 2.26. A continuous semialgebraic generically arc-analytic

in dimension d= dimX map f :X → Y may not be arc-analytic if

dim Sing(X) > 1. Indeed, let X = V (x3 − zy3) and f :X → R be defined

by f(x, y, z) = x
y . Then f(0, 0, t) = t

1
3 is not analytic.

In the nonsingular case, by Theorem 2.15, the blow-Nash maps are exactly

the semialgebraic arc-analytic ones. With the following proposition, we

notice that more generally the blow-Nash maps are exactly the semialgebraic

generically arc-analytic ones.
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Proposition 2.27. Let X be an algebraic set of dimension d. Let f :

X → Y be a semialgebraic map which is continuous on Regd X. Then f is

generically arc-analytic in dimension d if and only if it is blow-Nash.

Proof. Assume that f is generically arc-analytic. Let ρ : U →X be

a resolution of singularities given by a sequence of blowings-up with

nonsingular centers, then f ◦ ρ : U → Y is semialgebraic and generically arc-

analytic with U nonsingular. Thus f ◦ ρ is arc-analytic by Lemma 2.23.

By Theorem 2.15, there exists a sequence of blowings-up with nonsingular

centers η :M → U such that f ◦ ρ ◦ η is Nash. Finally f ◦ σ is Nash where

σ = ρ ◦ η :M →X is a sequence of blowings-up with nonsingular centers.

Assume that f is blow-Nash. Then there is σ :M →X a sequence of

blowings-up with nonsingular centers such that f ◦ σ :M → Y is Nash. Let

γ be an arc on X not entirely included in the singular locus of X and

the center of σ, then there is γ̃ an arc on M such that γ = σ(γ̃). Thus

f(γ(t)) = f ◦ σ(γ̃(t)) is analytic.

2.4 Arcs and jets

Arc spaces and truncations of arcs were first introduced by Nash in 1964

[38] and their study has gained new momentum with the works of Kontsevich

[24], Denef and Loeser [9] on motivic integration. We can notice that

Kurdyka [29], Nobile [39], Lejeune-Jalabert [34], [15], Hickel [18] and others

studied arc spaces and jet spaces before the advent of motivic integration.

Most of these works concern the relationship between the singularities of a

variety and its jet spaces.

In this section, we define the arc space and the jet spaces of a real algebraic

set. We first work with the whole ambient Euclidean space and then use the

equations of the algebraic set to define arcs and jets on it. Finally we will

give and prove a collection of results concerning these objects.

The arc space on RN is defined by

L
(
RN
)

=
{
γ : (R, 0)→ RN , γ analytic

}
and, for n ∈ N, the set of n-jets on RN is defined by

Ln
(
RN
)

= L
(
RN
)
/∼n

where γ1 ∼n γ2 if and only if γ1 ≡ γ2 mod tn+1. Obviously, Ln(RN )'
(R{t}/tn+1)N . We also consider the truncation maps πn : L(RN )→Ln(RN )
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and πmn : Lm(RN )→Ln(RN ), where m> n. These maps are clearly surjec-

tive.

Next, assume that X ⊂ RN is an algebraic subset. The set of analytic

arcs on X is

L(X) =
{
γ ∈ L

(
RN
)
, ∀f ∈ I(X), f(γ(t)) = 0

}
and, for n ∈ N, the set of n-jets on X is

Ln(X) =
{
γ ∈ Ln

(
RN
)
, ∀f ∈ I(X), f(γ(t))≡ 0 mod tn+1

}
.

When X is singular, we will see that the truncation maps may not be

surjective.

Example 2.28. Let X ⊂ RN be an algebraic subset, then L0(X)'X
and L1(X)' TZarX =

⊔
TZar
x X. Indeed, we just apply Taylor expansion to

f(a+ bt) where f ∈ I(X) (or we may directly use that the Zariski tangent

space at a point is given by the linear parts of the polynomials f ∈ I(X)

after a translation).

The following lemma is useful to find examples which are hypersurfaces

since the constructions of arc space and jet spaces on an algebraic set are

algebraic. See [8, Theorem 4.5.1] for a more general result with another

proof. We may find similar results for nonprincipal ideals in [8, Proposition

3.3.16, Theorem 4.1.4]. See also [33, Section 6].

Lemma 2.29. Let f ∈ R[x1, . . . , xN ] be an irreducible polynomial which

changes sign, then I(V (f)) = (f).

Proof. The following proof comes from [33, Lemma 6.14]. After an affine

change of coordinates, we may assume that f(a, b1)< 0< f(a, b2) with

a= (a1, . . . , aN−1). Let g ∈ I(V (f)) and assume that f - g in R[x1, . . . , xN ].

In the PID (and hence UFD) R(x1, . . . , xN−1)[xN ], f is also irreducible

and f - g too. In this PID, we may find ϕ and γ such that ϕf + γg = 1.

Let ϕ= ϕ0/h and γ = γ0/h with 0 6= h ∈ R[x1, . . . , xN−1] and ϕ0, γ0 ∈
R[x1, . . . , xN−1][xN ]. Then ϕ0f + γ0g = h. Let V be a neighborhood of a

in RN−1 such that for all v ∈ V, f(v, b1)< 0< f(v, b2). By the IVT, for all

v ∈ V , there is b1 6 bv 6 b2 such that f(v, bv) = 0, and so g(v, bv) = 0. Then

for all v ∈ V, h(v) = 0 and hence h≡ 0 which is a contradiction.
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Example 2.30. Let X = V
(
y2 − x3

)
. Since y2 − x3 is irreducible and

changes sign, we have I(X) =
(
y2 − x3

)
by Lemma 2.29. Hence we get,

L1(X) =

{
(a0 + a1t, b0 + b1t) ∈

(
R{t}/t2

)2
,

(b0 + b1t)
2 − (a0 + a1t)

3 ≡ 0 mod t2

}
=
{

(a0 + a1t, b0 + b1t) ∈
(
R{t}/t2

)2
, a3

0 = b20, 3a1a
2
0 = 2b0b1

}
L2(X) =

{
(a0 + a1t+ a2t

2, b0 + b1t+ b2t
2) ∈

(
R{t}/t3

)2
,

(b0 + b1t+ b2t
2)2 − (a0 + a1t+ a2t

2)3 ≡ 0 mod t3

}

=

(a0 + a1t+ a2t
2, b0 + b1t+ b2t

2)

∈
(
R{t}/t3

)2
,

a3
0 = b20,

3a1a
2
0 = 2b0b1,

3a2
0a2 + 3a0a

2
1 = 2b0b2 + b21

 .

Then the preimage of (0, t) ∈ L1(X) by π2
1 is obviously empty.

We therefore take care not to confuse the set Ln(X) of n-jets on X and

the set πn (L(X)) of n-jets on X which can be lifted to analytic arcs. Thanks

to Hensel’s lemma and Artin approximation theorem [2], this phenomenon

disappears in the nonsingular case.

Proposition 2.31. Let X be an algebraic subset of RN . The following

are equivalent:

(i) For all n, πn+1
n : Ln+1(X)→Ln(X) is surjective.

(ii) For all n, πn : L(X)→Ln(X) is surjective.

(iii) X is nonsingular.

Proof. (iii)⇒ (ii) is obvious using Hensel’s lemma and Artin approxima-

tion theorem [2].

(ii)⇒ (i) is obvious since πn = πn+1
n ◦ πn+1.

(i)⇒ (iii): Assume that 0 is a singular point of X. We can find γ = αt ∈
L1(X) which does not lie in the tangent cone of X at 0, that is, such that

f(αt) 6≡ 0 mod tm+1 for some f ∈ I(X) of order m. Such a 1-jet cannot be

lifted to Lm(X).

The set Ln(X) of n-jets on X ⊂ RN can be seen as a algebraic subset of

R(n+1)N . By a theorem of Greenberg [16], given an algebraic subset X ⊂ RN ,

there exists c ∈ N>0 such that for all n ∈ N, πn(L(X)) = πcnn (Lcn(X)). Then
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if we work over C the sets πn(L(X)) are Zariski-constructible by Chevalley

theorem. See for instance [34]7, [15] or [9].

In our framework, the following example shows that the πn(L(X)) may

not even be AS.

Example 2.32. Let X = V (x2 − zy2). Then for every a ∈ R, γa(t) =

(0, t2, at2) ∈ L2(X). Let η(t) = (bt3 + t4η1(t), t2 + t3η2(t), at2 + t3η3(t)) ∈
L(R3). Let f(x, y, z) = x2 − zy2, then f(η(t)) = (b2 − a)t6 + t7η̃(t). So if a <

0, γa(t) /∈ π2(L(X)). However if a> 0, γa(t) = π2(
√
at

3
, t2, at2) ∈ π2(L(X)).

Proposition 2.33. Let X ⊂ RN be an algebraic subset of dimension d.

Then:

(i) dim(πn(L(X))) = (n+ 1)d.

(ii) dim(Ln(X)) > (n+ 1)d.

(iii) The fibers of π̃mn = πmn |πm(L(X)) : πm(L(X))→ πn(L(X)) are of dimen-

sion smaller than or equal to (m− n)d where m> n.

(iv) A fiber (πn+1
n )−1(γ) of πn+1

n : Ln+1(X)→Ln(X) is either empty or

isomorphic to TZar
γ(0)X.

If moreover we assume that X is nonsingular, we get the following statement

since Ln(X) = πn(L(X));

(v) dim(Ln(X)) = (n+ 1)d.

Proof. We first notice that (i) is a direct consequence of (iii).

(ii)(πn0 )−1(X\Xsing) is of dimension (n+ 1)d since the fiber of πn0 over a

nonsingular point is of dimension nd.

(iii) We may assume that m= n+ 1. Let γ ∈ πn(L(X)). We may assume

that γ ∈ (Rn[t])N . We consider the following diagram

RN × R
p1

{{

p2

##
RN R

with p1(x, t) = γ(t) + tn+1x and p2(x, t) = t. Let X = p−1
1 (X) ∩ {t 6= 0}

Zar
.

For c 6= 0, X ∩ p−1
2 (c)'X and dim X ∩ p−1

2 (c) = dim X− 1. Hence dim X ∩
p−1

2 (0) 6 dim X− 1 = dimX.

7She uses a generalization of [3, Theorem 6.1] instead of Greenberg theorem.
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We are looking for objects of the form πn+1(γ(t) + tn+1α(t)) with

γ(t) + tn+1α(t) ∈ L(X). Such an α is equivalent to a section of p2|X, that is,

R → X
t 7→ (α(t), t). Since we want an arc modulo tn+2, we are looking for the

constant term of α, therefore (π̃n+1
n )−1(γ)⊂ X ∩ p−1

2 (0).

(iv) Let γ ∈ Ln(X). Let η ∈ RN . Assume that I(X) = (f1, . . . , fr). By

Taylor expansion we get

fi(γ + tn+1η)≡ fi(γ(t)) + tn+1
(
∇γ(t)fi

)
(η) mod tn+2

Assume that fi(γ(t))≡ tn+1αi mod tn+2. Since

tn+1(∇γ(t)fi)(η)≡ tn+1(∇γ(0)fi)(η) mod tn+2,

we have

fi(γ + tn+1η)≡ tn+1
(
αi +

(
∇γ(0)fi

)
(η)
)

mod tn+2

Hence, γ(t) + tn+1η is in the fiber (πn+1
n )−1(γ) if and only if αi +

(∇γ(0)fi)(η) = 0, i= 1, . . . , r.

An arc-analytic map f :X → Y induces a map f∗ : L(X)→L(Y ). More-

over, if f :X → Y is analytic, then we also have maps at the level of n-jets

f∗n : Ln(X)→Ln(Y ) such that the following diagram commutes

L(X)
f∗
//

πn
��

L(Y )

πn
��

Ln(X)
f∗n

// Ln(Y )

In particular, if X is nonsingular, Im f∗n ⊂ πn (L(Y )) since πn : L(X)→
Ln(X) is surjective.

For M a nonsingular algebraic set and σ :M →X ⊂ RN analytic, we

define Jacσ(x) the Jacobian matrix of σ at x with respect to a coor-

dinate system at x in M . For γ an arc on M with origin γ(0) = x,

we define the order of vanishing of γ along Jacσ by ordt Jacσ(γ(t)) =

min{ordt δ(γ(t)), for all δ being a m-minor of Jacσ} where m= min(d, N)

and γ is expressed in the local coordinate system. This order of vanishing

is independent of the choice of the coordinate system.

The critical locus of σ is Cσ = {x ∈M, δ(x) = 0, for all δ being a m−
minor of Jacσ}. If E ⊂M is locally described by an equation f = 0 around

x and if γ is an arc with origin γ(0) = x then ordγ E = ordt f(γ(t)).
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§3. The main theorem

Lemma 3.1. Let X be an algebraic subset of RN and f :X →X a blow-

Nash map. Let σ :M →X be a sequence of blowings-up with nonsingular

centers such that σ̃ = f ◦ σ :M →X is Nash.

M
σ

~~

σ̃

  
X

f

// X

After adding more blowings-up, we may assume that the critical loci of σ

and σ̃ are simultaneously normal crossing and denote them by
∑

i∈I νiEi
and

∑
i∈I ν̃iEi.

Then the property

(1) ∀i ∈ I, νi > ν̃i

does not depend on the choice of σ.

Proof. Given σ1 and σ2 as in the statement and using Hironaka flattening

theorem [21] (which works as it is in the real algebraic case), there exist π1

and π2 regular such that the following diagram commutes:

M̃
π1

~~

π2

  
M1

σ̃1

��

σ1

!!

M2

σ̃2

��

σ2

}}
X

f
��
X

The relation 1 means exactly that the Jacobian ideal of σi is included in

the Jacobian ideal of σ̃i. By the chain rule, the relations at the level Mi are

preserved in M̃ . Again by the chain rule and since the previous diagram

commutes, the relations in M1 and M2 must coincide.

Definition 3.2. We say that a map f :X →X as in Lemma 3.1

verifying the relation (1) satisfies the Jacobian hypothesis.
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Question 3.3. May we find a geometric interpretation of this hypoth-

esis?

The following example is a direct consequence of the chain rule.

Example 3.4. Let X be a nonsingular algebraic set and f :X →X a

regular map satisfying | det df |> c for a constant c > 0, then f satisfies the

Jacobian hypothesis.

Theorem 3.5. (Main theorem) Let X be an algebraic subset of RN and

f :X →X a semialgebraic homeomorphism (for the Euclidean topology). If

f is blow-Nash and satisfies the Jacobian hypothesis then f−1 is blow-Nash

and satisfies the Jacobian hypothesis too.

By Lemma 2.23 and Proposition 2.27, if X is a nonsingular algebraic

subset we get the following corollary.

Corollary 3.6. [13] Let X be a nonsingular algebraic subset and f :

X →X a semialgebraic homeomorphism (for the Euclidean topology). If f

is arc-analytic and if there exists c > 0 satisfying | det df |> c then f−1 is

arc-analytic and there exists c̃ > 0 satisfying | det df−1|> c̃.

Remark 3.7. We recover [13, Theorem 1.1] using the last corollary and

[13, Corollaries 2.2 and 2.3].

§4. Proof of the main theorem

4.1 Change of variables

An algebraic version of the following lemma was already known in [10],

[43] or [44, Section 2] with a proof in [48, 4.1]. The statement given below

is more geometric and the proof is quite elementary.

Lemma 4.1. Let X be a d-dimensional algebraic subset of RN . We

consider the following ideal of R[x1, . . . , xN ]

H =
∑

f1,...,fN−d∈I(X)

∆(f1, . . . , fN−d) ((f1, . . . , fN−d) : I(X))

where ∆(f1, . . . , fN−d) is the ideal generated by the (N − d)-minors of the

matrix
(
∂fi
∂xj

)
i=1,...,N−d
j=1,...,N

. Then V (H) is the singular locus8 Xsing of X.

8By singular locus we mean the complement of the set of nonsingular points in
dimension d as in [8, 3.3.13] (and not the complement of nonsingular points in every
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Proof. Let x /∈ V (H) then there exist f1, . . . , fN−d ∈ I(X), δ a

(N − d)-minor of
(
∂fi
∂xj

)
i=1,...,N−d
j=1,...,N

and h ∈ R[x1, . . . , xN ] with hI(X)⊂

(f1, . . . , fN−d) and hδ(x) 6= 0. Since δ(x) 6= 0, x is a nonsingular point of

V (f1, . . . , fN−d). Furthermore we have X = V (I(X))⊂ V (f1, . . . , fN−d)⊂
V (hI(X)) and, since h(x) 6= 0, in an open neighborhood U of x in RN
we have V (hI(X)) ∩ U =X ∩ U . Hence V (f1, . . . , fN−d) ∩ U =X ∩ U . So

x is a nonsingular point of X by [8, Proposition 3.3.10]. We proved that

Xsing ⊂ V (H).

Now, assume that x ∈X\Xsing. With the notation of [8, Section 3],

the local ring RX,x =RRN ,x/I(X)RRN ,x is regular, so we may find a

regular system of parameters (f1, . . . , fN ) of RX,x such that I(X)RRN ,x =

(f1, . . . , fN−d)RRN ,x by [25, VI.1.8 and VI.1.10]9 (see also [8, Proposition

3.3.7]). Moreover, we may assume that the f1, . . . , fN−d are polynomi-

als. We may use the following classical argument. θ : R[x1, . . . , xN ]→
RN defined by f 7→ f(x) induces an isomorphism θ′ : mx/m

2
x→ RN .

Then rk
(
∂fi
∂xj

(x)
)

= dim θ((f1, . . . , fN−d)) which is, by θ′, the dimen-

sion of ((f1, . . . , fN−d) + m2
x)/m2

x as a subspace of mx/m
2
x. If we denote

by m the maximal ideal of RX,x = (R[x1, . . . , xN ]/(f1, . . . , fN−d))mx
,

we have m/m2 'mx/((f1, . . . , fN−d) + m2
x). So we have dim

(
m/m2

)
+

rk
(
∂fi
∂xj

(x)
)

=N .

Furthermore, since RX,x is a d-dimensional regular local ring,

dim
(
m/m2

)
= d. Hence

(
∂fi
∂xj

(x)
)

i=1,...,N−d
j=1,...,N

is of rank N − d and so there

exists δ a (N − d)-minor of
(
∂fi
∂xj

)
i=1,...,N−d
j=1,...,N

such that δ(x) 6= 0. Assume that

I(X) = (g1, . . . , gr) in R[x1, . . . , xN ]. Then gi =
∑ fj

qj
with qj(x) 6= 0, so

gihi ⊂ (f1, . . . , fN−d) with hi =
∏
qj . Then h=

∏
hi satisfies h(x) 6= 0 and

hI(X)⊂ (f1, . . . , fN−d). So x /∈ V (H). Hence V (H)⊂Xsing ∪ (RN\X).

To complete the proof, it remains to prove that V (H)⊂X. Let x /∈X.

There exist f1, . . . , fN−d ∈ I(X) such that fi(x) 6= 0. We construct by

induction N − d polynomials of the form gi = aifi with gi(x) 6= 0 and

(dg1 ∧ · · · ∧ dgN−d)x 6= 0. Suppose that g1, . . . , gj−1 are constructed, if

(dg1 ∧ · · · ∧ dgj−1 ∧ dfj)x 6= 0, we can take aj = 1, so we may assume that

dimension). We may avoid this precision with the supplementary hypothesis that every
irreducible component of X is of dimension d or in the pure dimensional case.

9Since RRN ,x = R[x1, . . . , xN ]mx .
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(dg1 ∧ · · · ∧ dgj−1 ∧ dfj)x = 0. Then we just have to take some aj satisfy-

ing (dg1 ∧ · · · ∧ dgj−1 ∧ daj)x 6= 0 and aj(x) 6= 0 since (dg1 ∧ · · · ∧ dgj−1 ∧
d(ajfj))x = fj(x)(dg1 ∧ · · · ∧ dgj−1 ∧ daj)x. Then we have g1, . . . , gN−d ∈
I(X) whose a (N − d)-minor δ satisfies δ(x) 6= 0. Moreover we have gi(x) 6= 0

and giI ⊂ (g1, . . . , gN−d). So x /∈ V (H).

Definition 4.2. Let X be an algebraic subset of RN . For e ∈ N, we set

L(e)(X) =
{
γ ∈ L(X), ∃g ∈H, g(γ(t)) 6≡ 0 mod te+1

}
where H is defined in Lemma 4.1.

Remark 4.3. L(X) =
(⋃

e∈N L(e)(X)
) ⊔
L(Xsing)

Remark 4.4. In [9], Denef–Loeser set L(e)(X) = L(X)\π−1
e (Le(Xsing))

and used the Nullstellensatz to get that I(Xsing)c ⊂H for some c since

Xsing = V (H). Since we cannot do that in our case, we defined differently

L(e)(X).

The following lemma is an adaptation of Denef–Loeser key lemma [9,

Lemma 3.4] to fulfill our settings. The aim of the above-mentioned lemma

is to prove a generalization of Kontsevich’s birational transformation rule

(change of variables) of [24] to handle singularities. We can find a first

adaption to our settings in the nonsingular case in [23, Lemma 4.2].

Lemma 4.5. Let σ :M →X be a proper generically10 one-to-one Nash

map where M is a nonsingular algebraic subset of Rp of dimension d and

X an algebraic subset of RN of dimension d. For e, e′ ∈ N, we set

∆e,e′ =
{
γ ∈ L(M), ordt (Jacσ(γ(t))) = e, σ∗(γ) ∈ L(e′)(X)

}
.

For n ∈ N, let ∆e,e′,n be the image of ∆e,e′ by πn. Let e, e′, n ∈ N with n>
max(2e, e′), then:

(i) Given γ ∈∆e,e′ and δ ∈ L(X) with σ∗(γ)≡ δ mod tn+1 there exists a

unique η ∈ L(M) such that σ∗(η) = δ and η ≡ γ mod tn−e+1.

10That is σ is a Nash map which is one-to-one away from a subset S of X with dim S <
dimX and dim σ−1(S)< dimM .
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(ii) Let γ, η ∈ L(M). If γ ∈∆e,e′ and σ(γ)≡ σ(η) mod tn+1 then γ ≡
η mod tn−e+1 and η ∈∆e,e′.

(iii) The set ∆e,e′,n is a union of fibers of σ∗n.
(iv) σ∗n(∆e,e′,n) is constructible and σ∗n|∆e,e′,n

: ∆e,e′,n→ σ∗n(∆e,e′,n) is a

piecewise trivial fibration11 with fiber Re.

Remark 4.6. It is natural to use Taylor expansion to prove some

approximation theorems concerning power series as we are going to do

for 4.5(i). For instance, we may find similar argument in [16], [3], or [10].

For 4.5(i), we will follow the proof of [9, Lemma 3.4] with some differences

to match our framework. Concerning 4.5(iv), we cannot use anymore the

section argument of [9] since σ is not assumed to be birational.

Lemma 4.7. (Reduction to complete intersection) Let X be an alge-

braic subset of RN of dimension d. For each e ∈ N, L(e)(X) is covered by a

finite number of sets of the form

Ah,δ =
{
γ ∈ L(RN ), (hδ)(γ) 6≡ 0 mod te+1

}
with δ a (N − d)-minor of the matrix

(
∂fi
∂xj

)
i=1,...,N−d
j=1,...,N

and

h ∈ ((f1, . . . , fN−d) : I(X))

for some f1, . . . , fN−d ∈ I(X).
Moreover,

L(X) ∩Ah,δ =
{
γ ∈ L

(
RN
)
, f1(γ) = · · ·= fN−d(γ) = 0, hδ(γ) 6≡ 0 mod te+1

}
.

Remark 4.8. We may have different polynomials f1, . . . , fN−d for two

different Ah,δ.

Proof. By Noetherianity, we may assume that H = (h1δ1, . . . , hrδr) with

hi, δi as desired. Therefore, L(e)(X)⊂ ∪Ahi,δi .
Finally,

L(X) ∩Ah,δ =
{
γ ∈ L

(
RN
)
, ∀f ∈ I(X), f(γ) = 0, hδ(γ) 6≡ 0 mod te+1

}
=
{
γ ∈ L

(
RN
)
, f1(γ) = · · ·= fN−d(γ) = 0, hδ(γ) 6≡ 0 mod te+1

}
.

11By a trivial piecewise fibration, we mean there exist a finite partition of σ∗n(∆e,e′,n)
with constructible parts and a trivial fibration given by a constructible isomorphism over
each part.
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Indeed, for the second equality, if f ∈ I(X) then hf ∈ (f1, . . . , fN−d), hence

if γ vanishes the fi, then hf(γ) = 0, and so f(γ) = 0 since h(γ) 6= 0.

Proof of Lemma 4.5. We first notice that 4.5(iii) is a consequence of

4.5(ii): for all πn(γ) ∈∆e,e′,n we have

πn(γ) ∈ σ−1
∗n (σ∗n(πn(γ)))

=
{
πn(η), η ∈ L(M), σ(η)≡ σ(γ) mod tn+1

}
using that L(M)→Ln(M)

is surjective since M is smooth and that πn ◦ σ∗ = σ∗n ◦ πn.

⊂
{
η ∈∆e,e′,n, γ ≡ η mod tn−e+1

}
⊂∆e,e′,n by 4.5(ii).

Next 4.5(ii) is a direct consequence of 4.5(i). We apply 4.5(i) to γ with

δ = σ∗(η), hence there exists a unique η̃ such that η̃ ≡ γ mod tn−e+1 and

σ∗(η̃) = σ∗(η). By the assumptions on σ and the definition of ∆e,e′ , for ϕ1 ∈
L(M) and ϕ2 ∈∆e,e′ with ϕ1 6= ϕ2 we have σ(ϕ1) 6= σ(ϕ2). Hence η = η̃ and

η ≡ γ mod tn−e+1. Since σ(γ)≡ σ(η) mod tn+1 and n> e′, σ(η) ∈ L(e′)(X).

We may write η(t) = γ(t) + tn+1−eu(t) and applying Taylor expansion to

Jacσ(γ(t) + tn+1−eu(t)) we get that Jacσ(η(t))≡ Jacσ(γ(t)) mod te+1 since

n+ 1− e> e+ 1. So η ∈∆e,e′ .

So we just have to prove 4.5(i) and 4.5(iv).

We begin to refine the cover of Lemma 4.7: for e′′ 6 e′, we set

Ah,δ,e′′ =

γ ∈Ah,δ, ordt δ(γ) = e′′ and ordt δ
′(γ) > e′′

for all (N − d)-minor δ′ of

(
∂fi
∂xj

)
i=1,...,N−d
j=1,...,N

 .

Fix some A=Ah,δ,e′′ , then it suffices to prove the lemma for ∆e,e′ ∩ σ−1(A).

Up to renumbering the coordinates, we may also assume that δ is the

determinant of the first N − d columns of ∆ =
(
∂fi
∂xj

)
i=1,...,N−d
j=1,...,N

.

We choose a local coordinate system of M at γ(0) in order to define Jacσ
and express arcs of M as elements of R{t}d.

Now, a crucial observation is that the first N − d rows of Jacσ(γ) are

R{t}-linear combinations of the last d rows: the application

M −→ X −→ RN−d
y 7−→ σ(y) 7−→ (fi(σ(y)))i=1,...,N−d
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is identically zero, so its Jacobian matrix is identically zero too and

thus ∆(σ(γ)) Jacσ(γ) = 0. Let P be the transpose of the comatrix of

the submatrix of ∆ given by the first N − d columns of ∆, then P∆ =

(δIN−d, W ). Moreover, we have W (σ(γ))≡ 0 mod te
′′
. Indeed, if we denote

∆1, . . . ,∆N−d the N − d first columns of ∆ and W1, . . . , Wd the columns

of W , then Wj(σ(γ)) is solution of (∆1(σ(γ)), . . . ,∆N−d(σ(γ)))X =

δ(σ(γ))∆N−d+j(σ(γ)) since

δ(σ(γ))∆(σ(γ)) = (∆1(σ(γ)), . . . ,∆N−d(σ(γ))) P (σ(γ))∆(σ(γ))

= (∆1(σ(γ)), . . . ,∆N−d(σ(γ))) (δ(σ(γ))IN−d, W (σ(γ))) .

So, by Cramer’s rule,

(Wj(σ(γ)))i = det (∆1(σ(γ)), . . . ,∆i−1(σ(γ)),∆N−d+j(σ(γ)),

∆i+1(σ(γ)), . . . ,∆N−d(σ(γ))) .

Finally, the congruence arises because the minor formed by the N − d first

columns is of minimal order by definition of A.

Now the columns of Jacσ(γ) are solutions of

(2)
(
t−e
′′ · P (σ(γ)) ·∆(σ(γ))

)
X = 0

but since t−e
′′ · P (σ(γ)) ·∆(σ(γ)) = (t−e

′′
δ(σ(γ))IN−d, t

−e′′W (σ(γ))) we

may express the first N − d coordinates of each solution in terms of the

last d coordinates. This completes the proof of the observation.

For 4.5(i), it suffices to prove that for all v ∈ R{t}N satisfying σ(γ) +

tn+1v ∈ L(X) there exists a unique u ∈ R{t}d such that

(3) σ(γ + tn+1−eu) = σ(γ) + tn+1v.

By Taylor expansion, we have

(4)

σ(γ(t) + tn+1−eu) = σ(γ(t)) + tn+1−e Jacσ(γ(t))u+ t2(n+1−e)R(γ(t), u)

with R(γ(t), u) analytic in t and u. By (4), (3) is equivalent to

(5) t−e Jacσ(γ(t))u+ tn+1−2eR(γ(t), u) = v

with n+ 1− 2e> 1 by hypothesis.
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Since σ(γ(t)) + tn+1v ∈ L(X) and using Taylor expansion, we get

0 = fi(σ(γ(t)) + tn+1v) = tn+1∆(σ(γ(t)))v + t2(n+1)S(γ(t), v)

with S(γ(t), v) analytic in t and v. So v is a solution of (2) and hence the first

N − d coefficients of v are R{t}-linear combinations of the last d coefficients

with the same relations that for Jacσ(γ). This allows us to reduce (5) to

t−e Jacp◦σ(γ(t))u+ tn+1−2ep (R(γ(t), u)) = p(v)(6)

where p : RN → Rd is the projection on the last d coordinates. The obser-

vation ensures that ordt Jacp◦σ(γ(t)) = ordt Jacσ(γ(t)) = e and thus (6) is

equivalent to

u=
(
t−e Jacp◦σ(γ(t))

)−1
p(v)− tn+1−2e

(
t−e Jacp◦σ(γ(t))

)−1
p (R(γ(t), u)) .

(7)

Applying the implicit function theorem to u(t, v) ensures that given an

analytic arc v(t) there exists a solution uv(t) = u(t, v(t)). Using the same

argument as in the proof of 4.5(ii), the solution uv(t) is unique. This

proves 4.5(i).

Let us prove 4.5(iv). Let γ ∈∆e,e′ ∩ σ−1(A) then

σ−1
∗n (πn(σ∗(γ)))

= {η ∈ Ln(M), σ∗n(η) = πn(σ∗(γ))}

=
{
πn(η), η ∈ L(M), σ(η)≡ σ(γ) mod tn+1

}
using that L(M)→Ln(M)

is surjective since M is smooth and that πn ◦ σ∗ = σ∗n ◦ πn.

=
{
γ(t) + tn+1−eu(t) mod tn+1, u ∈ R{t}d, Jacp◦σ(γ(t))u(t)≡ 0 mod te

}
by 4.5(ii) and (6).

Thus, the fiber is an affine subspace of Rde. There are invertible matrices

A and B with coordinates in R{t} such that A Jacp◦σ(γ(t))B is diagonal

with entries te1 , . . . , ted such that e= e1 + · · ·+ ed. Therefore the fiber is

of dimension e.

Since σ is not assumed to be birational, we cannot use the section

argument of [9, 3.4] or [23, 4.2], instead we use a topological Noetherianity

argument to prove that σ∗n|∆e,e′,n
is a piecewise trivial fibration.

We may assume that M is semialgebraically connected, then by Artin-

Mazur theorem [8, 8.4.4], there exist Y ⊂ Rp+q a nonsingular irreducible

algebraic set of dimension dimM , M ′ ⊂ Y an open semialgebraic subset of

Y , s :M →M ′ a Nash-diffeomorphism and g : Y → RN a polynomial map
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such that the following diagram commutes

Rp+q

Π

��

Y? _oo

g

!!

M ′
?�

OO

RN

Rp M

s '

OO

σ

==

? _oo

Thus, we have

σ−1
∗n (πn(σ∗(γ))) =

{
γ(t) + tn+1−eu(t) mod tn+1,

u ∈ R{t}d, Jacg◦s(γ(t))u(t)≡ 0 mod te
}
.

So ∆e,e′,n is constructible and we may assume that σ∗n : ∆e,e′,n→
σ∗n(∆e,e′,n) is polynomial up to working with arcs over M ′ via s. The

fibers (i.e., Re) have odd Euler characteristic with compact support, so by

Theorem 2.8 the image σ∗n(∆e,e′,n) is constructible.

Let V = {u0 + u1t+ · · ·+ unt
n, ui ∈ Rd} and fix Λ0 : V → V0 a linear

projection on a subspace of dimension e. The set Ω0 = {πn(γ(t)) ∈
∆e,e′,n, dim Λ0(σ−1

∗n (πn(σ∗(γ))))< e} is closed, constructible and union of

fibers of σ∗n. Therefore (σ∗n, Λ0) : ∆e,e′,n\Ω0→ σ∗n(∆e,e′,n\Ω0)× V0 is a

constructible isomorphism. We now repeat the argument to the closed

constructible subset σ∗n(Ω0) and so on. Indeed, assume that ∆e,e′,n ) Ω0 )
Ω1 ) · · ·) Ωi−1 are constructed as previously and that Ωi−1 6= ∅, then we

may choose Λi such that Ωi ( Ωi−1. So on the one hand the process continues

until one Ωi is empty, on the other hand it must stop because of the

Noetherianity of the AS-topology. Therefore after a finite number of steps,

one Ωi is necessarily empty.

4.2 Essence of the proof

By our hypothesis, there exists a sequence of blowings-up σ :M →X with

nonsingular centers such that σ̃ = f ◦ σ :M →X is Nash.

M
σ

~~

σ̃

  
X

f

// X
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After adding more blowings-up, we may assume that the critical loci of σ

and σ̃ are simultaneously normal crossing and denote them by
∑
νiEi and∑

ν̃iEi. Our hypothesis ensures that νi > ν̃i.

In the same way, we may ensure that the inverse images of H (defined in

Lemma 4.1) by σ and σ̃ are also simultaneously normal crossing and denote

them σ−1(H) =
∑

i∈I λiEi (resp. σ̃−1(H) =
∑

i∈I λ̃iEi).

We recall the usual notation12. For j = (ji)i∈I ∈ NI , we set J = J(j) =

{i, ji 6= 0} ⊂ I, EJ = ∩i∈JEi and E•J = EJ\ ∪i∈I\J Ei.
We also define: Bj = {γ ∈ L(M), for all i ∈ J, ordγ Ei = ji, γ(0) ∈ E•J} and

for all n ∈ N, Bj,n = πn(Bj) and Xj,n(σ) = πn(σ∗Bj) = σ∗n(Bj,n).

Lemma 4.9. We have Bj ⊂∆e(j),e′(j)(σ) where e(j) =
∑

i∈I νiji and

e′(j) =
∑

i∈I λiji.

Proof. Let γ ∈ Bj and choose a local coordinate system of M at γ(0) such

that the critical locus of σ is locally described by the equation
∏
i∈J x

νi
i = 0

and Ei by the equation xi = 0. Since ordγ Ei = ji, we have γi(t) = cjit
ji +

· · · and cji 6= 0. Then
∏
i∈J γ

νi
i = cte(j) + · · · with c 6= 0.

So we have ordt (Jacσ(γ(t))) = e(j).

In the same way, ordγ σ
−1(H) = e′(j) thus ordσ(γ)(H) = e′(j).

Therefore we set An(σ) =
{
j,
∑

i∈I νiji 6
n
2 ,
∑

i∈I λiji 6 n
}

. Indeed, for

each j ∈An(σ), Bj ⊂∆e(j),e′(j)(σ) and we may apply Lemma 4.5 at the level

of n-jets.

The argument of the following lemma is essentially the same as [13,

Section 4.2].

Lemma 4.10. (A decomposition of jet spaces) For all j ∈An(σ), the

sets Xj,n(σ) are constructible subsets of Ln(X) and dimXj,n(σ) =

d(n+ 1)− sj −
∑

i∈I νiji where sj =
∑

i∈I ji. Moreover Im(σ∗n) = Zn(σ) t⊔
j∈An(σ) Xj,n(σ) and the set Zn(σ) satisfies dim Zn(σ)< d(n+ 1)− n

c

where c= max(2νmax, λmax).

Proof. Consider j such that E•J 6= ∅ and for all i ∈ I, 0 6 ji 6 n. The fiber

of Bj,n→ E•J is∏
i∈J

(R∗ × Rn−ji)× (Rn)d−|J | ' (R∗)|J | × Rdn−sj

12This notation is natural and classical. See [22, Chapter II, Section 1] for some
properties of this stratification.
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since truncating the coordinates of γ ∈ Bj to degree n produces d− |J |
polynomials of degree n with fixed constant terms and for i ∈ J a polynomial

of the form cjit
ji + cji+1t

ji+1 + · · ·+ cnt
n with cji ∈ R∗ and other ck ∈ R.

We conclude that dim Bj,n = d(n+ 1)− sj.
We first assume that j ∈An(σ). By Lemma 4.9, Bj ⊂∆e(j),e′(j)(σ). Hence

by 4.5(iv), Xj,n(σ) is constructible since it is the image of the constructible

set Bj,n by the map σ∗n|∆e(j),e′(j),n
with fibers of odd Euler characteristic with

compact support. Let γ1 ∈ Bj,n and γ2 ∈∆e(j),e′(j),n with σ∗n(γ1) = σ∗n(γ2),

then, by 4.5(ii), γ1 ≡ γ2 mod tn−e(j)+1 with n− e(j) > e(j) and hence γ2 ∈
Bj,n. Thus by 4.5(iv) the map Bj,n→Xj,n(σ) is a piecewise trivial fibration

with fiber Re(j). So we have dimXj,n(σ) = d(n+ 1)− sj − e(j) as claimed.

Otherwise j /∈An(σ) and then dimXj,n 6 dim Bj,n = d(n+ 1)− sj <
d(n+ 1)− n

c (since n
2 < e(j) 6 νmaxsj or n < e′(j) 6 λmaxsj).

Remark 4.11. The two previous lemmas work as they are if we replace

σ by σ̃, νi by ν̃i, λi by λ̃i and c by c̃.

Remark 4.12. Remember that Im σ∗n ⊂ πn(L(X)) (resp. Im σ̃∗n ⊂
πn(L(X))). Moreover, since we may lift by σ an arc not entirely included in

the singular locus, πn(L(X))\ Im σ∗n ⊂ πn(L(Xsing)). The second part only

works for σ and does not stand for σ̃.

In order to apply the virtual Poincaré polynomial, we are going to modify

the objects of the partitions of Lemma 4.10.

Notation 4.13. We set

˜πn(L(X)) := Zn(σ) t (πn(L(X))\ Im σ∗n)
AS t

⊔
j∈An(σ)

Xj,n(σ)

resp. Ĩm σ̃∗n := Zn(σ̃)
AS t

⊔
j∈An(σ̃)

Xj,n(σ̃)


where the closure is taken in the complement of

⊔
j∈An(σ) Xj,n(σ)

(resp. in ˜πn(L(X))\
⊔

j∈An(σ̃) Xj,n(σ̃)). Hence we still have the inclusion

Ĩm σ̃∗n ⊂ ˜πn(L(X)), the unions are still disjoint and the dimensions remain

the same.

Lemma 4.14. For j ∈An(σ) we have

β(Xj,n(σ)) = β(E•J)(u− 1)|J |und−
∑

(νi+1)ji

(resp. for j ∈An(σ̃) we have β(Xj,n(σ̃)) = β(E•J)(u− 1)|J |und−
∑

(ν̃i+1)ji).
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Proof. We have

β (Xj,n(σ)) = β (Bj,n) u−
∑
νiji by Lemmas 4.5 and 4.9

= β
(
E•J × (R∗)|J | × Rdn−sj

)
u−

∑
νiji

by the beginning of the proof of Lemma 4.10

= β (E•J) (u− 1)|J |und−sj−
∑
νiji .

The same argument works for σ̃ too.

Lemma 4.15. For all i ∈ I, νi = ν̃i.

Proof. Applying the virtual Poincaré polynomial to the partitions of

Notation 4.13, we get

β
(

˜πn(L(X))
)
− β

(
Ĩm σ̃∗n

)
−

∑
j∈An(σ)∩An(σ̃)

(β(Xj,n(σ))− β(Xj,n(σ̃)))

=
∑

j∈An(σ)\An(σ̃)

β(Xj,n(σ))−
∑

j∈An(σ̃)\An(σ)

β(Xj,n(σ̃))

+ β
(
Zn(σ) t (πn(L(X))\ Im σ∗n)

AS)− β (Zn(σ̃)
AS)

.

We set

Pn = β
(

˜πn(L(X))
)
− β

(
Ĩm σ̃∗n

)
,

Qn =−
∑

j∈An(σ)∩An(σ̃)

(β(Xj,n(σ))− β(Xj,n(σ̃))) ,

Rn =
∑

j∈An(σ)\An(σ̃)

β(Xj,n(σ)), Sn =−
∑

j∈An(σ̃)\An(σ)

β(Xj,n(σ̃)),

Tn = β
(
Zn(σ) t (πn(L(X))\ Im σ∗n)

AS)
, Un =−β

(
Zn(σ̃)

AS)
.

Assume there exists i0 ∈ I such that νi0 > ν̃i0 .

Then for n big enough,

Kn =

{
sj +

∑
i∈I

ν̃iji, j ∈An(σ) ∩An(σ̃),
∑
i∈I

(νi − ν̃i)ji > 0

}

is not empty. The minimum kn = minKn stabilizes for n greater than

some rank n0. Let k = kn0 . Then, for n> n0, the degree of Qn is
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max
{
d(n+ 1)− sj −

∑
i∈I ν̃iji

}
= d(n+ 1)− k using the computation at

the beginning of the proof of Lemma 4.10.

The leading coefficients of Pn is positive since Pn =

β
(

˜πn(L(X))\Ĩm σ̃∗n

)
. The leading coefficient of Qn is also positive.

Hence the degree of the LHS is at least d(n+ 1)− k.

Moreover, we have deg Rn < d(n+ 1)− n
c̃ , deg Sn < d(n+ 1)− n

c ,

deg Tn < d(n+ 1)− n
max(c,1) and deg Un < d(n+ 1)− n

c̃ . Indeed,

for Tn, πn(L(X))\Im σ∗n ⊂ πn(L(Xsing)) and dim (πn(L(Xsing))) 6
(n+ 1)(d− 1)< d(n+ 1)− n by 2.33(i). So the degree of the RHS is

less than d(n+ 1)− n
max(c,c̃,1) .

We get a contradiction for n big enough.

Corollary 4.16. Qn = 0.

Since σ̃ :M →X is a proper Nash map generically one-to-one, there exists

a closed semialgebraic subsets S ⊂X with dim S < d such that for every

p ∈X\S, σ̃−1(p) is a singleton.

Lemma 4.17. Every arc on X not entirely included in S ∪Xsing may be

uniquely lifted by σ̃.

Proof. Let γ be an analytic arc on X not entirely in S and not entirely

in the singular locus of X.

Assume that γ /∈ Im σ̃∗. Then, by Proposition 2.21, we have

σ̃−1(γ(t)) =

m∑
i=0

bit
i + bt

p
q + · · · , b 6= 0, m <

p

q
<m+ 1, t> 0.

Since σ̃−1 is locally Hölder by Remark 2.20, there is N ∈ N such that

for every analytic arc η on X with γ ≡ η mod tN we have σ̃−1(η(t))≡
σ̃−1(γ(t)) mod tm+1. Hence such an analytic arc η is not in the image of

σ̃∗ and for n>N , πn(η) is not in the image of σ̃∗n : Ln(M)→ πn(L(X)).

Hence (πnN |πn(L(X)))
−1(πN (γ))⊂ πn(L(X))\ Im(σ̃∗n).

The first step consists in computing the dimension of the fiber

(πnN |πn(L(X)))
−1(πN (γ)) where n>N . For that, we will work with a res-

olution ρ : X̃ →X (for instance σ) instead of σ̃ since every analytic arc on

X not entirely included in Xsing may be lifted to X̃ by ρ. Let θ be the

unique analytic arc on X̃ such that ρ(θ) = γ. Let e= ordt(Jacρ(θ(t))) and

e′ be such that γ ∈ L(e′)(X). We may assume that N > max(2e, e′) in order

to apply Lemma 4.5 to ρ for γ.
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We consider the following diagram

L(X̃)
ρ∗

//

πn ����

L(X)

πn
����

Ln(X̃)
ρ∗n
//

πn
N ����

πn(L(X))

πn
N����

LN (X̃)
ρ∗N
// πN (L(X))

Since the fibers of ρ∗n|∆e,e′,n
and ρ∗N |∆e,e′,N

are of dimension e, and since

the fibers of πnN : Ln(X̃)→LN (X̃) are of dimension (n−N)d, we have

dim
((
πnN |πn(L(X))

)−1
(πN (γ))

)
= (n−N)d.

Hence dim (πn(L(X))\ Im(σ̃∗n)) > (n−N)d. And so, with the notation

of Lemma 4.15, we have

Pn + 0 =Rn + Sn + Tn + Un

with deg Pn > (n−N)d= (n+ 1)d− (N + 1)d and deg(Rn + Sn + Tn +

Un)< (n+ 1)d− n
max(c,c̃,1) .

We get a contradiction for n big enough.

End of the proof of Theorem 3.5. Let γ be an analytic arc on X not

entirely included in S ∪Xsing. By Lemma 4.17 and since γ is not entirely

included in S ∪Xsing, σ̃−1(γ(t)) is well defined and analytic. Hence

f−1(γ(t)) = σ(σ̃−1(γ(t))) is real analytic. Finally f−1 is generically arc-

analytic in dimension d= dimX.

So f−1 is blow-Nash by Proposition 2.27 and for all i ∈ I, νi = ν̃i by

Lemma 4.15. Then, arguing as in Lemma 3.1, f−1 satisfies the Jacobian

hypothesis too.

Acknowledgment. The author is very grateful to his thesis advisor Adam
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