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1. Introduction

Gleason [3] proved that in the category ¢ of compact Hausdorff spaces and
continuous maps, the projective objects are precisely the extremally disconnected
spaces contained in the category. Strauss [ 7] generalised this and proved that inthe
category % of regular Hausdorff spaces and perfect maps the projective objects
are again precisely the extremally disconnected ones. Observe that Gleason’s
category is a full subcategory of Strauss’s category.

In our earlier paper [1] we generalised the above result of Gleason to the
situation of bitopological spaces. The purpose of the present paper is to do the
same for the above result of Strauss.

In this process we obtain some pleasant surprises. Let us make the convention
that every topological space (X, t) is also considered as a bitopological space
(X, 7, 7). Then the category of bitopological spaces that we obtained in [1], to be
called cat A in this paper, contains ¥ as a full subcategory. We define another
category of bitopological spacesin this paper, to be called cat B, and we determine
the projectives in this category (cf. Main Theorem). Strauss’s theorem comes out
as a special case of our Main Theorem. Further it turns out that (1) % and & are
both full subcategories of cat B; (2) cat A is not contained in cat B; (3) the in-
tersection of cat 4 and cat Bis precisely ¢; and (4)in ¥, the two concepts ‘‘semi-
compact, quasi-Hausdorff, extremally disconnected bitopological spaces’ and
“pairwise regular, pairwise Hausdorff, pairwise extremally disconnected bito-
pological spaces’’—the projective objects in cat A and cat B respectively—
coincide with the conventional extremally disconnected topological spaces. As a
side result we prove a Tychonoff Theorem (cf. 4.9) for ‘pairwise compactness’—
defined by Fletcher, Hoyle and Patty [2]—for bitopological spaces.

2. Definitions and statement of main theorem

Throughout let(X, P, 0),(X, P;, Q) and(X,, P,,Q,)stand for bitopological
spaces. Any topological concept associated with the upper bound topology of
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P and Q is referred to as a property of (X, P, Q) with the prefix ‘semi’. Thus we get
the concepts of semi-compactness, semi-open set, semi-closed setetc. A set 4 c X
issaid tobequasi-openif forevery x € Athere exists eithera P-open neighbourhood
U, < A or a Q-open neighbourhood V, = A. The complement of a quasi-open
set is defined to be quasi-closed. The quasi-closure of any set A turns out to be
AP N A2 where AT denotes the P-closure of A and A2 is the Q-closure of A.
(X, P, Q)is said to be quasi-HausdorfFif given x; # x,, there exist disjoint quasi-
open sets U,, U, containing x,, x, respectively. A map X, » X, is said to be
quasi-continuous if the inverse image of every quasi-open set is quasi-open.
(X, P, Q)is said to be extremally disconnected if the quasi-closure of every semi-
open set is quasi-open.

With these definitions we proved in [1] that in the category, cat 4, of semi-
compact, quasi-Hausdorfl bitopological spaces and quasi-continuous maps the
projective spaces are precisely the extremally disconnected ones.

In order now to generalize Strauss’s theorem we recall the following definition
of Kelly [4] and Fletcher, Hoyle and Patty [2]. (X, P, Q) is said to be pairwise
Hausdorff if given x; # x, there exists a P-open neighbourhood U of x; and a
Q-open neighbourhood V of x, which are disjoint. (X, P, Q)is said to be pairwise
regularif given a P-closed (Q-closed)set A and x ¢ A, there exist a Q-open (P-open)
set U o A4 and a P-open (Q-open) set ¥V containing x, which are disjoint. A family
& of P-open and Q-open sets of (X, P, Q) is said to be pairwise open if there
exists at least one P-open set in & and at least one Q-open set in . If every
pairwise open covering of X has a finite subcovering, we say (X, P, Q) is pairwise
compact. A semi-compact space is always P-compact, Q-compact and pairwise
compact. Now for the purpose of this paper we make the following two

definitions.

(2.1) DeFINITION. A mapping f: (X, Py, Q) = (X,, P,, @,) is said to be
perfect if
(i) f is continuous, (cf. Pervin [6]); that is fis P, — P,-continuous and

also Q; — Q,-continuous,
(ii) fis compact, thatis, the inverse image of every point of X, is P,-compact,

Q,-compact and pairwise compact; and
(iii) f is closed; that is, the image of every P,-closed (Q,-closed) subset of

X, is P,-closed (Q,-closed) subset of X,.

(2.2) DeFINITION. (X, P, Q) is said to be pairwise extremally disconnected
if the Q-closure of every P-open set is P-open and the P-closure of every Q-open

set is Q-open.
Now we can state our

MAaIN THEOREM. In the category, cat B, of pairwise regular, pairwise
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Hausdorff bitopological spaces and perfect maps, the projective spaces are
precisely the pairwise extremally disconnected ones.

Throughout the rest of the paper ““p’” will be used for ‘‘pairwise’’; i.e.
“p-regular”’ will mean ‘“‘pairwise regular’’, and so on.

3. Preliminaries

(3.1) LeMMA. Let(X, P, Q) be a p-Hausdorff space. Let U and V be P-open
and Q-open subsets of X respectively such that U NV = &. Then U2NV =&
and UNV? = .

PROOF. Suppose that U2NV % . Let xeU2NV. xeU? implies that

every Q-open neighbourhood of x meets U. But V is a Q-open set containing x
which does not meet U. This contradiction shows that U2NV = . Similarly,

unvt=g.

We recall the following definition from [1]. Let (X, P;, Q,);; be a family of
bitopological spaces. On the product set X = n;_; X;, we define a bitopological
structure (P, Q) by taking P as the product topology generated by the P;’s and Q
as the product topology generated by the Q,’s.

(3.2) PrROPOSITION. Any product of p-Hausdorff spaces is p-Hausdor,y.

The proofis analogous to the usual proof of the proposition that the product
of Hausdorff spaces is Hausdorff.

(3.3) PROPOSITION. Any product of p-regular spaces is p-regular.
The proof runs along the same lines as in the case of topological spaces; i.€.

the product of regular spaces is regular.

(3.4) LemMA. Let (X, P, Q) be p-regular space. Let A be P-compact
(Q-compact) subset of X and B be P-closed (Q-closed) subset of X such that
ANB=(4. Then A and B can be separated by P-open (Q-open) and Q-open
(P-open) subsets of X respectively.

ProoOF. Let A be P-compact and B be P-closed subset of X such that
A N B = . By p-regularity of X, we have for ecach ae 4, a P-openset U, and a
Q-open set V, such that

aeU,BcV,and U, NV, =¢F.

{U.}.c 4 is a P-open covering of A and since A is P-compact there exists a finite
subset 4; = A such that

A= YU,

ae Ay
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Let
U= U U,andV = (O V..

ae Ay ae Ay

Then Ac U, BV and U NV = . The other case is similar.

4. p-compact spaces

(4.1) DerFmvITION. A family % of a space (X, P, Q) is said to be p-closed if
some (at least one but not all) members of &# are P-closed and the remaining
members are Q-closed.

(4.2) THEOREM. A space (X, P, Q) is p-compact iff each family of p-closed
subsets of X with the finite intersection property, has a non-void intersection.

The proof follows in a standard way.

(4.3) DepINITION. A family % of subsets of a space (X, P, Q) is called
inadequate if the family does not cover X. The family is called finitely inadequate
iff no finite subfamily of & covers X.

(4.4) DerFINITION. A family € of subsets of a space (X, P, Q) is called common
if N¥ 5 ¢F; € is finitely common iff each finite subfamily of ¥ has a non-void
intersection.

(4.5) ProrosiTiON. Let(X, P, Q) bea bitopological space. Then the following
are equivalent.

(a) each finitely inadequate family of p-open sets in X is inadequate;

(b) each finitely common family of p-closed sets of X is common.

The proof follows from definitions (4.3), (4.4) and De Morgan formulae.

ReMARK. In view of theorem (4.2), conditions (a) and (b) are equivalent to
p-compactness of (X, P, Q).

The following lemmas 4.6, 4.7 and Theorems 4.8 and 4.9 are generalizations
of known results in general topological spaces [5, p 79-80 and 126-128] and
[8, p 127-129] to bitopological spaces.

(4.6) LEMMA. Let & be a finitely inadequate family of p-open subsets of
(X, P, Q). Then there is a maximal finitely inadequate family @ of p-open
subsets of (X, P, Q) such that # c 9.

Proor. Let @ be the collection of all finitely inadequate families of p-open
sets. Let % be ordered by set inclusion; i.e., ¢, %,€% then €, £%, if ¢, = %,.
Now &# €%. So, by Hausdorff maximal principle, let o/ be a maximal linearly
ordered subcollection of € such that # € of. Let P = U /. & is a family of p-open
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sets, since each member of & is such a family. We shall show (i) 2 is finitely
inadequate and (2) & is a maximal finitely inadequate family of p-open sets.

To prove (i), let Dy, D,,-+, Dge &. Then for each i, there is some %, in .o/
such that D; e €, Since & is linearly ordered one of these €;, say %, contains each
of the other %;s. So D;e ¥, for each i. Thus ( Ji_, D;# X, since %; is finitely
inadequate. Hence 2 is finitely inadequate.

Now, suppose (2) were not true; i.c., suppose there were some open (either
P-open or Q-open) set G ¢2 such that 2 U {G} is still finitely inadequate. Then
o U{@VU{G}} would be linearly ordered and would properly contain .=,
contradicting the maximality of «/. Thus (2) must be true, and & is the required
maximal finitely inadequate family containing &#.

(4.7) LEMMA. Let (X, P, Q) be a bitopological space. Let £ be a maximal
finitely inadequate family of p-open sets. If some member of 2 contains
G NG, N NG, where each G, is P-open (Q-open), then Gxe 2 for some
Ke{l,2,---,n}.

Proor. First suppose n = 2. Suppose G, ¢ 2 and G, ¢ 2. Then by maximality
of &, there must be members A,, 4,,-:-,A,, of & such that

Gy UA, UA, U U4, =X.
Also, there are members B,, B,,---, B, of £ such that
G,UB, UB,U ---UB,=X.
Then
(G,NG)UA, U---UA,UB,U---UB, =X,
so that no members of £ can contain G, N G,. Thus we have proved a contra-
diction for n = 2. Similarly, we conclude the lemma for any positive integer n.

The following is the geaeralization of Alexander’s theorem.

(4.8) THEOREM. Let Sp be a subbase for P and S, be the subbase for Q,
where (X, P, Q) is a bitopological space. If each p-open cover of X consisting of
sets from Sp US,, has a finite subcover, then X is p-compact.

The prooffollows from theorem (4.5), its remark and lemmas (4.6) and (4.7).
The following is the generalization of Tychonoff’s theorem.

(4.9) THEOREM. The product of p-compact bitopological spaces is p-compact.
Conversely, if the product is p-compact, then each component is p-compact.

Proor. Let{X,, P,, Q,},. . bea family of bitopological spaces. Let (X, P, Q)
be the product space. Suppose each (X,, P,, Q,) is p-compact. Let Sp be the
defining subbase for P and S, be the subbase for Q. Then
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Sp={n;1(U): U,eP,,ae \};and Sp = {rn; ' (V,): V,€Q,, a€ A}.

Let S =S, US, and let # be a p-open finitely inadequate subfamily of S. For
ae A, let
B, = {W,: ;" (W,)eF}.
Then #, is finitely inadequate in X,. Since X, is p-compact, #, does not cover
X,. So for each ae A, let
X,eU{B|Bea,} .

Let x=(x,)eX. x¢ UF (because x,¢ U{B|B—4,}). Therefore & is
inadequate. By theorem (4.8), (X, P, Q) is p-compact.

The converse follows from the fact that projections are continuous and the
continuous image of p-compact spaces is p-compact.

5. Perfect mappings
(5.1) We begin with an example of a perfect mapping.
ExaMPLE. Let X, be the real line R, let P, be the usual topology and
0, ={¢} U{UuU(x,0):UeP, and xe X,}.
Let X, be also the real line R, let P, be the usual topology and let
0, ={¢p} V{UU(~ 0,x): Ue P, and xe X,}.

Then f: (X, Py, Q)= (X,, P,, Q,) defined by f(x) = — x for every xe X, is a
perfect mapping.

REMARK. Every continuous mapping between p-compact, p-Hausdorff
spaces is perfect. For we have only to show (ii) and (iii). Let x € X,. {x} is both
P,-closed and Q,-closed (because X , is p-Hausdorff)and sof~!(x)is both P,-closed
and Q,-closed (because f is continuous). Therefore f~1(x) is P,-compact, Q,-
compact and p-compact. To show (iii), let F be P,-closed (Q,-closed) subset of X,
then F is Q,-compact (P,-compact). Therefore f(F) is Q,-compact (P,-compact)
and hence P,-closed (Q,-closed) subset of X,.

(5.2) LEMMA. An image of a p-regular space under a perfect mapping is
p-regular,

The proof runs on the same lines as that of lemma 3 of [7]. The following
three lemmas are generalizations of Strauss’s lemmas 4, 5 and 6 respectively [7].

(5.3) LeMMA, Let f be a closed and compact mapping from a space
(X, Py, Q,) into a space (X,, P,, Q,). Then f~* maps all P,-compact (Q,-
compact) sets to P;-compact (Q,-compact) sets and all p-compact sets of X, to
p-compact sets of X,.
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Proor. Let C be any p-compact subset of X,. We shall show that f ~1(C) is
p-compact subset of X,. Suppose that there is a family {H,},., of p-closed
subsets of X, such that {H,},. , is filtered downwards,

o0 (Y H)=9
but that forany e e A, f~Y(C) NH, % . Since f(H,) is a P,~closed or Q,-closed
set (depending on H,) which meets C, there exists a point y & C such that
ye () f(H)
(because C is p-compact). For every ae A, f~*(y)NH,# . Since f~1(y) is
p-compact, there exists a point

xef~Hy) N (n H).

ae A

But xef~!(C) contradicting our assumption that

O N () H)=@.
Similarly we can show that inverse image of every P,-compact (Q,-compact)
subset of X, is P;-compact (Q,-compact) subset of X,.

ReEMARK. The above lemma shows that the composite of two perfect mappings
is perfect. So, we may speak of the category cat B, of p-regular, p-Hausdorff
spaces and perfect mappings.

(5.4) LeMMA. Let (X4, Py, Q,) and (X,, P,, Q,) be bitopological spaces
and let f be a compact mapping from X, onto X,. Then there is a quasi-closed
subspace F of X, such that f(F)= X, and such that no proper P,-closed or
Q,-closed subspace of F has this property.

Proor. Let I' be any linearly ordered p-closed family of subsets of X, which
are mapped onto X, by f. Then F = Uue r H is quasi-closed. Also for any y e X,
and Hel, f~Y(y)NH# . Because f~1(y) is p-compact, it follows that
f~Y) N F## . Hence f(F) = X,. The lemma now follows by an application
of Zorn’s lemma.

(5.5) LEMMA. Let f be a mapping from (X, P, Q,) onto (X,, P,, Q)
such that f does not map any proper P-closed, Q,-closed subset of X, onto X,.
Then f does not map any proper semi-closed subset of X, onto X,.

PROOF. A semi-closed set is the intersection of finite unions of P;-closed and
Q,-closed subset of X;. Since no proper P,-closed, Q,-closed subset of X, is
mapped onto X,, it follows that no proper semi-closed subset of X, is mapped
onto X,.
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(5.6) LEMMA. Suppose that f is a closed, continuous mapping from a space
(X, Py, Q) onto a space (X,, P,, Q,). Suppose also that f does not map any
proper semi-closed subset of X, onto X,. Then if H is any P,-open subset of X,,
f(H) = [(J(H'))']® and if K is any Q,-open subset of X, f(K) = [f(K"))']™.

Proor. Considering the semi-open subset
W=HO([(fH))]®)
of X, and proceeding in the similar way as that in lemma 6 of [7], we shall get
JOH) = [FHD)T™

Similarly, if K is any Q,-open subset of X, we have
JK) < [(F(K))T™.

6. p-Extremally disconnected spaces
(6.1) We begin with two examples of p-extremally disconnected spaces.

ExaMPLE 1. Let X be the real line R. Let P be the usual topology and Q be
the discrete topology. Then (X, P, Q) is p-extremally disconnected. It is
p-Hausdorff and p-regular.

ExAMPLE 2. Let X be the real line R. Define u by u(x,y) =0if y = x, u(x, y)
=1if y < x and v by v(x,y) = u(y,x). Let P and Q be the topologies generated
by u and v respectively. Then (X, P, Q) is p-extremally disconnected. It is not
p-Hausdorff.

(6.2) LeMMA. In a p-extremally disconnected, p-Hausdorff space, if U
and V are disjoint P-open and Q-open sets respectively, then USNVF = ¢z,

The proof follows by lemma (3.1) and definition (2.2)

(6.3) DEFINITION. A mapping f:(X,, P, Q) —(X;, P,, Q,) is said to be
homeomorphism if f is bijective and both f and f~! are continuous.

(6.4) LEMMA. Let f be a closed continuous mapping of a p-Hausdorff
space (X, P;,Q,) onto a p-extremally disconnected, p-Hausdorff space
(X5, Py, Q,). If f does not map any proper semi-closed subset of X, onto X,,
then f is a homeomorphism.

The proof is similar to that of lemma 7 of [7].

7. Proof of the main theorem

The following proof runs on the same lines as that of Strauss [7].
Suppose that f is a parfect mapping from a p-regular, p-Hausdorff space
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(Y, P,, Q) onto a p-regular, p-HausdorfI space (X, P,, Q,); and that g isa perfect
mapping from a p-extremally disconnected, p-regular and p-Hausdorff space
(E, P5, Q3) into (X, P,, Q,). We shall show that there is a perfect mapping h
from E into Y such that f h=g.

Consider the subset

Z={(e,y):8(e=f(N}=(Ex Y, P, Q)

where P =P, x P, and Q = Q; x @;. We shall first show that the projection =,
of Z onto E is perfect. It is clearly continuous for n,: E x Y — E is continuous. As

7 '(e) = {e} xf~* {g(e)},

it is compact because by theorem (4.9), {e} x f~*{g(e)} is p-compact; and
P-compact and Q-compact by Tychonoff’s theorem. We must show that =, is
closed mapping. Let F be a P-closed subset of Z and let ee(n,(F))’. Then the
P-compact set

{e} x f~*{g(e)}

and the P-closed set F are disjoint subsets of E x Y and so by lemma (3.4), there
exists a P-open set H in E x Y such that

{e} xf~1{g(e)} cHand FNH = (.

Since {e} x f~1{g(e)} is P-compact, for some integer n,

fe} xf{g(e)} = U (D, x W) < H

where D; is P;-open subset of E and W;is P,-open subset of Y foreachi=1ton.
Now Strauss’s [7] argument at this point may be repeated and we are led to
prove that n,(F) is Ps-closed. Similarly, 7; maps Q-closed subset of Z into Q-
closed subset of E. Hence i, is a closed mapping.

Similarly, the projection n, of E x Y onto Y is perfect.

Now by lemma (5.4), there is a quasi closed subset Z, of Z for which
n4(Z,) = E and no proper P-closed, Q-closed subset of Z, is mapped onto E. By
lemma (5.5) no proper semi-closed subset of Z, is mapped onto E. By lemma
6.4), 7‘1’ Z, is a homeomorphism and has an inverse say o. Finally, if we put
h = my0, h will be the required mapping.

Conversely, let (X, P, Q) be a projective space in such a category. Let G be
a P-open subset of X. We shall show that G2 is P-open. Let (Z, P,, Q,) be a
p-regular, p-Hausdorff space and let a, b be two distinct points of Z. Consider

Y=(G' x {a)U(G%x {b})) =X x Z.

Let i be the inclusion map of Y into X x Z and = be the projection of X x Z
onto X. Then it is easy to see that = i is a perfect mapping from Y onto X. Since X
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is projective there exists a perfect map y: X — Y such that = iy = I, where I is the
identity map from X onto X. i is one-one on (G x {b}). Therefore y(x) = (x, b).
Since ¢ is continuous,

Y(x)e(G x {p})? 2
for all x € G2. But
(G x {b})?*% = G2 x {b}.
Therefore G2 =y ~1(G2 x {b}). Also if x ¢ G2 then y(x) = (x,a). So,
G2 =y~ H(G? x {b}).

But ¢ is continuous and (G’ x {a}) is P-closed in Y and so (G2 x {b}) is P-open
in Y. Therefore G 2is P-open in X.

Similarly we can show that P-closure of any Q-open set is Q-open. Therefore
(X, P, Q) is p-extremally disconnected.

(7.1) ReMark. Theintersection of cat A and cat B is precisely the category of
semi-compact, p-Hausdorff spaces and continuous maps. Since semi-compact
spaces are p-compact, P-compact and Q-compact, it follows by theorem 10 of [2]
that P = Q. Thus the intersection of cat A and cat B is precisely ¥.

I express my deep sense of gratitude to Prof. V. Krishnamurthy for his
encouragement and help in the preparation of this paper.
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