
Journal of Pension Economics and Finance (2025), 1–15
doi:10.1017/S147474722500006X

ARTICLE

Cushion option on CPPI strategy for defined-contribution
pension plans
Anil Gulveren1, Busra Zeynep Temocin2 and A. Sevtap Selcuk-Kestel2

1Eureko Insurance, Istanbul, Turkey and 2Department of Actuarial Sciences, Institute of Applied Mathematics, Middle East
Technical University, Ankara, Turkey
Corresponding author: Busra Zeynep Temocin; Email: busrat@metu.edu.tr

(Received 13 February 2024; revised 24 February 2025; accepted 18 March 2025)

Abstract
This paper investigates a well-known downside protection strategy called the constant proportion portfo-
lio insurance (CPPI) in defined contribution (DC) pension fund modeling. Under discrete time trading
CPPI, an investor faces the risk of portfolio value hitting the floor which denotes the process of guaranteed
portfolio values. In this paper, we question how to deal with so-called ‘gap risk’ which may appear due to
uncontrollable events resulting in a sudden drop in the market. In the market model considered, the risky
asset price and the labor income are assumed to be continuous-time stochastic processes, whereas trading
is restricted to discrete-time. In this setting, an exotic option (namely, the ‘cushion option’) is proposed
with the aim of reducing the risk that the portfolio value falls below the defined floor. We analyze the effec-
tiveness of the proposed exotic option for a DC plan CPPI strategy through Monte Carlo simulations and
sensitivity analyses with respect to the parameters reflecting different setups.

Keywords: CPPI strategy; defined contribution pension plan; exotic (cushion) option; risk management; portfolio allocation
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1. Introduction
Pension planning is one of the most important financial decisions, as it impacts a significant portion
of a plan participant’s life. Contributions and investment decisions during the accumulation phase are
key factors for determining the guarantee that individuals expect to maintain their standard of living
after retirement. This is where portfolio insurance strategies come into play by protecting partici-
pants’ retirement savings from significant market downturns while allowing growth potential. Using
techniques such as dynamic asset allocation or option-based approaches, one can ensure that a min-
imum portfolio value is maintained and the risk of substantial losses near retirement is reduced.This
balance between risk mitigation and growth is essential for providing retirees with more predictable
and secure financial benefits in the face of long-term market volatility.

In the present paper, we focus on a specific type of portfolio insurance, namely, the constant pro-
portion portfolio insurance (CPPI) tailored for a DC plan within a discrete-time trading framework.
In such settings, investors always face the risk that the portfolio value may reach the floor due to
the inability to trade instantly in response to market changes when trading discretely. If the portfolio
value drops below the floor value, the entire wealth is invested in the riskless asset creating a special
case of a cash-locked position. As a result, the potential gains from the risky asset aremissed during an
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upward market movement, and the portfolio value may fail to meet the guarantee at the termination
date. On the other hand, an interruption of the CPPI strategy before the termination of the policy
(such as withdrawal and retirement) also poses a gap risk. To reduce such a risk, the investormay con-
sider a financial tool, such as a put option, to improve the course of the asset growth. To cope with
such unwanted situations, this paper introduces an exotic option called the ‘cushion option’ which is
designed to generate an additional gain in case of a gap that is a sudden drop in the portfolio value.
Hence, the option is expected to benefit when the cushion becomes negative between discrete trad-
ing times. Since this is a theoretical derivative instrument, our primary assumption is that there are
parties in the market who sell these options. Then, based on the position of the pension fund, the
plan participant can buy it.

The option is priced as an expectation of the discounted claims with its boundary under the equiv-
alent martingale measure in our complete market. In an incomplete market, on the other hand, there
exists a class of equivalent martingale measures to price the exotic option. Applying Schweizer’s
variance-optimal criterion (Schweizer, 1995), one can then obtain the explicit price of the exotic
option under the minimal martingale measure which is not in the scope of this paper.Themarket we
consider exhibits perfect correlation between the labor income and the risky asset processes follow-
ing the approach of Bodie et al. (1992) and Benzoni et al. (2007). This assumption is needed to find
a replicating portfolio of the labor income. Through sensitivity analyses, we examine the effective-
ness of cushion option on CPPI strategy in a DC pension plan to deal with gap risk. We also analyze
the optimal strike price interval of the cushion option under predetermined market parameters and
question if this option can be proposed as a financial tool to reduce the impact of early withdrawals
resulting in lapse risk.

In the related literature, Blake et al. (2000) examine the optimal dynamic asset allocation strategy
for DC plan taking into account stochastic process for labor income including a non-hedgeable risk
component. Considering stochastic behavior of labor income and stochastic inflation rate, a closed
form solution is given by Battochio and Menoncin (2004) for the optimal portfolio in a complete
financialmarket. Similarly, Baltas et al. (2018) study the optimalmanagement of defined-contribution
pension schemes by considering both the portfolio’s exposure to various market risks and the model
uncertainty regarding the evolution of several unknown market parameters that influence its behav-
ior.The authors delve into the same problem, considering the effects of inflation,mortality, andmodel
uncertainty in Baltas et al. (2022).

In the discrete-time trading framework, Haberman and Vigna (2001, 2002) and Temocin et al.
(2017) investigate an optimal investment strategy in DC plan by using dynamic programming tech-
niques. Among many others, the main risk in a DC pension plan for participants is the investment
risk during accumulation phase, in which their pension wealth has been built up so that an appropri-
ately sized annuity (or other investment) can be purchased to provide income during retirement. To
moderate investment risk, a minimum guarantee is introduced as a lower bound for pension wealth
that will be paid out to the participants upon retirement. With respect to this, Boulier et al. (2001)
study the optimal management of a defined contribution (DC) plan with deterministic contribution
and the guarantee in retirement depending on the level of stochastic interest rate which follows the
Vasicek (1977) model. In their setup, the guarantee has a form that is annuity paid out from retire-
ment time until the date of deathwhich is also taken as deterministic. Deelstra et al. (2003) investigate
the optimal investment problem for DC plan that allows for minimum guarantee with stochastic
contribution and assumes that interest rate dynamics are given as in Duffie and Kahn (1996) in its
one-dimensional version. Although authors make various assumptions, their aim is to provide the
minimum guarantee, which are so-called ‘portfolio insurance strategies’.

The concept of CPPI strategy is firstly introduced by Perold (1986) for fixed-income securities and
byBlack and Jones (1987) for equity instruments.Theproperties ofCPPI strategies in continuous time
are studied by Black and Perold (1992). Assuming HARA utiliy function, they show that the CPPI
strategy can maximize expected utility.This study is extended by Horsky (2012) with the interest rate
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that follows the Vasi ̌cek model and stock modeled by the Heston process. Temocin et al. (2017) study
the CPPI strategy in DC pension funds with different floor assumptions under continuous-time and
discrete-time trading. The gap risk which is the probability of portfolio falling below the floor and
the risk of portfolio being fully invested in the risk-free asset without a recovery, called the cash-lock
risk, are analyzed for discrete time trading as well in Temocin et al. 2018.

Bertrand andPrigent (2003) compare the performances of CPPI andOption based portfolio insur-
ance (OBPI) strategies when the volatility of the risky asset is stochastic. They also examine both
strategies under first-order stochastic dominance criteria that are related to increasing utility func-
tions (Bertrand and Prigent, 2005). Considering various stochastic dominance criteria up to third
order, Zagst and Kraus (2011) compare the two portfolio insurance strategies. They conclude that
CPPI is likely to dominate the OBPI strategy at third order. Pézier and Scheller (2013) show that
CPPI is superior to the OBPI strategy under discrete trading and asset prices having jump.

In the Black and Scholes framework, which is the basis for most academic studies on CPPI, there
is no gap risk, because the probability of the portfolio value being above the floor at any time equals to
one. However, addressing the gap risk, Balder et al. (2009), Cont and Tankov (2009), and Lacroze and
Paulot (2011) show that portfolio value may crash through the floor in incomplete market in which
asset price jumps may occur or when the portfolio may only be re-balanced on a finite number of
trading days. Balder et al. (2009) investigate the CPPI strategy under trading restrictions, where the
multiplier, a certain proportion of excess value of current wealth over the floor, cannot be changed
between instant trading dates. So that, investor will not have an opportunity to re-balance the port-
folio, which then may crash through the floor between trading dates on a downward market move.
Cont and Tankov (2009) quantify the gap risk that results from instantaneous price jumps analyti-
cally for the CPPI strategy under continuous-time trading. Lacroze and Paulot (2011) show that if the
underlying has independent increments, the dynamics of the portfolio at trading dates is described by
a discrete-time Markov process in a single variable. Extreme value approach is also used by Bertrand
and Prigent (2002) to estimate gap risk of the CPPI strategy. Moreover, Tankov introduces an exotic
derivative called gap option in Tankov (2010) and shows that to price and manage the option, jumps
must necessarily be included into the model. The author then presents explicit pricing and hedging
formulas in the single asset and multi-asset case.

The main difference of our CPPI setting from the literature listed above is that we focus on a
CPPI with random floor that grows not only with interest rate but also with the portions of each
contribution, unlike the deterministic floors in the classical CPPI strategies. Hence, in this setup,
floor becomes a stochastic process due to the dynamics of the labor income as described in Temocin
et al. (2017).

The plan of this paper is as follows: In Section 2, the classical CPPI strategy is presented.
Section 3 gives the CPPI strategy for a DC pension plan, the cushion option is also proposed, and the
CPPI strategy for DC pension scheme under the cushion option is derived. In Section 4, the evolu-
tion of a wealth in pension fund with and without the cushion option until certain withdrawal time
is presented, and the effectiveness of cushion option for CPPI strategy is also discussed. We conclude
with a brief discussion of the observations and suggestions for further research in Section 5.

2. CPPI strategy
The CPPI strategy is a self-financing strategy whose aim is to take potential gain on upward mar-
ket move while guaranteeing at least an specified fixed amount of money at maturity time T. In the
CPPI strategy, the investor initially sets a floor which is the lowest acceptable portfolio value. The
cushion is calculated as the excess value of current wealth over the floor. The cushion multiplied by
a pre-determined multiplier, defined as exposure, is allocated to the risky asset. Remaining funds are
invested in the riskless asset. In the classic Black-Scholes market, where two basic assets are traded
continuously during time horizon [0,T], and the fund manager invests into the two assets: a riskless
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asset (money market account), Bt, and a risky asset (stock or stock index), St, the price dynamics
under ℙ are given by

dBt
Bt

= rdt, B0 = b, (1)

dSt
St

= 𝜇sdt + 𝜎sdWt, S0 = s, (2)

where r, b, s, 𝜇s, and 𝜎s are constant and Wt is a Brownian process defined on complete probability
space (Ω,ℱ, ℙ). Here, ℙ is real-world probability measure and the filtrationℱ = (ℱt)[t≥0] represents
the history of the Brownian motion up to time t. The basic idea of the CPPI approach (Zagst and
Kraus, 2011) is that the terminal portfolio value, VT, at the end of the investment horizon T stays
above an investor-defined floor given as a percentage, 𝜑 ≥ 0, of initial value, V0, i.e.

FT = 𝜑TV0.

Since the market is arbitrage-free, it is impossible to find an investment that returns more than the
risk-free rate of return, r, with no risk. Hence, the maximum guaranteed portfolio value at maturity
time, T, is limited by

𝜑T ≤ erT .

The floor Ft, 0 ≤ t ≤ T , denotes the present value of guarantee. By discounting with respect to
deterministic interest rate, r, 𝜑t becomes

Ft = 𝜑tV0, 𝜑t = 𝜑Te−r(T−t).

Accordingly, the floor follows the dynamics

dFt = rFtdt.

The surplus of current portfolio value, Vt, above the floor Ft is called cushion. The price of cushion,
Ct, at any time t ∈ [0,T] is given as

Ct := Vt − Ft. (3)

At any time t ∈ [0,T], the wealth invested into the risky asset, called exposure, is given by

et = mCt,

where m is a constant multiplier reflecting the risk attitude of the investor. The remaining funds are
then invested in the risk-free asset leading to a portfolio value process

dVt
Vt

= et
dSt
St

+ (Vt − et)
dBt
Bt

. (4)

By Equations (3) and (4), the cushion Ct satisfies

dCt = Ct ((m (𝜇S − r) + r) dt + m𝜎SdWt) . (5)

3. CPPI strategy in DC pension plan under discrete time trading setting
Let 𝜏 be set of n+ 1 equidistant trading dates along time period [0,T], such as 𝜏 = {t0 < t1 < … <
tn−1 < tn}, where t0 = 0 is the inception date of DC pension plan, tn = T is the retirement date, and
△t := tk+1 − tk = T/n for k = 0, 1, .., n − 1.

As mentioned earlier, we consider two assets in the financial market for investing pension contri-
butions: risky asset (stock or stock index) and riskless asset (money market account). Money market
account, Bt, grows with constant interest rate, r, and its price dynamic with initial value B0 = b given
in Equation (1). Additionally, we assume that the price dynamics of risky asset, St, is expressed as
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in Equation (2). Since trading takes place at equidistant trading dates, the observed stock price is as
follows:

Stk+1
= Stke

(𝜇S−
𝜎2
S
2

)△t+𝜎S△Wtk , k = 0, ..., n − 1,

where St0 = s and △Wtk = Wtk+1
− Wtk for k = 0, ..., n − 1.

The DC fund modeling has two key aspects:

i. There is no consumption before the retirement date.
ii. Labor income plays a central role in the wealth-accumulated phase.
iii. The inheritance gains are not considered which avoids the consideration of longevity and

mortality risks.

Labor income is hard to model realistically due to its complicated stochastic components such as
financial and political crisis, disability, and mortality. Here, labor income, Lt, is assumed to have a
stochastic process reflecting the risk of the financial market. If the participants contribute to the pen-
sion fund at each equidistant trading date as a certain proportion, 𝛾, of their labor income, the labor
income dynamics are defined as a stochastic differential equation as follows:

dLt = Lt(𝜇Ldt + 𝜎LdW*
t ), L0 = l, (6)

with l, 𝜇L, and 𝜎L representing starting labor constant, average labor, and standard deviation, respec-
tively, andW*

t is a Brownian process. In what follows, we restrict the stochastic behavior of the labor
income process for the tractability of analytic results. The case we consider is a labor income process
that perfectly correlates with risky asset (dWt = dW*

t ) following the approach of Bodie et al. (1992).
Based on this setup, the observed labor income becomes

Ltk+1
= Ltke

(𝜇L−
𝜎2
L
2

)△t+𝜎L△Wtk , k = 0, ..., n − 1, (7)

where Lt0 = l and △Wtk = Wtk+1
− Wtk for k = 0, ..., n − 1. Therefore, the DC with respect to labor

process and the value of proportion, 𝛾, is defined as

𝛾tk = 𝛾Ltk, (8)

for all k = 0, 1, .., n with dynamics
d𝛾t = 𝛾dLt. (9)

We assume that there is a portfolio which has the same dynamics as labor income. For this reason, the
labor income can be replicated perfectly between equidistant trading dates using assets in themarket.
In order to prove this, we need to show the relevant replicating portfolio. Assuming the relationwhich
expresses the equivalence of risk premium between the labor income and the risky asset

𝜇L = r + 𝜎L
𝜇S − r

𝜎S
, (10)

we consider a self-financing replicating strategy 𝜋 = (𝜋B, 𝜋S, 𝜋L) and choose 𝜋L = −1 as given in
Temocin et al. (2017). Then, we have the value of the fund as

dV𝜋
t = 𝜋BdBt + 𝜋SdSt − dLt

= 𝜋B(rBtdt) + 𝜋S(St𝜇sdt + St𝜎sdWt) − Lt(𝜇Ldt + 𝜎LdWt)
= (𝜋BrBt + 𝜋SSt𝜇s − Lt𝜇L)dt + (𝜋SSt𝜎s − Lt𝜎L)dWt.

Equating the diffusion terms and the drift terms to zero, we obtain the number of assets required as

𝜋S(t) = L𝜎L
S𝜎S

and 𝜋B(t) = L
rB𝜎S

(𝜎S𝜇L − 𝜎L𝜇S).
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Unlike the floor in the classical CPPI strategy, we consider a random floor which evolves not only
with interest rate but also with the portion of each contribution. In this setup, floor, Ft becomes a
stochastic process due to the dynamics of the labor income as described in (Temocin et al., 2017).
Hence, the floor at time t is defined as

Ft =
⎧{
⎨{⎩

∑k
i=0 e

r(t−ti)c𝛾ti, t ∈ (tk, tk+1)

F−
tk+1

+ c𝛾tk+1
, t = tk+1

(11)

for k = 0, 1, ..., n − 1, where 0 < c < 1 is a constant that denotes the proportion of the amount of
contribution to be added to the floor with F0 = c𝛾t0. The portfolio value is then given as

Vtk+1
=

⎧{
⎨{⎩

(Vtk − mCtk)e
r△t + mCtk

Stk+1

Stk
+ 𝛾tk+1

, Ctk > 0

Vtke
r△t + 𝛾tk+1

, Ctk ≤ 0
(12)

for t ∈ (tk, tk+1) and

Vt =
⎧{
⎨{⎩

(Vtk − mCtk)
Bt

Btk

+ mCtk
St
Stk

, Ctk > 0

Vtk
Bt

Btk

, Ctk ≤ 0
(13)

for t = tk for all k = 0, 1, .., n − 1.
Then by its definition, the cushion process becomes

Ctk+1
=

⎧{
⎨{⎩

Ctk(m
Stk+1

Stk
+ (1 − m)er△t) + (1 − c)𝛾tk+1

, Ctk > 0

Ctke
r△t + (1 − c)𝛾tk+1

, Ctk ≤ 0
(14)

for t ∈ (tk, tk+1) and

Ct =
⎧{
⎨{⎩

Ctk (m St
Stk

+ (1 − m) Bt

Btk

) , Ctk > 0

Ctk
Bt

Btk

, Ctk ≤ 0

for t = tk for all k = 0, 1, .., n − 1.
Now that we have described the CPPI-DC design, we next introduce the implementation of the

cushion insurance by employing a special exotic option, hereby called the cushion option.

3.1. Cushion option in the frame of a CPPI strategy
Due to our trading structure, the risk of cushion becoming negative between trading dates is always
present as the re-balancements are done only at trading dates. Considering the cushion dynamics,
we can define probability of gap risk, Pgap just before contribution payment comes into the system as
follows:

Pgap = P (C−
tk+1

< 0| Ctk > 0)

= P (Ctk (m
St
Stk

+ (1 − m)er△t) < 0| Ctk > 0)

= P ( St
Stk

<
(m − 1)

m er△t) .

To minimize Pgap, we propose the exotic cushion option with payoff function

(K − (1 − c)𝛾Ltk+1
)+𝕀

{
Stk+1
Stk

<(1− 1

m
)er△t}

, (15)
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where K = Ctk . The main aim of this custom-made option is to generate an additional gain in case
of a sudden decrease in the portfolio value. The proposed option is expected to benefit when the
cushion becomes negative between times tk and tk+1. Hence, we compare the cushion amounts at
these times with the purpose of activating the payoff only when there is a gap phenomenon in the
given time period. Here, the strike price, K, represents the cushion with the aim of making sure that
there is always sufficient capital for buying the option, so the option price will always be smaller
than the cushion due to non-negative labor income. Since this is a theoretical derivative, our primary
assumption is that there are parties in the market who sell these options.Then, based on the position
of the pension fund, the beneficiary can buy the relevant option. By Girsanov’s Theorem (Shreve,
2004), we have the risk-neutral dynamics of the stock price as

Stk+1
= Stkexp((r −

𝜎2
S
2 ) △t + 𝜎S(W

ℚ
tk+1

− Wℚ
tk )) ,

whereWℚ is the Brownian motion under the unique risk-neutral measure ℚ. Thus, we have

Wℚ
tk+1

− Wℚ
tk =

ln
Stk+1

Stk
− (r − 𝜎2

S

2
) △t

𝜎S
. (16)

SubstitutingWℚ
tk+1

− Wℚ
tk into the ℚ-dynamics of Ltk+1

yields

Ltk+1
= Ltkexp

⎛⎜⎜⎜⎜
⎝

(𝜇L − 𝜎2
L
2 ) △t + 𝜎L

ln
Stk+1

Stk
− (r − 𝜎2

S

2
) △t

𝜎S

⎞⎟⎟⎟⎟
⎠

(17)

= Ltk (
Stk+1

Stk
)

𝜎L
𝜎S

exp((𝜇L − 𝜎2
L
2 − r𝜎L

𝜎S
+ 𝜎L𝜎S

2 ) △t) . (18)

Hence, the payoff of the cushion option becomes

(Ctk − (1 − c)𝛾Ltk+1
)+𝟙

{
Stk+1
Stk

<(1− 1

m
)er△t}

= (Ctk − (1 − c)𝛾Ltk (
Stk+1

Stk
)

𝜎L
𝜎S

exp((𝜇L − 𝜎2
L
2 − r𝜎L

𝜎S
+ 𝜎L𝜎S

2 ) △t))
+

× 𝟙
{

Stk+1
Stk

<(1− 1

m
)er△t}

= 𝜁(K* − S
𝜎L
𝜎S
tk+1

)+𝟙
{

Stk+1
Stk

<(1− 1

m
)er△t}

,

where

𝜁 =
(1 − c)𝛾Ltk

S
𝜎L
𝜎S
tk

exp((𝜇L − 𝜎2
L
2 − r𝜎L

𝜎S
+ 𝜎L𝜎S

2 ) △t) and K* =
Ctk
𝜁 .

The next proposition gives the price of the cushion with this payoff.

Proposition 1. The cushion option under CPPI-DC design with payoff

(Ctk − (1 − c)𝛾Ltk+1
)+𝕀

{
Stk+1
Stk

<(1− 1

m
)er△t}

,
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has a price of Ptk given as

Ptk = 𝜁*K*Φ (min(Atk,Btk)) − 𝜁*S
𝜎L
𝜎S
tk e

[ 𝜎L
𝜎S

(r−𝜎2
S/2)+𝜎2

L/2]△t
Φ (min(Atk,Btk) − 𝜎L△t) , (19)

where
𝜁* = e−r△t𝜁,

with

Atk =

ln⎛⎜
⎝

K*

S
𝜎L
𝜎S
tk

⎞⎟
⎠

− 𝜎L

𝜎S
(r − 𝜎2

S

2
) △t

𝜎L
√

△t
and Btk =

ln(m−1

m
) + (𝜎2

S/2)△t

𝜎S
√

△t
.

Proof.The details of the proof is given in the Appendix. �

The cushion option is assumed to be purchased at time tk for all k = 0, 1, ..., n − 1. Since Ctk > Ptk ,
new portfolio value, V*

tk , and cushion value, C*
tk , at time tk are given by

V*
tk = Vtk − Ptk

and
C*
tk = max{V*

tk − Ftk, 0},
respectively. Then, for Ctk > 0 for all k = 0, 1, .., n − 1, the portfolio value is expressed as

Vtk+1
= [(V*

tk − mC*
tk)e

r△t + mC*
tk

Stk+1

Stk
+ 𝛾Ltk+1

+ (Ctk − (1 − c)𝛾Ltk+1
)+] 𝕀

{
Stk+1
Stk

≤(1− 1

m
)er△t}

+ [(V*
tk − mC*

tk)e
r△t + mC*

tk

Stk+1

Stk
+ 𝛾Ltk+1

] 𝕀
{

Stk+1
Stk

>(1− 1

m
)er△t}

.

For Ctk ≤ 0 for all k = 0, 1, .., n − 1, the portfolio value, Vtk+1
= Vtke

r△t + 𝛾Ltk+1
, yields the value of

the pension fund at tk+1. Henceforth, when Ctk > 0, the wealth process between equidistant trading
dates is given as

Vt = [(V*
tk − mC*

tk)
Bt
Btk

+ mC*
tk
St
Stk

] ,

whereas for Ctk ≤ 0,

Vt = Vtk
Bt
Btk

,

for t ∈ (tk, tk+1), k = 0, 1, .., n − 1.

4. Implementation and numerical results
In order to indicate the influence of the cushion option onCPPI-DCplans under certain assumptions,
we perform simulations because the realization of real data requires long years and a wide range of
market conditions, DC plan, and country-specific characteristics may also change over the years. By
means of 10000 Monte Carlo simulations, the CPPI strategy with cushion option and without cush-
ion option is generated and the performance levels of both strategies are investigated under various
market and DC plan assumptions. All analyses and runs are coded using MATLAB.

The simulation scenarios based on many factors are expected to expose sensitivity with respect
to varying parameter values. As exotic options can be utilized for short-term leverage in financial
markets, their contributions are evaluated in two basic time frames:
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Table 1. Parameter values under discrete-time trading setting

Parameter Value
Interest rate, r 0.03
Stock parameters
Drift, 𝜇S 0.12
Volatility, 𝜎S 0.3
Labor income parameters
Drift, 𝜇L 0.06
Volatility, 𝜎L 0.09
Contribution rate, 𝛾 0.1
Guarantee rate, c 0.8
Multiplier,m 8
Time horizon , T (years) 3, 20

Table 2. The final wealth of CPPI strategies for long and short terms

Cushion option T = 20 years T = 3 years
With 74.424 169.211 5.227 2.619
Without 39.370 40.503 4.195 1.431

(i) short-termwhich corresponds to the generally assumed earliest time to terminate the pension
plan; T = 3 years

(ii) long-term at which the participants fulfill the retirement conditions; T = 20 years.

The comparisons with respect to time frames and the parameters are performed based on the value of
the fund with and without cushion options. The steps of the proposed approach start with setting up
arbitrary fixed values for the contributing parameters. The algorithm then calculates the price of the
cushion option for the strike price at each fixed trading date. The next step considers a CPPI scheme
for each fixed trading date with and without cushion options for strike price and finds the wealth for
each case. The process ends with a comparison of the setup with respect to the cushion option and
different values of the contributing parameters.

Portfolio strategies are simulated using the set of parameters summarized in Table 1. The param-
eter values are chosen to be the same as in Temocin et al. (2017) in order to have a benchmark
except for some adjustments in the interest rate, r, and market volatility, 𝜎S, to expose the influence
of the cushion-option setup on fund’s development. The choice of 3 years for short-term is made
with respect to the most commonly official withdrawal duration set by the life and pension insurance
companies.

Table 2 shows the mean and standard deviation of the final wealth for the CPPI strategy without
and with the cushion option for a period of 3 years and a period of 20 years. According to the results,
we see that cushion option is a profitable choice for both periods. Mean, E(VT), and standard devia-
tion, 𝜎(VT), of final wealth for the CPPI strategy under the cushion option are higher than the mean
and standard deviation of final wealth for the CPPI strategy. Considering that downside protection is
provided by the CPPI strategy, the higher standard deviation indicates the longer right tail of terminal
wealth distribution, and therefore it is considered a positive performance indicator, despite its more
usual role as a negative performance indicator.

In Table 3, we illustrate the sensitivities with respect to the parameters for the time frames T = 20
years and T = 3 years. We see from the results of the simulations that the higher market volatility, 𝜎S,
has a positive effect on moments of terminal wealth for without cushion option CPPI strategy in the
3-year time period. However, we cannot observe accurate information about its effect on the terminal
wealth for the CPPI strategy under cushion option for the 20-year time period. An increase in the
market drift, 𝜇S, raises the moment of the terminal wealth for CPPI strategies in both time periods.
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Table 3. CPPI portfolio with and without cushion option under certain parameter values (T=20 years and T=3 years)

CPPI (T = 20) CPPI (T = 3)

With cushion option Without cushion option With cushion option Without cushion option

Parameter Value E(Vc
T) 𝜎(Vc

T) E(VT) 𝜎(VT) E(Vc
T) 𝜎(Vc

T) E(VT) 𝜎(VT)

𝜎S

0.2 38.394 29.768 34.356 19.755 4.110 1.019 4.124 1.029
0.3 74.423 169.210 39.370 40.502 5.227 2.619 4.195 1.431
0.4 45.398 83.246 48.508 92.320 5.301 3.616 4.293 1.908

𝜇S

0.06 71.330 160.797 38.697 39.296 5.024 2.463 4.096 1.348
0.12 74.423 169.210 39.370 40.502 5.227 2.619 4.195 1.431
0.18 77.421 178.493 40.212 42.648 5.448 2.782 4.303 1.516

𝜎L

0.045 72.147 155.243 38.378 35.997 5.212 2.445 4.181 1.291
0.09 74.423 169.210 39.370 40.502 5.227 2.619 4.195 1.431
0.18 82.888 218.635 44.001 57.527 5.284 3.036 4.246 1.772

𝜇L

0.03 73.343 167.222 38.857 40.053 5.154 2.591 4.134 1.414
0.06 74.423 169.210 39.370 40.502 5.227 2.619 4.195 1.431
0.12 76.613 173.788 40.462 41.397 5.376 2.675 4.320 1.466

c
0.7 91.030 193.875 40.877 46.865 5.717 2.868 4.230 1.543
0.8 74.423 169.210 39.370 40.502 5.227 2.619 4.195 1.431
0.9 55.394 119.906 37.640 31.330 4.682 2.059 4.131 1.150

𝛾
0.05 37.212 84.605 19.685 20.251 2.613 1.309 2.097 0.716
0.1 74.423 169.210 39.370 40.502 5.227 2.619 4.195 1.431
0.2 148.848 338.421 78.740 81.006 10.454 5.238 8.389 2.862

m
2 38.512 32.223 38.512 32.223 4.109 0.893 4.109 0.893
6 74.423 169.210 39.370 40.502 5.227 2.619 4.195 1.431
10 38.216 41.701 39.475 41.780 4.841 2.357 4.207 1.479

A rise on labor income drift, 𝜇L, as well as labor income volatility, 𝜎L, increases the moments of ter-
minal wealth for CPPI strategies in both time horizon. Increasing the guarantee rate, c, resulting in
the higher floor, has a negative effect on the moments of both strategies. That is, when the smaller
amount of wealth is invested in the risky asset, we take fewer potential gains on the upward market
move. CPPI with cushion option yields higher average return compared to no cushion when the con-
tribution rate, 𝛾, increases. When more amount of money is invested in the risky asset, investor can
take more gains from increasing market. Higher multiplier, m, yields the moments of CPPI portfo-
lio to be slightly higher in both time periods, but on the other hand higherm decreases moments of
CPPI strategy with cushion option in both time horizon.The gap risk increases in the case of the high
multiplier, m, and therefore the value of cushion option depending on gap risk raises. As expected,
the high price of cushion option lowers the profits. Inversely, smaller multiplier,m, decreases the gap
risk in line with the price of cushion option. For a small multiplier such asm= 2, the cushion option
has no significant effect on the CPPI strategy. Note that the initial value for the portfolio is taken to
be 0.1 in Tables 2 and 3.

Figure 1 illustrates the portfolio trajectories of both strategies, highlighting their evolution over
time.The figure compares the performance across two selected investment horizons. Taking a glance
at the graphs, one can see that the portfolio value under the cushion option initially stands below
the portfolio value of the CPPI strategy due to hedging cost for both horizons. When a sudden
decrease occurs, portfolio value recovers quickly by means of cushion option and makes ben-
efits from increasing in the market. However, portfolio value for the CPPI strategy needs time
to recover and cannot make use of an advantage of potential gains on the upward move in the
market.

Figures 2 and 3 illustrate the tail properties and the distributional behavior of terminal portfolio
value for both strategies with respect to different time frames. As clearly seen, the CPPI strat-
egy under cushion option has a longer right tail in the value of terminal wealth compared to the
other case. This illustrative distributional behavior of both strategies supports the results depicted in
Table 2.
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Figure 1. Illustrative trajectories of CPPI portfolio-scheme based on the parameters chosen in Table 1 in the 3-year time
period (a and b) and 20-year time period (c and d).
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Figure 2. Short-term estimated kernel densities of final wealth for CPPI.
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Figure 3. Long-term estimated kernel densities of final wealth for CPPI.

5. Concluding comments
Fundmanagement forDCpension plans is critical for both individuals and social security systems. In
this context, the literature explores portfolio insurance as ameans to provide downside protection for
portfolio values.TheCPPI strategy with the randomfloor applied toDC pension plan under discrete-
time trading setting allows us to foresee the development of a guaranteed fund. Considering trading
only takes place at predefined dates, the portfolio value can drop below the floor between trading
dates. Additionally, contribution at trading dates may not be enough to push up the floor. Therefore,
in this paper, we propose a cushion option to reduce the gap risk and derive the price of option as
well as the wealth process accordingly. By means of Monte Carlo simulations, the effectiveness of
the cushion option on the CPPI strategy is tested by comparing portfolio performance for the CPPI
strategy with and without cushion option. To support the effectiveness of cushion option, kernel
densities are estimated for terminal wealth of both strategies.

This paper contributes to the valuation of DC plan funds by explicitly pricing a cushion option and
demonstrating its utilization throughnumerical analysis.MonteCarlo simulation results indicate that
the CPPI strategy incorporating a cushion option outperforms the standard CPPI strategy over both
short-term (e.g., 3-year) and long-term (e.g., 20-year) horizons, as evidenced by higher moments of
terminal wealth.

Even though the CPPI strategy provides downside protection, a sudden decline in themarket may
cause the portfolio value to drop below the floor. If the remaining time before termination date is not
enough to recover the portfolio value, the investor faces the risk (gap risk) that the portfolio value
stays under the floor representing the acceptableminimumportfolio value.The cushion optionwhich
is introduced in this paper is shown to be a profitable choice for a DC plan participant who considers
a risk of early withdrawal.

The findings show that for both short- and long-term pension periods, CPPI with cushion option
increases the expected value of the wealth and reduces the standard deviation especially for the long-
term period. This proposed approach can be utilized to depict the plausible investment strategies
having certain guarantees in pension fund system. It should be noted that the market and income
are assumed to have similar dynamics due to their close correlation in real life. The influence of mar-
ket risk through inflation will have an real reduction on the value of the income. As a future avenue
of research, we plan to generalize the salary model by accounting for imperfect correlation between
labor income and financial markets. Another possible extension is to incorporate regime-switching
dynamics to better capture the changing behavior of the economy over the long term. In addition to
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the generalizations in financial modeling, the stochastic modeling approach presented in this paper
has potential applications beyond the domain of finance. Stochastic models, pricing approaches, and
risk management techniques can be applied in various fields, such as management (resource allo-
cation and decision-making), biology (population dynamics and genetic processes), environmental
networks (sustainable resource management), and financial networks (systemic risk in intercon-
nected institutions). Exploring these interdisciplinary connections could provide new avenues for
future research.

Furthermore, our setup can be applied to the hybrid pension scheme for reducing funding short-
fall which is prominent risk on calculation of reserve with respect to Solvency II framework by
incorporating inflation and longevity risks.
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Sketch of the proof of Proposition 1 (Gulveren, 2016)

Ptk = EQ ⎡⎢
⎣
e−r△t𝜁 (K* − S

𝜎L
𝜎S
tk+1)

+

𝕀
{

Stk+1
Stk

<(1− 1
m

)er△t}
⎤⎥
⎦

,

where Q is a risk neutral measure, under which the discounted stock price e−rtSt is a martingale. Therefore,

Ptk = ∫
∞

−∞
e−r△t𝜁 (K* − S

𝜎L
𝜎S
tk+1)

+

𝕀
{

Stk+1
Stk

<(1− 1
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)er△t}

1
√
2𝜋

e− z2

2 dz. (A1)

In order to get payoff, two conditions (A and B) need to be satisfied:
Condition A:

K* − S
𝜎L
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tk+1 > 0
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tk and
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= z ∼ N(0, 1).
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= z ∼ N(0, 1).
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Under these conditions:

Ptk = ∫
B

−∞
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By change of variable y = z − 𝜎2
L
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