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GLACIER FLOW IN A CURVING CHANNEL
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ABSTRACT. The flow of a glacier along a channel of
constant longitudinal curvature is analyzed using analytical
and finite-element methods. Channels of various cross-
sectional shape are investigated, ranging from a simple
rectangular form with zero shear traction along the bed to
realistic profiles taken from Blue Glacier, Washington. Terms
in the equilibrium and rate-of-deformation equations which
are inversely dependent on radius and a body force which
varies transversely across the glacier introduce several
characteristic features into the stress and velocity fields of
the curving glacier. The stress center line is shifted toward
the inside of the bend, causing an asymmetric crevasse
pattern and non-zero stress magnitude at the surface on the
geometric center line of the channel. The stress field is
dependent on the stress exponent in the flow law and is
non-linear across the surface. The surface-velocity pattern
shows a “"tilting" of the usual high-order parabolic form,
being skewed toward the inside of the bend. There is a
shift in the velocity maximum from the deepest part of the
channel. All of these curvature-induced features are
dependent on the radius of curvature, actual channel
geometry, and stress exponent in the flow law. Model
results show excellent agreement with the velocity and cre-
vasse patterns on the curving Blue Glacier.

INTRODUCTION

Glaciers are seldom straight along their entire length,
Instead, their channels often take a curving path through
the mountains, with bends ranging from gentle arcs to
abrupt right-angle turns. One might expect that this longi-
tudinal curvature in a glacier valley would influence the
distribution of stress and velocity, as is the case in rivers.
However, the great difference in Reynolds and Froude
numbers between glacier flow and river flow can be
expected to cause the stress and flow fields in a curving
glacier to be quite different from those in a curving river.

Blue Glacier in the Olympic Mountains of Washington,
US.A,, flows around a bend of nearly constant curvature
for much of its length (see Fig. 1). The patterns of
crevassing and areal strain-rate, which are not symmetric
about the channel center line (as described by Allen and
others, 1960; Meier and others, 1974; Echelmeyer, unpub-
lished), have been qualitatively explained by Meier and
others (1974) as the result of the longitudinal curvature of
the valley. In the present paper we present a quantitative
description of the distribution of stress and velocity in a
curving glacier, and show that the features observed on
Blue Glacier can be explained in detail by taking into con-
sideration this longitudinal curvature. The treatment is an
extension to curving channels of the analysis of flow in
straight cylindrical channels given by Nye (1965).

GOVERNING EQUATIONS
Conservation of linear momentum in cylindrical co-

ordinates (r,8,z) is expressed by the following set of
equations:
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where we have taken the inertial forces to be negligible and
where T is the Cauchy stress and f the body force. The
components of the rate-of-deformation tensor, é, are given
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where u = (u,ug,u_) is the velocity.

Several differences exist between Equations (1) and (2)
and their Cartesian counterparts. Since the element of arc
length along the B-direction is rdB, the Cartesian operator
8/8x, becomes 8/r80. The difference in area between two
faces of a small-volume element separated by a radial
distance dr, the non-parallelism of the constant-angle faces
at 8 and df, and the change in the radial direction at
different values of 8 give rise to the additional terms such
as 27,.q/r and —ug/r.

These additional terms introduced by the cylindrical
geometry lead to several interesting features of the stress
and velocity fields. A qualitative discussion of some of
these features is given in this section, while a more
quantitative and cdmplete discussion forms the bulk of the
paper.

Consider a curving channel of uniform, bilaterally
symmetric cross-section. Equation (2d) shows that, if u, =
0, then é,9 = 0 at some radius other than the location of
the wvelocity maximum, where dug/8r = 0. The radius at
which € g vanishes is shifted inward, toward smaller r. In a
Reiner—Rivlin fluid such as ice, which obeys a power-law
type constitutive relation, the shear stress T,q will vanish
where €,.g vanishes. Thus the "stress center line" — the locus

281


https://doi.org/10.3189/S0022143000008856

Journal of Glaciology

Fig. 1. Vertical aerial photograph of Blue Glacier,
channel geometry, crevasse patterns, and position of lettered transverse profiles.

of points where T,g =0 (Meier and others, 1974) — is
shifted toward a smaller radius than that at which the
maximum velocity occurs, Profiles of shear stress and
velocity will therefore be asymmetric with respect to the
geometric center line of the channel, and the pattern of
crevassing will be changed from that in a straight channel,
for which the 1/r terms are not present in the Cartesian
analogs of Equation (2). These ideas were developed and
compared with observations on Blue Glacier by Meier and
others (1974). An example of these curvature-induced
effects on the surface velocity in a semi-circular channel is
shown in Figure 2.

Terms such as 27,g/r as in Equation (1b) will give rise
to non-linearities in the shear-stress profiles at depth and
across the surface of a curving channel which are, again,
not present in a non-curving geometry.

The surface of a river in a curving channel often
shows a super elevation toward the outside of the bend.
This transverse surface slope causes a circulating secondary
flow to develop, which is important in the growth of
meanders and sediment deposition. In the case of glacier
flow, the ratio of centripetal forces to down-stream
gravitational forces (a "centripetal" Froude number equal to
the transverse slope) is extremely small (~1071%) and, thus,
in the following, we assume that secondary flow is
negligible in the motion of a glacier around a bend. A
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Olympic Mountains, Washington, showing curving

more detailed analysis by Echelmeyer shows that this
assumption is strictly valid.

SIMPLE MODEL FLOW IN A RECTANGULAR
CHANNEL

We begin with the discussion of a model that is
simplistic and not realistic, but can be treated analytically,
and reveals the basic, important features of flow in curving
channels.

Consider the flow of ice in a curving, rectangular
channel of uniform width, D, and depth, with parallel
vertical side walls, with no slip on these side walls, and
with zero shear traction along the basal interface. The
channel center line is a curve with constant radius of
curvature, R., about the z-axis, as shown in Figure 3. The
channel follows a helical path down the z-axis. If z =

Z(r.8) represents the surface of the ice in the channel and
Z, is the value of Z; at 8 = 0, then for a channel of
steady, uniform depth and a zero net mass balance

Z(r.8) = Z, — rBtan« (3)

where o is the surface slope along the channel at radial
coordinate r. (Ice motion is inclined at an angle « below
the horizontal.)
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STRAIGHT SEMICIRCULAR CHANNEL
n=3

CURVING SEMICIRCULAR CHANNEL, D/Rs=0.75
n=3
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Fig. 2. Example of the influence of curvature on the profile
of surface velocity in a semi-circular channel. D s
channel width and R, the radius of curvature to the
channel center line. Ry is the radius to the margin at
inside of bend, R is outer margin.

Fig. 3. Plan view of the geometry and notation for the
analysis of curving channel [low.

The surface of the ice in a transverse (radial) line
across the channel is taken to be level, so that the flow 1is
driven by gravity only in the circumferential (6-) direction,
and the drop in elevation per unit increment in 6 is taken
to be constant, so that the gravitational driving force is
independent of 6. Thus the surface slope o must vary
inversely with the radial distance r from the center of
curvature, over the range from the inside of the bend at
R, to the outside at R,. Taking « = «, at R,, we have

rAf tan ofr) = R, A8 tan o, re[R_,R,] 4)

which, for small surface slopes, can be written

Ry
or) = T“ﬂ' (3)
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Echelmeyer and Kamb: Glacier flow in a curving channel

The wvariation in surface slope given in Equation (5) is
observed on Blue Glacier, as shown in Figure 4. There is a
marked decrease in slope from the western (inner) margin
to the eastern. The effect is strongest at that part of the
channel with the smallest radius of curvature, namely along
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Fig. 4. Observed variation of longitudinal surface slope
across transverse profiles on Blue Glacier. Slope was
determined over a distance of 2-3 ice thicknesses (from
Echelmeyer, unpublished).

profiles D through H. An extreme example is shown along
profile E where a small ice fall exists along the inside of
the bend. A similar variation in surface slope is found
across the north ice stream of Jakobshavns Isbrea,
Greenland, which makes a nearly right-angle bend as it
enters the fjord near the grounding zone.

Because the channel has constant cross-sectional shape,
and because the effective driving force for flow (pga) is
8-directed and independent of 8, it can be assumed that all
of the flow is in the 8 direction, inclined downward to the
horizontal at the angle o« (This assumption is fully
analogous to the assumption that in straight cylindrical
channels the flow is everywhere parallel to the cylinder axis
(Nye, 1965).) It follows that u, = 0. The assumption that
there is no shear stress across the bottom of the cylindrical
channel, as well as across the ice surface, means that there
can be no shear of type 8ug/dz; the flow ug(r) is
independent of depth z as well as angle 8. T.p must
therefore be zero (to order «) and the effective driving
force for flow must be supported entirely by the lateral
shear stresses of type T,g, which must be independent of

Taking the z-axis vertically upward, the body force
can be written f = (0,0,—pg). Assuming the hydrostatic con-
dition T,. = Tgg = T_., we have, to order « T.. =
—pg(Zg — z). This then implies that

Tgg = p&(Z, — rBtana — z2) (6)

from Equation (3). (Terms of order o would enter
Equation (6) because the surface has slope « in the ©
direction; these have been neglected.) Substitution of
Equation (6) into Equation (1b) and elimination of the term
8T_g/8z for the reasons given in the previous paragraph
yields

6Tr 8 5 Tre
W
ar r

+ pgtana = 0 (7

or, using Equation (5)

87,9 Tro Ry "
ar f e e = ®)

283


https://doi.org/10.3189/S0022143000008856

Journal ef Glaciology

Equation (8) can also be obtained in a slightly dis-
torted coordinate frame where the z-axis is chosen normal
to the glacier surface and r,8 as above. In this case, the
body force fg is equal to pg sin « which, in the small
angle approximation is equal to pge,R,/r- When substituted
in Equation (1b) with

8 .
a8 8z

this gives Equation (8). Within this slightly tilted coordin-
ate system, Equation (8) and the relations u, = u, = 0 hold
to order o?, -

Equation (8) is subject to the boundary conditions of
no slip at the vertical walls r = Ry and r = R;. T,g is
uniform with depth, as explained above.

Since u, = 0, Equation (2d) gives

) 1 Bu u
%=?E“ﬂ ©)

where u is written for ug. In order to complete the
specification of the problem, we take a power-law type re-
lation between shear stress and rate of deformation:

€o = AlTr9|"'1 Tre (10)

where, again, we have taken T, to be the only non-zero
deviatoric stress (to second order in «). The constant A is
the standard flow-law parameter (Paterson, 1981, p. 31).
Relations (8), (9), and (10), along with the no-slip
boundary conditions, provide a complete set for the solution
of shear stress and velocity in the domain (R_,R,).
Defining non-dimensional variables

& = r/R,, (11a)
o = T,g/F, (11b)
U = u/[AR,F"), (11c)

and the dimensionless parameter
£, = RJ/Ry (11d)

where F = pgayR,, leads to the following set of equations:

d 2 1

—{5%) = = 8

at t“o) Ty (8")
ﬂjt U/t) = 2|ol"sgno)/, (10")

and the conditions that U(1) = U(g,) = 0.

Solution of Equations (8') and (10') gives

1 1 Y
o(§) = —-2-[1 = ?] *E (12)
and
13 de’
Ue) = 2r.j lol"(Sgnu)—:,— (13)

1

where o, = a(l).

The condition of no slip at ¥ = 1 has already been
incorporated into Equation (13). Applying the remaining
boundary condition at the outer wall leads to an evaluation
of the boundary shear stress, o, Once this is obtained, the
solution is complete. Equation (13) thus leads to the relation
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(14)

For different values of the stress exponent n, Equation (14)
yields a polynomial of degree n in the unknown o,. It is
interesting to look at the solution for several values of the
stress exponent.

For n = 1, the solution may be obtained explicitly:

| & Ing,
Oy = —2—+?
and thus
1 In§1 El )
B} = Sk e—— | (15)
-0 L%
and

1—¢2
Uiy =-—glnk « Bk |=——— [. (4]
f—~ 5

Following a similar procedure, solutions for different
stress exponents may be obtained. For n > 2, Equation (14)
was solved numerically for o,, and Equations (12) and (13)
were then used to obtain the shear stress and velocity. This
procedure indicates in important feature of the stress field,
namely, a dependence of shear stress on the exponent n, as
is seen in Equations (12) and (14). In addition to this flow-
law dependence, the stress and velocity depend upon the
radius of curvature and channel width. Shear stress is a
non-linear function of radius. Both shear stress and velocity
are asymmetric about the channel center line.

For illustration purposes, let R; = 400 m and R, =
1300 m (typical values for Blue Glacier, with R, = 850 m
and D = 900 m, so that §, = 3.25). The shear stress T,g
and velocity u obtained from Equations (11) and (12)—(14)
are to be compared with those found in a straight channel
of width D and slope equal to the center-line slope of the
curving channel o, = o;R,/R. with equivalent boundary
conditions (as derived by Nye (1952)). To this end, let the
normalized stress and velocity be

1
Tre = Tra/[Epgch] (17a)

and

1
v = u/[[?pgoth]nAD/2(n+ 1)]. (17b)
If the radius of the stress center line is Ry and the radius
at which the maximum velocity occurs is R, then the
position of these two radii from the channel center line
relative  to the channel width, denoted p; and Pl
respectively, is given by

1

pr = (Ry — RY/D/2), (18a)
Py = (Ry = RY/(D/2). (18b)

For a straight channel with stress center line and velocity
maximum at the center of the channel T,.g(Ry) = T,g(R,)) =
Viax = 1 and pp = p, = 0; if the stress center line is
shifted completely to the inner channel wall (Ry), then py =
=1, etc. Table I and Figures 5 and 6 show the results for
the curving channel described above, with different values
of n. Table II shows the variations in p; and p, with
decreasing curvature for both n = 3 and n = 1. All results
are given as functions of the dimensionless transverse co-
ordinate r/R, and parameter R,/R,, which is a measure of
the dimensionless relation between center-line curvature R,
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Fig. 5. Normalized shear stress (T,.g) across the width of a
curving, rectangular channel with zero traction at the bed,
for: (a) different stress exponents, and (b) different
curvatures. Curves are obtained [rom the analytical
discussion in the text.

and channel

Ry/Ry + 1).
The effects of channel curvature are illuminated by the

results from this simple model. These effects are as follows:

width D, that is, D/R, = 2(R,/R, — 1)/

1. The stress center line is shifted toward the inside of the
bend. The amount of this shift increases with the curva-

Fi

. The

Echelmeyer and Kamb: Glacier flow in a curving channel

1_[a)

W oveeenns n=5 .'.
R 1 /R ([ 3.258 1
0
Ro r Ry
g. 6. Velocity profiles across a curving, rectangular

channel with zero traction at the bed, for: (a) different
curvature with n = 3; (b) different stress exponents at
fixed curvature. Position of maximum velocity is indicated
by symbols for the different models.

the stress
tight

ture of the channel, For a straight channel,
center line is at the channel center, while for
bends, it tends toward the inside edge.

. For a fixed curvature, the higher the exponent n the

more pronounced the inward shift of the stress center
line,

. The magnitude of T,g is dependent upon the channel

curvature and n.

. Trg, as a function of transverse coordinate r, shows an

increasing departure from linearity with decrease in R,
(increasing curvature),

. The velocity profile is no longer symmetric about the

center. The asymmetry increases as R, decreases or n
increases.

position of the maximum velocity shifts with
changing curvature and stress exponent. For fixed curva-
ture, it moves outward, toward the outside margin, as n
increases. For » < 3, the maximum velocity occurs at a
point inside the center, while for »n = 3 the maximum
occurs at or outside of the center (depending on s
and, for n > 3 it is located toward the outside of the

TABLE 1. SHEAR STRESS AND VELOCITY IN CURVING CHANNEL COMPARED WITH A

STRAIGHT CHANNEL OF EQUIVALENT WIDTH FOR D/R; =

225

(pr AND p, AS DEFINED IN EQUATION (18))

Shear stress

n T,8(Rp) T,6(Ry)
1 1.52 —0.71
3 1.16 .75
5 1.04 —0.76
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Center line

Stress Velocity

pT Py vrﬂa\x
—0.46 —0.18 0.96
—0.56 0.00 0.84
—0.60 0.12 0.70
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TABLE II. VARIATION OF THE POSITION OF STRESS CENTER LINE AND VELOCITY MAXIMA
WITH CURVATURE

D/R, = 2.25 0.90
n=3 pg -0.56 —0.34
Py 0.00 0.12
Voo 0.84 0.96
e 1 Pr —0.46 —0.26
Py —0.18 —0.10
v 0.96 0.98

bend. An interesting feature is noted for n = 3 and n =
5. As the curvature decreases, there is a shift in the
position of the velocity maximum away from the
geometric center line toward the outside of the bend. If
this trend were to continue, then the position of maximum
velocity would not be the channel center line as a
straight channel is approached (Rc = ®) contrary to what
is expected from standard flow theory (Nye, 1952). This
is explained by the shape of the velocity profile in a
curving channel. The profiles in Figure 6 may be
approximated by high-order parabolas which are centered
at the stress center line and tilted by an angle B about
this point. The tilt B is approximately inversely propor-
tional to R.. The maximum point of the tilted parabola
(umax) will at first move outward toward a larger value
of R, with decreasing tilt (increasing R.); however, as
the tilt approaches zero (R, = «), the maximum point is
no longer at the apex of the parabola; rather it is on the
limb of the parabola facing the inside of the bend. This
point of maximum velocity then tends to the channel
center line, as already discussed. The value of p, for
D/R, = 001 and n = 3 shows an example of this
changmg trend. If the parabola is strongly peaked, as for
n = 1, the maximum will not move outward of the
center line.

FLOW AND STRESS DISTRIBUTION IN SYMMETRIC
CURVING CHANNELS

The above example gives great insight into the effects
of a curving channel on the flow of a glacier. The simple
flow geometry, with marginal but no basal drag, is,
however, seldom realized in Nature. For this reason, an
effort was made to examine the flow of ice in more
realistic curving channels, with drag along the entire
"wetted" perimeter. An axisymmetric out-of-plane element
was added to a finite-element code developed by one of
the authors for modeling non-linear visco-elastic deformation
(Echelmeyer, unpublished), based on an algorithm by
Hughes and Taylor (1978). This quasi-three-dimensional
element is termed out-of-plane because flow out of the
plane comprising the mesh of the two-dimensional elements
is considered, along with the usual in-plane flow. Flow
through the cross-section of a curving channel can be
modeled, but no gradients are allowed in the out-of-plane
direction, here taken to be the B6-direction (i.e. along the
length of channel). Thus, the finite-element code is capable
of solving the system composed of Equations (1) and (2)
for u = (u,,ug,u,) and all six components of T with the
only restriction being that 8/88 = 0 in Equations (1) and
(2). The in-plane flow (u,,u,) allows for motion driven by
an upper ice surface which is not horizontal in the radial
(transverse) direction. Further description of this finite-
element scheme will be found in a forthcoming article
(paper in preparation by K. Echelmeyer).

Finite-element solutions were compared with the
analytical results obtained above for the simple curving
channel geometry (Figs 5 and 6) and with analytical results
for the flow of a power-law fluid down an annular conduit
and between two rotating co-axial cylinders (Echelmeyer,
unpublished). The agreement was excellent in all cases
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0.09 0.01 =0
—0.04 0.00 0.00
0.18 0.12 0.00
0.99 1.00 1.00
—0.04 0.00 0.00
—0.02 0.00 0.00
1.00 1.00 1.00

where a sufficiently dense element mesh was used and when
the time step was kept small relative to the Maxwell time
for the ice.

In all models discussed below a power-law-type con-
stitutive relation and a boundary condition of no sliding
along the ice—channel interface was used. A variation in
surface slope governed by Equation (5) was employed.

CURVING SEMI-CIRCULAR CHANNEL
The symmetry of the stress and velocity fields within a
straight semi-circular channel is broken by the introduction

of channel curvature, as can be seen in the examples shown
in Figures 2 and 7. In a straight channel, contours of shear

N/

D/R =0.46

Up 2

W NS

_ M/ =

n=3

Fig. 7. Contours of velocity and shear-stress magnitude in a
semi-circular  channel with different curvatures and
different stress exponents, from finite-element analysis.
Contour intervals are not constant from figure to figure.
Diameter of channel is 12 units in Figures 7-10.

stress form concentric semi-circles about the center of
the channel, increasing in magnitude outward. Down the
central plane and transversely across the surface, the com-
ponents of shear stress vary linearly. As shown in Figure 7,
these patterns change significantly when curvature is intro-
duced. The contours of shear-stress magnitude T (where
1% = 125 + Tig) indicate a substantial shift toward the in-
side of the bend (left-hand side), which increases with
curvature. The highest shear stress and the steepest gradients
occur on the inside, and the stress center line (T = 0) is
displaced inward of the geometric center line. For a center-
line radius of curvature approximately equal to the diameter
of the channel (R,/R, = 3), the stress center line is moved
half-way toward the inner margin.

The shear stress T, across the surface of the channel
(normalized by tpga.D, where D is the diameter of the
channel) is shown in Figure 8b for n = 3. The shift in the
stress center line (where T,g = 0) is apparent, as is the
increase in stress at the inside of the bend and a decrease
outward of center; this is related to the variation in surface
slope across the channel by Equation (5). The stress varia-
tion with radial coordinate is non-linear. At depth along the
channel center line there is very pronounced non-linear
variation in shear-stress magnitude 7, as shown in Figure
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Fig. 8. Effects of increasing channel curvature for

semi-circular channel, with n = 3. (a) Surface-velocity
profiles and position of velocity maximum, R... (b}
Non-dimensionalized shear stress T,.g across the surface.
(c¢) Velocity profiles down channel center line. (d)
Shear-stress magnilude at depth along channel center line.
D/R, = 0 corresponds to a straight channel.

8d, whereas there is a linear variation with depth in a
straight channel, with T = 0 at the surface. Proper account
of this depth variation must be made in any analysis of
bore-hole deformation in a channel with longitudinal curva-
ture, for the usual assumptions of constant shape factor and
zero surface value will not hold at the channel center line;
the failure of these assumptions will strongly influence the
effective viscosity values determined from such an experi-
ment. A multiple bore-hole experiment, such as that of
Raymond (1973), can take into account the non-linear depth
variation of the effective strain-rate é (related to T), but
cannot readily be free of the assumption that Tg, varies
linearly with depth.

The wvariation in stress with exponent » is shown in
Figure 9b and d. The variation is not large, but it is sig-
nificant in that this (and also Figure 7) is the first
indication that within a semi-circular channel the stress
distribution can wvary with »n, which complicates the
interpretation of bore-hole-tilt experiments. As in the
rectangular channels discussed above, the stress center line is
shifted inward with increasing n.

The velocity profile in Figure 2 clearly shows the
asymmetric nature of curving channel flow. The variation of
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Fig. 9. Effects of a different stress exponent n on velocity
and stress in a curving semi-circular channel of fixed
curvature with D/R, = 0.75. (a) Surface-velocity profiles
for different n with position of maximum velocity, R (b
Shear stress across surface. (c) Velocity with depth. (d)
Shear-stress magnitude at depth along channel center line.
Velocity is normalized by maximum value.

flow velocity ug within the channel cross-section for several
different values of curvature is shown in Figure 7. As with
the stress, the velocity field becomes increasingly asymmetric
with increasing channel curvature. Surface-velocity profiles
for different radii of curvature at a fixed stress exponent
(Figures 8a and 10a, b) depict several important features of
curving channel flow. The profiles show a displacement of
the maximum velocity from the center of the channel, steep
gradients near the inside of the bend, and gentler gradients
toward the outside. And, as found for the rectangular
channels, the position of the velocity maximum, R,, can be
inside or outside of the geometric center line depending on
the value of R,. For fixed n, as the curvature decreases the
position of the maximum velocity at first moves outward
across the channel, but for large R, (»=) it moves to the
geometric center line. And, as was also found for the
rectangular channel above, an increase in the stress exponent
at a fixed radius of curvature causes the velocity maximum
to be shifted toward the outside of the bend (Fig. 9a).

The magnitude of the maximum velocity in a curving
semi-circular channel is very nearly equal to the maximum
in a straight channel, within the error of the finite-element
models, if the slope of the straight channel is taken to be
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Fig. 10. Profiles of surface velocity in a semi-circular
channel with (a) n =1, and (b) n = 5. Position of
maximum velocity (R,) is shown.

equal to the mean value of the surface slope across the
curving channel, as obtained from Equation (5)
[x = «(Ry/D)In(l + D/R,) where D = channel width].
Thus, although the distribution of stress and velocity is
changed markedly by the introduction of channel curvature,
the overall magnitude of the flow is not. (If proper account
is taken of the surface-slope variation, this result can be
shown to hold for parabolic cross-sections as well.)

Velocity profiles with depth along the channel center
line again show a departure from that obtained for a
straight channel, as can be seen in Figure 8¢ for n = 3 and
different amounts of curvature and Figure 9c¢ for different
stress exponents at fixed curvature. The velocity pattern
with depth shows a lower-order parabolic shape with
increase in curvature, which, if the channel were assumed
to be straight, would mimic an effective stress exponent
that is lower than the actual n of the ice.

PARABOLIC CHANNELS

Nye (1965) and Echelmeyer (unpublished) have shown
that there is a non-linear shear-stress distribution with
depth along the center line and across the surface of
straight parabolic channels. In addition, Echelmeyer (unpub-
lished, paper in preparation) has shown that these stresses
depend upon the flow law through the stress exponent n.
This flow-law dependence of the stresses carries over to
channels of realistic, non-symmetric geometry as well.

Channel curvature will tend to introduce asymmetries
into these non-linear stress fields, adding another degree of
complexity to valley-glacier flow. Figures 11 and 12 show
these effects for parabolic channels with various values of
curvature and stress exponent. The aspect ratio W (ratio of
half-width to depth) of the parabolic channel modeled in
these figures was taken to be W = 1.6, which is a typical
value for valley glaciers (Blue Glacier in particular). Other
values of W show similar features in their flow and stress
fields.

At the channel center line, the shear-stress magnitude
(Fig. 1lc and d) shows a non-linear variation with depth
and a non-zero surface value, similar to that found in the
curving semi-circular channel. The non-zero surface value is
again due to the shift in the stress center line from the
center-line of the channel. The variation in the magnitude
of T with increase in n from 1 to 5 is on the order of
5—10%.

As with straight parabolic channels, there exists a zone
of low shear near the margins. The margin-parallel shear
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Fig. 11. Surface shear stress T,g and shear-stress
magnitude T down channel center line in a cuwrving
parabolic channel, W = 1.6. (a) and (d) show effects of
decreasing channel curvature with n = 3. (b) and (c) show
results for different stress exponents n for a fixed
curvature (D/Rc = 0.5).

stress T,y at the surface of the channel is shown in Figure
Ila and b. The magnitude and position of the peaks in
shear stress vary with curvature and stress exponent. The
peak near the inside of the bend moves toward the inside
for increasing n and curvature; the peak in |T,g| near the
outside moves inward with increasing curvature but outward
with increasing n.

The position of the stress center line is shifted toward
the inside of the bend for all curvatures, stress exponents,
and aspect ratios W, as indicated by the negative values of
py compiled in Figure 13. This is due, as with the
rectangular and semi-circular channels already discussed, to
the —ug/r term in the relation for é., Equation (2d).

As a result of the asymmetries introduced into the
stress field by channel curvature, the surface velocity shows
a shift of inflection points toward the inside of the bend,
with steeper gradients near the inside margin and shallower
ones on the outside (Fig. 12). As in semi-circular channels,
the position of the maximum velocity can be located inside
or outside of the channel center line, depending on the
curvature, n, and W. However, in realistic channels (W =
1-3) and with »n = 3—5, only those extremely sharp bends
for which D/R., 2 1 have the velocity maximum on the
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Fig. 12. Surface-velocity profiles for a curving parabolic
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(b) Profiles for different radii of curvature with n = 3.

non

T T T T
0.2 O Semicircle \ A n=1
\ AW=1.6 ) + n=3

Ow=4.0
%

+.
vw=8.0 | * n
A e i |

—0.1F - I & ‘\ i
(b)
[a] ’ \ I D\ ! 1\\
b . -

0 0.5 0 0 0.5 1.0 5
D/R¢ D/Re
0 T T T T
A
-0.1f ih\ T R =
‘A
-0.2 N TN \ |
0 \\ i \‘ i
-0.41- ;2 W &1 >
~05(¢) \\ () \
- 1 1 1 1
&85 0.5 .00 0 0.5

D/Rg D/Rc

Fig. 13. Position of the velocity maximum, p,, and the stress
center line, py, as a function of curvature. D is the
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(a) p, for different channel shapes with n = 3. W is the
ratio of half width to depth for parabolic channels.

(b) Py for parabolic channel (W = 1.6) with different
stress exponents. \
(c) Stress center line for different channel shapes with
n = 3.

(d) pg for parabolic channel (W = 1.6) with different
Sstress exponems.
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inside of the channel center line. On the other hand, the
velocity maximum for n = 1 is always toward the inside
margin. The velocity profiles (Fig. 12) are very similar in
form to those for the rectangular and semi-circular channels
already discussed (Figs 2, 6, and 8-10), again showing that
curvature will have a marked influence on flow patterns,
independent of cross-sectional shape.

As a representative example of curvature-induced flow
features, take the cross-sectional shape of Blue Glacier to
be approximated by a parabola of W = 1.6, with a mean
depth of 250m and width of 800m. The radius of
curvature is approximately 1000 m, so D/Rc = 0.8. Figure
13 shows that for n = 3-5, the stress center line should be
shifted 120—140 m inward of the channel center line, while
the velocity maximum should be shifted up to 40 m outward
from the center. These shifts agree with those actually
observed, although the details of the velocity field do not.

A REALISTIC EXAMPLE: BLUE GLACIER

The flow of Blue Glacier down its curving channel is
strongly influenced by this curvature, as has been shown by
Meier and others (1974) and Echelmeyer (unpublished).
Qualitatively, the results of the previous sections explain the
distribution of the shear component of the rate of deform-
ation, €é,g, at the surface (Meier and others, 1974), the
crevasse patterns resulting from the distorted stress field,
and asymmetries in the surface-velocity profile. However,
the cross-sectional shape of the channel is not truly
parabolic or semi-circular, and the channel curvature varies
along the glacier. In order to describe this flow in
quantitative detail, finite-element models were made of the
stress and flow in actual cross-sections as determined by
radio echo-sounding (Echelmeyer, unpublished). Examples of
this modeling are discussed here, with special emphasis on
the effects of channel curvature in non-symmetric channels.

In the models that follow, the surface-slope variation
determined by Equation (5) and shown in Figure 3 is used.
There is no sliding at the bed. This condition of no sliding
agrees with the results of Engelhardt and others (1978),

Umax=47m51

(a) T e

(b)

— = Straight
—— Re=1400

Fig. 14. (a) Observed surface velocity at profile B. (b)
Finite-element  representation of channel cross-section.
Horizontal scale equal to vertical scale. (c) Calculated
surface velocity for straight and curving channel. Velocity
is normalized to the maximum velocity within the channel,

U ax

289


https://doi.org/10.3189/S0022143000008856

Journal of Glaciology

Kamb and Echelmeyer (1986), and Echelmeyer
(unpublished), which show that, for much of the glacier,
basal sliding accounts for only 0-10% of the total motion.
Various stress exponents and radii of curvature were tested
for comparison with the observed velocity profiles as
measured from August 1977 to August 1978.

Three different profiles are discussed — two (D, F)
which are representative of the strongly curved section of
the channel (see Fig. 1), and the other (B) across the
straighter section of the lower glacier. The finite-element
mesh representing the cross-sections, together with the
observed profiles of surface velocity, are shown in Figures
14, 15, and I6.

Umax = 54 I'I"lé..|
(a) =

—T

—— Re=1000 \}

Fig. 15. (a) Observed surface velocity at profile D. (b)
Finite-element representation of channel cross-section at D.
(c¢) Calculated surface velocity for straight and curving
channel.

The observed velocity profile at B is nearly symmetric
about the channel center line, with a maximum just east of
center (right side of Figure 14). The velocity profile
obtained from the finite-element model for flow in a
straight channel with the cross-sectional shape shown in
Figure 14b is also nearly symmetric, with only a slight shift
in the maximum toward the channel deepening on the east.
When a small amount of curvature (R, = 1400 m, D/R. =
0.43) is introduced, the calculated velocity profile becomes
somewhat more asymmetric (Fig. 14c) and the shape departs
from that observed. Very little channel curvature at B is
apparent in Figure 1 and, thus, the close agreement between
a straight-channel model and the observed flow is reason-
able. The position of the calculated stress center line agrees
well with that inferred from the distribution of é,9 found
by Meier and others (1974) at this location (profile "a" of
these authors). The splaying crevasse pattern in this region
of the glacier is related to the compression in the ablation
zone (Nye, 1952), and is generally symmetric about the
geometric center line, as expected from the calculated
position of the stress center line.

The flow pattern at profile D (Fig. 15) shows a strong
influence of curvature, especially when the channel
geometry is considered. The velocity maximum lies 80 m
east of the center line (toward the outside of the bend),
while the thickest ice is about 50 m west of the center line.
With a radius of curvature of 1000 m (D/R. = 0.7) and n =
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Fig. 16. (a) Observed surface velocity at profile F. (b)
Finite-element representation of channel cross-section at F.
(c) Calculated surface velocity for straight and curving
channel. (d) and (e) Contours of effective shear stress in
channel at ¥ for straight (d) and curving (e) channel
(n = 3).

3—4, the modeled flow agrees with that observed. The
stress center line is shifted approximately 120 m to the west,
or more than one-third of the distance to the inner margin.
This agrees well with the observed crevasse pattern (Fig. 1).

The cross-sectional channel profile at F is the most
asymmetric of the profiles examined in Blue Glacier. The
deepest point lies 100 m west of the channel center line.
Surface velocity, on the other hand, shows a maximum at
nearly the same distance to the east of center. The flow
model for a straight channel of the observed cross-sectional
shape shows a maximum velocity west of center, toward the
thicker ice (dashed curve in Figure 16c). If channel curva-
ture with radius equal to 1000m (D/R, = 0.75) is
introduced, the shape of the calculated velocity profile and
the position of the maximum velocity fit the observations
quite well, with n = 3. The shear-stress profile is shifted
toward the inside of the bend, with R, located 160 m to
the west of center. This is very close to the position of the
point where é,5 = 0 as observed by Meier and others
(1974) and as indicated by the geometry of the crevasse
pattern (Fig. 1).

Good agreement of model results with the observed
flow and crevasse pattern was found at the other profiles
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indicated in Figure 1, except at the western end of profile
E, where there is considerable marginal sliding; since the
model omits this sliding, the discrepancy is not unexpected.
The radius of channel curvature that gives the best agree-
ment between model and observed profiles varies along the
length of the glacier in the way expected from the longi-
tudinal channel curvature indicated by Figure 1. A stress
exponent of about 3.5 gives the best overall agreement.

CONCLUSIONS

Analytical and numerical models show that longitudinal
curvature of the channel in which a glacier flows introduces
several interesting and characteristic features into the stress
and velocity fields. These features were found to be nearly
independent of channel cross-sectional shape, at least in
general form, and they can be expected to arise whenever
there is marginal drag, although the prominence of the
features is affected by the amount of slip at the bed.

Curvature-induced effects include the following:

1. The locus of points along the ice surface at which the
margin-parallel shear stress vanishes is shifted from the
geometric center line of the channel (where it would be
in a straight, symmetric channel) toward the inside of the
bend. The tighter the bend, the more pronounced the
shift. This shift of the stress center line gives rise to two
corollary features of curving flow. (i) The geometry of
the crevasse pattern is changed from that in straight,
symmetric channels., As shown in Figure 17, crevasses
opening in response to the tensile stresses associated with
marginal shear and propagating inward toward the shifted
stress center line will be longer on the outside of the
bend than on the inside. If there is longitudinal
extension, the transverse crevassing in the central region
of the glacier will be oriented normal to the stream lines
at a position shifted toward the inside of the bend from
the geometric center line. The crevasse pattern of Blue
Glacier (Fig. 1) shows these features. (ii) Along the
geometric center line, where bore holes are most often
drilled, the shear-stress magnitude (or effective stress T)
will not vanish at the surface, since T,g is non-zero
there. This, coupled with a non-linear depth dependence

(a)

Stress

5 - ———

o? Centerline

Fig. 17. Crevasse patterns in (a) straight channel and (b)
curving channel. When longitudinal extension is large
enough, transverse crevasses form perpendicular to the
stress center line.
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of the stress, will make the analysis of bore-hole
deformation experiments in terms of a flow relation
between stress and deformation rate difficult to perform
on curving glaciers.

2. The distribution of stress is dependent on the amount of
channel curvature. The resulting dependence of the stress
field on the exponent n in the power-law constitutive
relation is noteworthy. This dependence was found by
Echelmeyer (unpublished) for straight parabolic channels;
it is further enhanced by channel curvature. The stress
variation can be on the order of 10—15% for variation of
n over a reasonable range of wvalues. This affects the
difficulties in interpretation of bore-hole-tilt experiments
indicated under 1(ii) above.

3. The profile of flow velocity across the ice surface in a
curving symmetric channel is not symmetric. For n 2 3
it has the general shape of a higher-order parabola tilted
toward the inside of the bend, with a steep gradient
Bug/0r near the inside margin of the channel and a
gentler gradual gradient toward the outside margin. The
stronger the curvature, the more pronounced the tilting,
Velocity profiles on Blue Glacier (Figs 14-16) clearly
show this feature. As a result of the inward tilting of
the profile, the velocity maximum tends to be displaced
from the channel center line toward the outside of the
bend, and the maximum is sharper than the maximum of
the untilted higher-order parabola for a straight channel.
For low values of n (£2), on the other hand, the tilting
is less clearly evident and the velocity maximum is dis-
placed toward the inside of the bend. For typical valley-
glacier cross-sections in which the width is about three
times the depth, the effects of channel curvature appear
generally to have a stronger influence on the position of
the velocity maximum than do the details of the cross-
sectional shape, such as the position of the deepest point.

4. The maximum velocity in a uniformly curving channel is
nearly the same as that found in a straight channel of
the same cross-section, if the mean effective body force
in the curving channel is the same as that in the straight
channel.

The foregoing features of curving flow can be well
understood in terms of three underlying effects: (i) the
—ug/r term in the equation for ¢,g in cylindrical polar co-
ordinates; (ii) the 2T,.g/r term in the equation for stress
equilibrium in the 8 direction; (iii) the inverse variation of
surface slope with radial distance r from the center of
curvature for a glacier flowing around a bend of uniform
curvature, with constant channel cross-section, It should be
understood that the rate-of-deformation and stress-
distribution effects are not due to the polar coordinate-
system geometry per se, because the deformation rates and
the conditions of stress equilibrium are independent of the
coordinate system in which they are calculated. Rather, they
arise because in uniformly curving flow within a constant
cross-section channel the horizontal flow velocity is directed
everywhere in the ©-direction of the polar coordinate
system.
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