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Summary

Many studies of QTL locations record several different traits on the same population, but most

analyses look at this information on a trait-by-trait basis. In this paper we show how the

regression approach to QTL mapping of Haley & Knott (1992) may be extended to a multi-trait

analysis via multivariate regression, easily programmed in statistical packages. A procedure for

identifying QTL locations using forward selection and bootstrapping is proposed. The method is

applied to examine the locations for QTLs for six yield characters (the number of fertile stems, the

grain number of the main stem, the main stem grain weight, the single plant yield, the plot yield

and the thousand grain weight) in a doubled haploid population of spring barley. Several

chromosomal locations with effects on more than one trait are found. The method is also suitable

for examining a single trait measured in different years or environments, and is used here to

examine data on heading date, a highly heritable trait, and plot yield, a trait with moderate

heritability and showing QTL–environment interactions.

1. Introduction

Many genome-wide QTL studies have been published

in which a number of traits have been measured on the

same population. The genetic analysis to place QTLs

affecting these traits on a linkage map is usually

conducted on a trait-by-trait basis. However, such a

trait-by-trait analysis may overlook much information

of use to the plant breeder. For example, a trait-by-

trait analysis often shows it is most likely that QTLs

for the different traits are in very similar locations, but

with different parents contributing favourable alleles

(e.g. Thomas et al., 1995, 1996). The dilemma facing

geneticists and breeders is whether such results indicate

linkage or pleiotropy. If the former, then marker-

assisted selection to break an unfavourable linkage

would be worthwhile and the desirable population

size could be formulated from the degree of linkage. If

the latter, then much time and effort would be wasted

trying to break an apparent linkage. A simultaneous

analysis of all of the quantitative trait data from a

cross is necessary to resolve this dilemma. Another
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example is when several traits, all known to relate to

a complex trait of interest, are measured (e.g. hot

water extract, grain nitrogen content, milling energy

contributing to barley malting quality). A simul-

taneous analysis of these traits may give particular

insight into the physiological processes occurring and

may identify suitable targets for breeding and}or

future research.

However, efficient statistical methods for combined

trait analyses are at an early stage of development.

Ronin et al. (1995) used mixtures of bivariate normal

distributions to look at the joint likelihood of two

correlated traits, affected by a QTL linked to a

molecular marker, and Korol et al. (1995) extended

this to full interval mapping for two correlated traits.

They found, by simulation, that the power of QTL

detection could be increased by taking into account

correlations between traits, even if the QTL position

under consideration affected only one of the traits.

Jiang & Zeng (1995) have extended composite interval

mapping to include the effects of a locus on several

traits simultaneously. Their approach gives a hy-

pothesis test for pleiotropy versus close linkage. By

simulation, they demonstrated an increase in power of

QTL detection and precision of parameter estimation.
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Weller et al. (1996) derived principal components

based on the values of three milk production traits

(milk yield, fat yield and protein yield) and related

these to a single locus associated with milk production

in dairy cattle. Mangin et al. (1998) has derived

theoretical results for a test, based on the principal

components of the traits, to test the hypothesis of

presence versus absence of a pleiotropic QTL.

The methods mentioned above for analysing several

traits simultaneously by interval mapping all require

complicated programming, and software is only

available at present for the method of Jiang & Zeng

(1995), in program JZmapqtl of QTL Cartographer

(Basten et al., 1994, 1999). In this report an alternative

method for multi-trait mapping is presented. This is

based on the regression mapping approach of Haley &

Knott (1992), and can be programmed in standard

statistical packages such as Genstat. It is applied to

analyse data on several characters relating to yield in

a doubled haploid population derived from a spring

barley cross. The method is equally applicable to

analyse traits measured in more than one environment

or year, and is used here to analyse heading date, a

highly heritable trait, and plot yield, with lower

heritability.

2. Methodology

(i) Genetic correlation between traits

Correlation between traits can arise due to genetic or

environmental effects. If a population of genetically

identical plants is grown in a field trial, then some

traits are likely to be correlated and this must be a

purely environmental correlation, perhaps due to

varying conditions in the field. If the population is not

genetically identical then observed correlations may

be a mixture of genetic and environmental effects.

Alternatively, genetic and environmental correlations

of opposite signs may cancel each other to some

extent. Just as the variance of a trait is the sum of

genetic effects and environmental effects, so is the

Table 1. The four possible offspring genotypes at two loci Q
X

and Q
Y

affecting traits X and Y respecti�ely for a doubled haploid population

generated from parents with genotypes Q
X
Q

X
Q

Y
Q

Y
and q

X
q
X
q
Y
q
Y
, and

the corresponding expected trait �alues. m
X
, a

X
, m

Y
and a

Y
are the mid-

parent �alues and additi�e effects for traits X and Y

Genotype Frequency ( f) Expected value for X Expected value for Y
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covariance between two traits and it is of interest to

separate these effects.

We will develop our model for a double haploid

(DH) population derived from a cross between two

inbred, homozygous parents. Consider two traits, X

and Y, affected by QTLs Q
X

and Q
Y

respectively.

Assume Q
X

and Q
Y

lie on the same chromosome, with

a recombination fraction r between them and let the

twoparents have genotypesQ
X
Q

X
Q

Y
Q

Y
and q

X
q
X
q
Y
q
Y

respectively. Table 1 shows the four possible offspring

genotypes at the two loci Q
X

and Q
Y
, their frequencies

( f ) and the corresponding expected trait values.

The genetic covariance σ
G(XY)

may be calculated

as:
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The genetic covariance is largest if r¯ 0 and tends to

zero as r approaches 0±5. If J chromosomes have a

pair of linked QTLs for X and Y the genetic corre-

lation becomes 3
J

j="

(1®2r
j
)a

Xj

a
Yj

. Then the phenotypic

covariance becomes 3
J

j="

(1®2r
j
)a

Xj

a
Yj

­cov(e
X
, e

Y
),

where the second term represents the environmental

covariance. The expression will be complicated further

if there are chromosomes where more than one QTL

affects one or more of the traits under investigation.

(ii) Multi-trait analysis

We will describe the regression mapping approach of

Haley & Knott (1992) for a single variable, review
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some results on multivariate regression and combine

the two to obtain a model for multi-trait analysis.

Haley–Knott regression

Consider a DH population with marker loci A and B

flanking a QTL, Q. Let the recombination frequencies

between A and Q, Q and B and A and B be r
A
, r

B
and

r respectively. Table 2 shows the frequency of each of

the four possible marker genotypes, the proportion of

each QTL genotype associated with that marker

genotype and the expected trait value associated with

that marker genotype for a single trait, X. The

expected trait value can always be expressed as the

overall mean, m
X
, plus the QTL effect, a

X
, multiplied

by a function of the QTL position. This function, l, is

given in the final column of Table 2. Therefore, if we

knew the position of the QTL, we could calculate l

and then estimate the QTL parameters m
X

and a
X

by

regression of the trait values on l. We do not know the

QTL position, so, following Haley & Knott (1992), we

try a series of positions along the chromosome.

Regression mapping, therefore, involves calculating

the explanatory variable l at each position along the

chromosome, regressing the trait value on this

explanatory variable to calculate m
X
, a

X
and the

variance ratio for the significance of the regression,

and identifying the position with the largest variance

ratio for the regression as the most likely position for

a QTL. The same approach may be used if there is

more than one QTL affecting a single trait on the

chromosome, provided that QTLs are not in adjacent

intervals.

This method for QTL mapping may be generalized

to two or more traits simultaneously, using multi-

variate regression.

Multi�ariate regression

(a) Model estimation. The general multivariate re-

gression model is

Y¯XB­E,

where Y is an (n¬p) matrix of p traits observed on n

individuals, X is a matrix of explanatory variables, B

is a matrix of regression coefficients to be estimated (in

our context this corresponds to the values of m
X

and

a
X

for each trait), and E is an (n¬p) matrix of random

deviations from the mean. In our context the rows of

E correspond to different individuals and so are

independent of each other. However, the columns of

E correspond to the errors on different traits and

these may be correlated, due to environmental

correlations or to the effects of QTLs on other

chromosomes. The covariance matrix corresponding

to E is Σ. We will assume that E is multivariate normal

N(0,Σ). In this case we can estimate B and Σ by
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maximum likelihood estimation, with equations very

similar to those for the simple linear regression model

(Mardia et al., 1979, p. 158):

B# ¯ (XTX)−1 XT Y,

where XT denotes the transpose of X and

Σ# ¯
1

n
(Y®XB# )T(Y®XB# )¯

1

n
E# T E# .

(b) Hypothesis testing. Let y- be the ( p¬1) vector of

trait means, and let H¯ (Y# TY# ®ny- y- T). Then we can

write the MANOVA table as

Source d.f. SSP matrix

Multivariate regression q H

Residual n®q®1 E# TE#
Total (corrected) n®1 YTY®ny- y- T

where q is the number of explanatory variables. Tests

of significance are based on the matrix product

(E# TE# )−"H in a similar way to simple linear regression.

This is a ( p¬p) matrix and most tests are based on its

eigenvalues θ
"
, θ

#
,…, θ

p
.

One particularly useful test statistic is Wilks’ Λ¯
rE# TE# r } rE# TE# ­Hr, derived as a likelihood ratio test of

B¯ 0. This can be written in terms of the eigenvalues

θ
"
, θ

#
,…, θ

p
as:

Λ¯ 0
p

i="

1

1­θ
i

(Chatfield & Collins, 1980, p. 147) and it can be

transformed to an approximate F distribution, with pq

degrees of freedom for the numerator. Rao (1973)

gives details of the transformation and equations for

the denominator degrees of freedom. If either p or q

are less than or equal to 2 the transformation is exact.

Procedures for fitting a multivariate regression model

are found in several standard statistical packages.

Here multivariate regressions were fitted in Genstat

(Genstat 5 Committee, 1995), using the procedure

FITMULTIVARIATE.

(c) Model selection. Selection of explanatory variables

from a large set has received much attention for

univariate regression, but less for multivariate re-

gression. Bedrick & Tsai (1994) conducted a simu-

lation study of different criteria for model selection in

multivariate regression, and found that the commonly

used Akaike information criterion AIC (Akaike, 1973)

is prone to overfit the data. They proposed an adjusted

criterion, the minimum AIC
C
, which avoids this

problem. They define the AIC
C

to be:

AIC
C
¯ n log r3# r­Dp(n­q),

where D¯ n}(n®(q­p­1)). The addition of an extra

explanatory variable will increase q by 1, and so

increase the second term of the AIC
C
. Only if this

increase is outweighed by the decrease in the first term

will the explanatory variable be included. We will use

this criterion to compare different subsets of ex-

planatory variables. The AIC
C

does not indicate the

significance of each of the selected explanatory

variables : the F test referred to in the previous section

is used for this.

Multi-trait regression mapping

If we think a single QTL may affect p ("1) traits, we

can represent this as a multivariate regression model

by generalizing the Haley–Knott model :
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where l is the explanatory variable for regression

mapping, a function of the distance d along the

chromosome and the genotypes of the markers

flanking position d. The position with the lowest value

of the AIC
C

should indicate the position of the QTL.

However, it may be that there are two or more

QTLs affecting the traits on this chromosome. In this

case we look for the set of positions ²d
"
, d

#
,…´ that

minimize the AIC
C

statistic, and see which effects are

significant. For two traits and two QTLs, with one of

the QTLs affecting each trait, we would expect to see

some effects not significantly different from zero, for

example:
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The joint distribution of the estimated QTL effects is

multivariate normal (Mardia et al., 1979, p. 160) and

the significance of each effect may be assessed by a t-

test.

Stepwise selection of QTL position

Likely QTL locations can be identified by a stepwise

analysis. We can calculate a series of explanatory

variables corresponding to points at regular intervals

along each chromosome according to the equation in

the last column of Table 2, and use a stepwise
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1H 2a

2b

3a

3b

4H 5H 6H 7H

3c

Fig. 1. Linkage map of Derkado¬B83-12}21}5. The positions selected as associated with yield characters are also
indicated (also see Table 5). If closely linked positions were selected for different years, the positions on the map are for
the 1994 trait data.

approach, with forward selection, to identify the

subset of explanatory variables for which the AIC
C

is

minimized. Explanatory variables were calculated at

5 cM intervals for this analysis (i.e. we are evaluating

for the best QTL location on a 5 cM grid for each

chromosome). A smaller grid was found to give

explanatory variables which were too highly correlated

to be useful for a stepwise analysis. The notation l(i}j)

will be used to denote the jth explanatory variable on

chromosome i, i.e. a test for a QTL on chromosome i

at a position 5( j®1) cM from the first marker. Note

that l(i}1) is at 0 cM, the location of the first marker.

Derkado was regarded as the parent contributing the

upper-case alleles in the notation of Table 2, and B83-

12}21}5 as the parent contributing the lower-case

alleles, so the estimated QTL effect a
X

represents

(Derkado allele®B83-12}21}5 allele)}2.

A difficulty in all QTL analyses is the question of

multiple QTLs on a chromosome. A ghost QTL

(Martinez & Curnow, 1992) may be detected in place

of two genuine, linked QTLs. The following strategy

was used to investigate whether the fit of the model

was improved by a small shift in the position of a

selected explanatory variable, or by replacement of a

single explanatory variable by two linked variables.

For each selected explanatory variable l(i}j) in turn,

the effect on the AIC
C

of substituting l(i}j) by l(i}j³1),

l(i}j³2), l(i}j³3), l(i}j³4) and l(i}j³5) (i.e. ex-

planatory variables representing QTL locations up to

25 cM to each side of the original position) was

investigated, keeping the other selected positions

unchanged. The effect on the AIC
C

of including each

of these 11 positions in combination with every other

position on the chromosome was also investigated.

Bootstrap analysis to test for influential indi�iduals

A preliminary exploration of the above modelling

strategy with simulated data (not shown here) indi-

cated that occasionally the significance of an ex-

planatory variable in the model was due to the

influence of a small number of individuals. To ensure

that the final model was not affected by the inclusion

or omission of a few individuals, a bootstrapping

approach was used. Five hundred bootstrap samples

were drawn from the dataset, the selected explanatory

variable were refitted and the significance of each

using Rao’s F test was recorded. Only the explanatory
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Table 3. Outline of MANOVA table for calculation

of genetic and en�ironmental �ariance and co�ariance

Source d.f. SSP Mean SSP
Expected
mean SSP

Replicate 1 SSP
R

SSP
R

Genotype 152 SSP
G

SSP
G
}152 2Σ#

G
­Σ#

E

Residual 152 SSP
E

SSP
E
}152 Σ#

E

Total 305 SSP
T

variables that were significant in at least 95% of the

bootstrap resamples were retained in the model.

(iii) Experimental data for the mapping study

The mapping population consisted of 156 lines from

an F1 doubled haploid population, derived from a

spring barley cross between Derkado (which carries

the sdw1 dwarfing gene and the mlo11 powdery

mildew resistance gene) and the SCRI breeding line

B83-12}21}5 (which carries the Golden Promise

dwarfing gene ari-eGP). Three lines were subsequently

excluded from this study due to extreme outliers

among some trait values. The genotyping of the

population for the sdw1 and mlo11 genes and for S-

SAP, AFLP and SSR markers are described in detail

in Thomas et al. (1998). A further 87 SSRs comprising

four GMS markers (Struss & Plieske, 1998), eight

markers derived from database sequences, an HVM

marker (Saghai-Maroof et al., 1994) and 74 SCRI

markers were scored on the population and the maps

were reconstructed using JoinMap 2.0 (Stam & Van

Ooijen, 1995). At a LOD score of 5, ten linkage

groups were obtained. Some of the markers used here

have been mapped in other populations, and this

information was used to identify linkage groups.

Markers from chromosomes 2H and 3H formed

several groups, which are indicated as 2a, 2b and 3a,

3b and 3c. The resulting map is shown in Fig. 1.

The population was grown in field trials at SCRI in

1994, 1995 and 1996, using row-column designs with

two replicates for each trial. The traits heading date

(HD), plot yield (PY) and thousand grain weight

(TGW) were recorded for each plot. Five plants were

taken from each plot prior to harvest in 1994, and

four in 1995 and 1996 and the number of fertile stems

(TN), the grain number of the main stem (GN), and

its grain weight (MSY), and the single plant yield

(SPY) were recorded. The population was also grown

in a similar field trial at Advanta Seeds UK, Boothby

Graffoe, Lincs., UK in 1996, but the only yield

characters used here are PY and TGW. More detail

about the trials and the traits can be found in Thomas

et al. (1998). Each trait in each trial was analysed

using REML (Genstat 5 Committee, 1995) to check

for row and column effects, but these were generally

small, and were not included in further analyses. The

estimated trait means for each DH line in each trial

were used here in the QTL analysis.

A multivariate analysis of variance was carried out

for each trial separately to resolve the matrix of total

sums of squares and products (SSP) into components

for replicate, genotype and residual, following the

format of Table 3. The genetic and environmental

variance–covariance matrices Σ
G

and Σ
E

were esti-

mated by equating observed and expected SSP

matrices. The genetic correlation between traits X and

Y was then calculated as

C
G(XY)

¯Σ
G(XY)

}o(Σ
G(XX)

Σ
G(YY)

),

where Σ
G(XY)

is the genetic covariance between traits X

and Y and Σ
G(XX)

and Σ
G(YY)

are the genetic variances.

The environmental correlations were calculated simi-

larly.

3 Results

(i) Biometrical analysis of yield characters

The genetic and environmental correlations and the

heritabilities for traits TN, SPY, MSY, GN, PY and

TGW at SCRI in 1994, 1995 and 1996 are shown in

Table 4. (In 1996, the data on TN and SPY were

erratic for one replicate due to some poor estab-

lishment and so these traits were excluded from the

biometrical analysis, although the data from the

remaining replicate were used for the QTL analysis.)

Except for the genetic correlations for TN, the trait

with the lowest heritability, the correlations are quite

consistent over trials. MSY and SPY have large

genetic and environmental correlations. The environ-

mental correlations between GN and both MSY and

SPY are slightly larger than the genetic correlations.

The genetic correlation between GN and PY is high

for all three trials, but the corresponding environ-

mental correlation is very low. This is also true for the

correlation of TGW with SPY and MSY.

(ii) QTL analysis by multi�ariate regression

Analysis of yield characters

A preliminary analysis of individual yield characters

indicated that the two dwarfing genes sdw1 and ari-

eGP were significantly associated with several traits,

and the explanatory variables corresponding to these

(3c}1 and 5H}9 respectively, see Fig. 1) were included

in all the multivariate regression models. Further

explanatory variables were selected successively to

minimize the AIC
C
.

The explanatory variables selected for inclusion for

the 1994 yield characters were, in order of selection
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Table 4. Correlations between six yield characters: number of fertile

stems (TN ), single plant yield (SPY ), main stem yield (MSY ), grain

number (GN ), plot yield (PY ) and thousand grain weight (TGW ).

En�ironmental correlations are abo�e the diagonal, genetic correlations

below the diagonal and the heritabilities (%) are on the diagonal. The

three figures in each cell are for trials in 1994, 1995 and 1996 at SCRI

Trait TN SPY MSY GN PY TGW

TN 12% 0±83 0±37 0±33 0±15 0±15
18% 0±86 0±43 0±36 0±17 0±19

— — — — — —

SPY 0±68 39% 0±74 0±56 0±24 0±11

0±15 23% 0±75 0±59 0±20 0±26
— — — — — —

MSY 0±27 0±88 71% 0±78 0±21 0±12
®0±48 0±75 60% 0±82 0±13 0±16

— — 63% 0±84 0±07 0±41

GN 0±02 0±44 0±54 75% 0±21 0±11

®0±08 0±38 0±43 59% ®0±04 ®0±06
— — 0±66 62% 0±10 0±21

PY 0±11 0±42 0±48 0±63 64% ®0±03
®0±28 0±23 0±42 0±68 77% ®0±45

— — 0±32 0±60 55% ®0±09

TGW 0±49 0±68 0±64 ®0±19 0±09 65%
®0±35 0±57 0±74 ®0±27 ®0±10 95%

— — 0±71 ®0±02 ®0±15 84%

(after 3c}1 and 5H}9): 4H}28, 2b}7, 7H}31, 4H}46,

7H}14, 2b}48, 5H}44, 6H}8 and 4H}39. Three of

these are on chromosome 4H, and two, 4H}39 and

4H}46, are only 35 cM apart. The effect on the AIC
C

of small shifts in the QTL locations was investigated

as described above, and it was found that the

replacement of explanatory variables 4H}28, 2b}7 and

7H}31 by 4H}31, 2b}6 and 7H}33 reduced the AIC
C
,

indicating an improvement in the fit of the model.

Inspection of the QTL effects revealed that the only

significant effect for 4H}39 was on the trait TGW, and

that the effect on TGW for 4H}46 was of a very

similar size, but had the opposite sign. These two

effects will therefore cancel each other except for

individuals where there has been a recombination on

this chromosome between the two positions. In-

spection of the fitted values from the models with and

without position 4H}39 reveals a substantial change

in the fit for just two individuals, which had a

recombination between the two positions, together

with outlying trait values for more than one of the

yield characters.Abootstrap analysis with 500 samples

found that the dwarfing genes and the first seven

explanatory variables listed above were significant (P

! 0±05) in at least 95% of the samples. However, the

last two selected positions, 6H}8 and 4H}39, were

significant in fewer than 95% of the bootstrap

resamples. This suggests that a small proportion of

the individuals may be contributing to the selection of

these positions and they were dropped from the

model. The QTL effects and their significances in the

revised model for the 1994 trial are given in the first

line of each cell of Table 5.

The explanatory variable selection and bootstrap

analysis were repeated for the SCRI trials in 1995 and

1996, and the results are also shown in Table 5. There

was a close correspondence in the explanatory

variables selected for each year, although the order of

selection varied and selected positions varied by up to

25 cM. Explanatory variable 5H}44 was selected only

in 1994 and explanatory variable 7H}55 was only

significant by the bootstrap analysis in 1995, although

7H}56 was selected but subsequently excluded by the

bootstrap analysis in 1996.

Traits PY and GN had large genetic correlations

but low environmental correlations in all three years.

The QTL detected at position 7H}14–7H}16 (closest

marker P16M47f) had significant negative effects on

both these traits in all three years. The negative sign

indicates that the allele for increased PY and GN

comes from the B83-12}21}5 parent. Powell et al.

(1997) also report a QTL affecting PY on the short

arm of chromosome 7H in a cross between Blenheim

and E224}3. The QTL detected at position 4H}46–

4H}48 lies closer than the mlo locus to the end of the

long arm of chromosome 4H. This has a consistent,

highly significant negative effect on PY and GN,

indicating that a QTL for reduced GN and PY is
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Table 5. The QTL effects (Derkado allele®B83-12}21}5 allele)}2 of the explanatory �ariables selected for

the yield characters. The o�erall significance of the selected position (by an F-test) and the significance of the

indi�idual QTL effects (by a t-test) are shown by asterisks, with *, **, *** indicating significance with P!
0±05, 0±01, 0±001 respecti�ely. The upper, middle and lower figures in each cell are for trials in 1994, 1995 and

1996 at SCRI

Location TN SPY MSY GN PY TGW

5H}9*** 0±085* 0±188*** 0±067*** ®0±379* 0±191*** 3±362***
(ari-eGP) ®0±067* 0±026 0±031*** ®0±724*** ®0±006 3±481***

®0±050 0±070 0±067*** ®0±188 ®0±005 2±998***

3c}1*** ®0±002 ®0±144*** ®0±062*** 0±216 0±184*** ®1±361***
(sdw1) 0±071* ®0±058* ®0±069*** 0±011 0±041 ®3±072***

®0±015 ®0±121** ®0±086*** ®0±326 0±096** ®2±234***

4H}31*** 0±042 0±034 ®0±006 ®0±995*** ®0±034 1±168***
4H}26*** 0±006 0±053 0±024** ®0±153 0±056 1±331***
4H}29*** 0±075 0±054 ®0±007 ®0±764*** ®0±030 0±679***

2b}6*** 0±087* ®0±028 ®0±036** ®0±266 0±068 ®0±647*
2b}6*** 0±008 ®0±055 ®0±029** ®0±062 ®0±070 ®1±369***
2b}6*** ®0±047 ®0±111* ®0±049*** ®0±409 ®0±001 ®0±869***

7H}30*** ®0±023 0±052 0±040*** 0±323 0±109* 0±746*
7H}33*** ®0±085* ®0±024 0±020* 0±431* 0±054 0±764***
7H}33*** ®0±026 0±066 0±020 0±347 0±011 0±707***

4H}46*** ®0±107* ®0±201*** ®0±051*** ®1±093*** ®0±269*** 0±003
4H}48*** ®0±079* ®0±077* ®0±016 ®0±612** ®0±182*** 0±621**
4H}46*** 0±083 0±001 ®0±052*** ®1±014*** ®0±129** 0±172

7H}14*** 0±051 ®0±052 ®0±040*** ®1±038*** ®0±215*** 0±379
7H}16** ®0±035 ®0±058 ®0±022* ®0±676*** ®0±152** 0±564*
7H}16*** 0±008 ®0±053 ®0±019 ®0±938*** ®0±121** 0±687***

2b}48*** 0±101** 0±116** 0±022* ®0±051 0±030 1±354***
2b}48*** ®0±024 0±004 0±010 ®0±209 ®0±041 0±920***
2b}48*** 0±032 0±011 ®0±005 ®0±370 ®0±019 0±771***

5H}44** ®0±106** ®0±150** ®0±030** ®0±516** ®0±074 ®0±880**
— — — — — — —
— — — — — — —

— — — — — — —
7H}55*** 0±031 0±093*** 0±041*** 0±438** 0±076 0±660**
— — — — — — —

linked to the mlo allele in Derkado. Tinker et al.

(1996) and Bezant et al. (1997) have reported yield

QTLs in barley which are likely to lie in the same

region. Unlike the results of Kjaer et al. (1990), there

was little evidence of an effect of this QTL on TGW,

with a significant result (P! 0±01) in one of the three

years.

A second QTL was detected on chromosome 4H,

affecting GN and TGW, but not PY. In this case the

QTL effects were of opposite sign, so that the allele

from Derkado was associated with an increase in

TGW and a decrease in GN. A QTL affecting TGW

on this chromosome was also reported by Langridge

et al. (1996) in a cross Chebec¬Harrington. A

negative relationship has also been reported for GN

and TGW (Rasmussen & Cannell, 1970; Riggs &

Hayter, 1975) and probably reflects pleiotropy at a

common locus affecting the balance between the two

yield components.

TGW had a high genetic correlation with MSY,

and to a lesser extent with SPY, and low environmental

correlations. The sdw1 dwarfing gene carried by the

Derkado parent at position 3c}1 on the long arm of

chromosome 3H had a negative effect on TGW, MSY

and SPY in all three years. This locus also had a

positive effect on PY in two of the three years. Similar

associations with sdw1 were reported in the

Blenheim¬E224}3 cross (Thomas et al., 1995; Powell

et al., 1997). The ari-eGP dwarfing gene carried by the

B83-12}21}5 parent at position 5H}9 on chromosome

5H is also associated with a reduction in TGW and

MSY. This gene was also associated with a reduction

in SPY and PY in 1994, and with an increase in GN

in 1994 and 1995. These associations are similar to

those found by Powell et al. (1985) in the crosses

Golden Promise¬Mazurka, Golden Promise¬Ark

Royal and BH4}143}2¬Ark Royal, and by Thomas

et al. (1991) in a cross TS43}3}5¬Apex.
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Table 6. Correlations between (a) heading date and

(b) plot yield for different en�ironments.

En�ironmental correlations are abo�e the diagonal,

genetic correlations below the diagonal and the

heritabilities (%) are on the diagonal

(a)

Heading
1994,
SCRI

1995,
SCRI

1996,
SCRI

1994, 97% ®0±17 0±02
SCRI

1995, 0±95 95% 0±01

SCRI
1996, 0±92 0±99 90%
SCRI

(b)

Yield
1994,
SCRI

1995,
SCRI

1996,
SCRI

1996,
Boothby
Graffoe

1994, 64% 0±11 0±17 ®0±09
SCRI

1995, 0±69 77% 0±20 0±06
SCRI

1996, 0±67 0±84 55% ®0±03
SCRI

1996, 0±69 0±61 0±67 36%
Boothby
Graffoe

Table 7. The QTL effects (Derkado allele®B83-12}21}5 allele)}2 of the

explanatory �ariables selected for the multi�ariate regression analysis of

(a) heading date and (b) plot yield in different en�ironments. The o�erall

significance of the selected position (by an F-test) and the significance of

the indi�idual QTL effects (by a t-test) are shown by asterisks, with *,

**, *** indicating significance with P! 0±05, 0±01, 0±001 respecti�ely

(a)

Heading 1994, SCRI 1995, SCRI 1996, SCRI

5H}9*** 1±04*** 0±97*** 1±09***
3c}1*** 1±93*** 2±15*** 2±22***
7H}16*** ®2±44*** ®2±37*** ®2±56***
4H}44*** ®0±76*** ®0±97*** ®1±23***
6H}19*** 0±94*** 0±72*** 0±60**

(b)

Yield 1994, SCRI 1995, SCRI 1996, SCRI
1996, Boothby
Graffoe

5H}9*** 0±16*** 0±02 ®0±01 ®0±19***
3c}1*** 0±20*** 0±03 0±09* 0±08
4H}45*** ®0±28*** ®0±20*** ®0±15*** ®0±22***
7H}13*** ®0±22*** ®0±13*** ®0±15*** ®0±10

Two QTLs affecting TGW were found on chromo-

some 2H. The QTL at position 2b}6 had significant

negative effects on TGW and MSY in all three

seasons, while that at position 2b}48 had a positive

effect on TGW but no consistently significant effects

on other traits. Langridge et al. (1996) found two

QTLs of opposite effects affecting TGW on chromo-

some 2H, which are likely to be in the same region as

those found in the present study. Bezant et al. (1997)

also report QTLs of opposite signs affecting TGW,

one on the long arm and one on the short arm of

chromosome 2H in a cross between Blenheim and

Kym, but there are no common markers to align the

maps.

Multi-en�ironment analysis

The previous analysis can also be used to analyse

data on a single trait scored for different environments,

i.e. different years and}or sites. In particular, this

approach enables us to see which associations are

consistent across environments and where there are

QTL–environment interactions. We will illustrate this

for two traits : heading date (with high heritability)

and plot yield (with moderate heritability : see Table

4). Heading dates are available for the three trials at

SCRI in 1994, 1995 and 1996, and plot yields are

available for these trials and for a fourth trial in

Lincolnshire, UK in 1996. Table 6(a) and (b) show
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the genetic and environmental correlations and the

heritability for each trial for heading date and yield

respectively. The environmental correlations are very

low, as would be expected, while the genetic corre-

lations are larger. Explanatory variables were selected

as described above, and the significance of the selected

explanatory variables was examined using boot-

strapping. For heading date, three explanatory

variables were selected in addition to the sdw1 and ari-

eGP genes. One of these (4H}44) lies close to the mlo

locus, an association discussed by Thomas et al.

(1998). Bootstrapping confirmed that all these markers

had significant coefficients for all three seasons. The

signs of the coefficients agreed across seasons, and the

coefficients were of similar sizes (Table 7a). For plot

yield, four explanatory variables (4H}45, 7H}13,

7H}65 and 5H}55) were originally selected in addition

to the sdw1 and ari-eGP genes but the last two of these

were not consistently significant in the bootstrap

samples and have been excluded from Table 7b.

Explanatory variables 4H}45 and 7H}13 are in very

similar positions to those selected in the multi-trait

analysis (Table 5) : small differences in the coefficients

are due to the extra explanatory variables included in

the models of Table 5. We see that explanatory

variable 4H}45, situated close to the mlo gene, has a

significant effect in every environment. No other

explanatory variable has a significant effect in every

environment, indicating QTL–environment inter-

actions. This is most apparent for the ari-eGP gene at

position 5H}9, where the effects at SCRI in 1994 and

Boothby Graffoe, Lincs., in 1996 have opposite signs.

4. Conclusions

This paper presents a straightforward approach for

multivariate QTL analysis, as a multivariate extension

of the regression approach of Haley & Knott (1992).

This regression approach is computationally faster

than mapping by maximum likelihood, and permits

greater flexibility in modelling. Comparisons of the

two approaches in the univariate case show that the

likelihood profile and the estimates of QTL locations

and effects are very similar. Xu (1995) has shown,

however, that the regression method can overestimate

the residual variance, particularly for large QTL

effects or widely spaced markers. This overestimation

is due to the inclusion in the residual variance term of

QTL variation among individuals with the same

marker genotype. In the data set presented here, the

marker spacing is quite dense and so biases are likely

to be small, and have not been considered here.

Unbiased estimators of the residual variance for the

multivariate case could, however, be developed in a

similar way to that proposed by Xu (1995) for the

univariate case.

The multivariate regression approach may be

programmed in Genstat or other statistical packages

with very little extra complexity compared with the

univariate approach of Haley & Knott (1992), and it

may be applied to several traits and}or several

environments. We propose that a forward stepwise

approach is used to select a first set of explanatory

variables by minimizing the AIC
C

criterion. Positions

and pairs of positions close to the selected explanatory

variables should then be examined to test whether the

AIC
C

can be reduced further (for example, a ghost

QTL may have been selected in the first set in place of

two genuine, linked QTLs). The significance of each

explanatory variable in the final set may be assessed

by Wilks’ Λ statistic, or more easily by transforming

this as described by Rao (1973) to obtain a test

statistic with an approximate F distribution. Influ-

ential individuals in the population may be responsible

for the detection of spurious associations with markers

or pairs of linked markers (as demonstrated by

Hackett (1994) for univariate QTL analysis), and

bootstrapping of the selected explanatory variables

should be used to confirm whether the significance is

dependent on particular individuals.

The question of whether effects on two traits are

due to two linked QTLs or to a single QTL with

pleiotropic effects is difficult to resolve. In the analyses

presented here, more than one QTL was selected on

some chromosomes, but the separation was never less

than 75 cM. The exception to this were the two

explanatory variables selected at positions 4H}39 and

4H}46 for the 1994 data. Both were significant with P

! 0±01 according to Rao’s F-test, but an examination

of the QTL effects and the fit of the model suggested

that overfitting to two individuals was responsible for

this significance, rather than two linked QTLs. The

ability of our approach to resolve linkage or pleiotropy

will in general depend on the population type and size,

the heritability of the traits and the degree of genetic

and environmental correlation. Lebreton et al. (1998)

have proposed a test of linkage versus pleiotropy

using a combination of bootstrapping and univariate

QTL analysis, and a thorough comparison of the

approaches would be of great interest.

QTL mapping of a set of correlated traits by

mapping their principal components has been pro-

posed by Weller et al. (1996) and Mangin et al. (1998).

This approach is appealing, in that correlated traits

are replaced by uncorrelated components. However, it

is important in this context to distinguish between

phenotypic, environmental and genetic correlation.

Mangin et al. (1998) work with the phenotypic

correlation matrix. As the traits in their example

(bacterial wilt in tomato caused by Ralstonia solana-

cearum, measured at 6, 14 and 28 days after

inoculation) are intuitively likely to have a high level

of genetic correlation their analysis seems appropriate,
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but it would not be appropriate for our yield

characters, with a mixture of genetic and environ-

mental correlation. A small simulation exercise (data

not shown) indicated that QTL mapping of principal

components of traits correlated due to a mixture of

environmental and genetic causes led to inferences of

QTLs where none had been simulated. It is important

to use a canonical transformation to set both the

genetic and the residual correlations to zero (see

Lynch & Walsh, 1998, p. 778 and references therein).

The multivariate approach proposed in this paper

avoids this problem and should be appropriate for

any combination of environmental and genetic corre-

lations.

The analysis uses the same data as the single trait

analysis of Thomas et al. (1998), who concentrated on

detecting QTLs for yield characters on chromosome

4H, especially close to the mlo locus. By considering

the yield characters together in a multi-trait analysis,

we gain more insight into the processes operating at

each locus. For example, the Derkado allele at location

4H}46–4H}48 near mlo is associated with a decrease

in both grain number and plot yield, while the

Derkado allele at 4H}26–4H}31 is associated with a

decrease in grain number and an increase in thousand

grain weight, resulting in no overall change in plot

yield. Such information will be useful in the choice of

markers for use in marker-assisted breeding schemes.
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