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CONTRACTIVE REPRESENTATION THEORY FOR 
THE UNITARY GROUP OF C(X, M2) 

ALAN L. T. PATERSON 

1. Introduction. One motivation for studying representation theory for 
the unitary group G = £/(2t) of a unital C*-algebra 21 arises from 
Theoretical Physics. (In the latter connection, Segal [9] and Arveson [1] 
have developed a representation theory for G. Their approach is in a 
different direction from ours.) Another motivation for studying the 
representation theory of G arises out of the desire to unify the theories of 
amenable von Neumann algebras and amenable locally compact groups. 

A serious problem for such a representation theory is the absence of 
Haar measure on G in general. 

In [7], the author introduced the class Rep^ G of contractive unitary 
representations of G, the strong metric condition involved compensating 
for the lack of Haar measure. A unitary representation 77 of G on a Hilbert 
space $ is said to be contractive if 

\\<TT(U) - TT(V) H ^ d(u, v)( = \\u - v|| ) for all u, v e G 

(or equivalently, \\TT(U) — 1|| ^ d(u, 1) for all u e G). If <£ is a 
*-representation of % on a Hilbert space, then 

4>\c e Re P j G. 

However, in general, there are many elements of Rep^ G not arising from 
such a restriction. 

An important good property of Rep^ G is that its elements can be 
"disintegrated" into irreducible contractive representations, so that the 
study of Repj G reduces to that of Gd, the set of equivalence classes of 
irreducible elements in Rep^ G. A subset of Gd is G%, the set of restric­
tions to G of the elements of §t. It is obvious that 

4 D 4 u {i} u (Gar, 

where — is the conjugation operation. 
A natural question is that of determining Gd for various classes of 

C*-algebras. In [7], this question is answered for two such classes: the 
class of commutative C*-algebras and the class of AW*-algebras (which, of 
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CONTRACTIVE REPRESENTATION THEORY 613 

course, contains the class of von Neumann algebras). The answers in the 
two cases are as follows. 

THEOREM A. Let X be a compact, Hausdorff space and 91 = C(X). Let Sf 
be the family of open and closed subsets of X and S^(X) be the set of 
probability measures \x on X such that fx^) = {0, 1}. Then 

(*) Gd = (S^X) U {0} U -S^iX)) X HX(X, Z)A . 

The equality (*) is interpreted as follows. We can express G as a direct 
product Ge X K, where Ge is the identity component of G. Clearly, K can 
be identified with 

G/Ge = H](X, Z), 

and if 

/x G S#(X) U {0} U -SAX) and y e HX(X, Z)A , 
A 

we obtain an element a of Gd by setting: 

a^((eis,k)) = e"*z)y(k) 

(g G C(X, R), k G K). The theorem asserts that the map (JU,, y) —» a is a 
bijection onto Gd. Note that 

( G ^ = (S^(J0 U {0} U S^X)\ 
In this case, G% U {1} U (G^)~ is identified with (X U {0} U - Z ) 

X f 1 ), where if x G X x is identified with the point mass Sv and — x with 
V -1 A A A A 

— Sx. Clearly, Gd is much larger than G% U {1} U (G^)~ in general. 

THEOREM B. Let % be an AW*-algebra. Then 

4 = êa u {i} u ( 4 r . 
This result shows that, in the AW*-case, contractive representation 

theory for G is equivalent to representation theory for 21. 
With Theorem A in mind, a natural next step is to investigate Gd in 

the case where 91 = C(X, M2\ the algebra of 2 X 2 matrices with entries 
in C(X). In this case, 

G = C(X9 1/(2) ). 

The determination of Gd seems to be substantially more difficult than the 
corrresponding determination of Theorem A. The difficulties come from 
two directions: the first is Lie theoretic and the second is algebraic 
topological. 

The theorem of this paper, which we now state, determines Gd subject 
to certain strong topological conditions on X. 

THEOREM. Let X be a connected, compact, CW-complex of dimension 
= 2 and with H (X, Z) = {0}. Then Gd is canonically isomorphic to 

X U {1} U -X. 
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The above isomorphism is interpreted as follows. Each x G X is 
identified with the representation/—>/(x) of G, while — x is identified 
with the conjugate representation / —» f(x). Of course, 1 is the trivial 
representation. 

The topological conditions of the theorem essentially reduce the proof 
to the determination of the set of norm-decreasing, irreducible representa­
tions of the Banach-Lie algebra C(X, su(2) ). This set (È>d is determined 
in Section 2. 

The theorem above was discussed in a lecture given by the author at the 
recent Operator algebras conference held at Saskatchewan, and the au­
thor is indebted to William Arveson and David Johnson for helpful 
comments. 

The author is also indebted to members of the topology seminar at 
Aberdeen, in particular to M. C. Crabb, for helping to straighten out the 
algebraic topology used in the paper. 

Most of the work on this paper was done during a visit to the University 
of British Columbia at the invitation of Edmond Granirer. The author 
wishes to thank Professor Granirer for his many kindnesses, and to 
dedicate this paper to him. 

2. Determination of C(X, su(2) ) d . Let G be a Banach-Lie group with 
metric d. The set of irreducible, unitary, contractive representations of G 
on a Hilbert space is denoted by Gd. The class of all contractive, unitary 
representations of G on a Hilbert space is denoted by Rep^ G. The Hilbert 
space of a representation TT of G is often denoted by >̂77.. 

Associated with G is its Banach-Lie algebra @. (A reference for facts 
about Banach-Lie groups and Banach-Lie algebras is [2].) In this paper, G 
will be a closed subgroup of U(%) for some C*-algebra 31, and the metric d 
on G will be that inherited from the norm of %. The Banach-Lie algebra © 
of G can then be identified with the obvious Lie subalgebra of the algebra 
Sk(91) of skew hermitian elements of %\ thus k e © if and only if el G G 
for all t G R. 

The class of all norm-decreasing, Lie homomorphisms a from © into Sk 
§ ( = Sk B(&) ), where ^ is a Hilbert space, is denoted by Rep^ ©. The 
set of equivalence classes of irreducible elements of Rep^ © is denoted 
by ©j. If 77 G Rep^ G, then it is easy to see that its differential dn at e 
belongs to Rep^ ©. If G is connected and IT Œ Gd, then clearly dir <= © .̂ 
The trivial representations of G and © are denoted by 1 and 0 respectively. 
Clearly, 1 G Gd and 0 e %d. 

Let I b e a compact, Hausdorff space. The groups G that we are 
interested in here are SU(2) and U(2) (where % = M2) and C(X, SU(2) ) 
and C(X, U(2) ) (where 9t = C(X, M2) ). In these cases, © is su(2), u(2\ 
C(X, su(2) ) and C(X, u(2) ) respectively. 
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Our aim in this section is to determine what C(X, su(2) )j is. We re­
quire the following simple proposition involving SU(2) and su(2). Let 

7T2:SU(2) -> U(M2) and a2:su(2) -> Sk M2 

be the identity representations. Of course, d7r2 = a2. 

PROPOSITION 1. (i) If a:su(2) —» Sk $ belongs to Rep^ sw(2), r/ie« f/iere 
ex/sto # norm-continuous homomorphism 

TT:SU(2)-^ U(B(<Q)) 

such that dfa = a. 

(ii) su(2fd = {0, a2) and SU(2fd = {1, TT2}. 
(iii) If a ^ Repj si/(2), //ze/t //zere ex/ste 7r G Rep^S[/(2) swc/z //za/1 

JTT = a. 

Proof (i) (This is improved in (iii) below.) It is routine that there exists a 
norm-continuous local homomorphism TT' on a neighbourhood of e in 
SU(2) such that dm' — a. Now use the simple-connectedness of SU(2) to 
extend TT' to the desired homomorphism TT. 

(ii) Obviously, {0, a2} c su(2)d. Conversely, let a G SW(2)^, and $ be 
the Hilbert space of a. By (i), we can find a unitary representation 77 of 
SU(2) on § with J77 = a. Clearly, 77 is irreducible, and since SU(2) is 
compact, -g is finite-dimensional. So 

a G {«2/+i: / = 0, / or 2/ belongs to Z}, 

the standard enumeration of sw(2)A (e.g. [12], p. 92). Let {Z b Z2, Z3} be 
the standard basis for su(2): so 

< • > * • - M * - Ï [ Î - ; ] • * • -& -?]• 
Of course, [Z h Z2] = Z3, [Z2, Z3] = Zj and [Z3, Z J = Z2. A 
highest-weight norm one vector £7 for a7 satisfies the equality: 

/« /(Z3)f / = /£7. 

If a = a/9 then 

/ = WaiZtâW ^ \\a(Z3) || ^ HZ3II = 1 

so that / ë 1, i.e., / G I 0, - J. So a G {0, a2}. So ^ (2 )^ = {0, a2}, 

and the corresponding result for SU(2)d immediately follows. 
(iii) Let a G Rep^ sw(2) and IT be as in (i). Then 77 is a direct sum of 

irreducible representations 775 of SU(2). If a is decomposed into the 
corresponding direct sum of representations ag, then a8 G SW(2)J, and 
since dm§ = aô, we have, by (ii), that 
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n e (0, *2} = suvfd. 
Hence 77 e Rep^ G. 

Before proceeding with determining C(X, su(2) )^, it will be helpful, 
for motivation, to consider the corresponding associative version for 
C(X M2)

A. The straight-forward procedure, due to Naimark and Fell 
([6], p. 337 and [4], Theorem 1.1), can be summarised as follows. Let 
91 = C(X, M2) and O e 91. Let E, F be disjoint, compact subsets of X 
and 91/;, 91F be the ideals of functions/ e 91 which vanish off Zs and F 
respectively. Now 0(91^) and 0(9IF) are ideals in the irreducible algebra 
0(91), and 

0(9IF)0(9fF) = {0}; 

so one or other of 0(9fF), 0(9tF) is {0}. It then follows that the set 

{x e Ar:0(9l£) 7̂  {0} for every compact neighbourhood £ of x} 
A 

is a singleton {x0}, and that O is of the form (x0, 77) where IT <E M2 and 

(*o>")(/) = A * ( / ( * O ) ) -
Thus Û = X X M2. 

Adapting this argument with 9Ï replaced by & = C(X, su(2) ), we 
obtain, in an obvious notation, that [QbE, 0>>F] = {0} whenever E and F are 
disjoint, compact subsets of X. Unfortunately, for a G © ,̂ we then have 

[a(%E\ a(%F) ] = {0} 

rather than a(©£)a(©F) = {0}, i.e., the elements of a(®E) are only known 
to commute with those of a((&F), and the above argument breaks down. 

To overcome this difficulty, we will extend © to a larger Lie algebra 
B(X, su(2) ) of ^w(2)-valued functions on X. (This part of the argument is 
reminiscent of a proof of the spectral theorem.) Using characteristic 
functions, we can produce contractive representations of su(2) associated 
with a. Using Proposition 1 and a tensor product argument, we will then 
show that we do in fact have 

a(%E)a(%F) = {0}, 

and the associative argument can then be pushed through. 
Let B(X) be the algebra of bounded, real-valued functions on X which 

are pointwise limits of sequences in C(X). Thus f G B(X) if and only if 
there exists a sequence {fn } in C(X) such that fn —» / pointwise on X. 
Clearly, we can always suppose that 

H/,11 =i H/H for all n, 

and that if / ^ 0, then 0 ^ fn for all n. Suppose t h a t / belongs to the 
norm closure of B(X). Then we can write 

0 0 

/ = 2g„ 
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where gn e B(X) and 

oo 

2 HgJI < CXD, 

and approximating the gn by continuous functions then gives that 
/ e B(X). So 2?(X) is a commutative real C*-algebra. 

Let 

<8(X) = {E Œ X:XE e 5 W }. 

Clearly ^?(JQ is an algebra of sets, and contains the family of compact, 
G5-subsets of X. 

We define B{X, su(2) ) to be the set of 2 X 2 matrix-valued functions of 
the form 

IV, ft-Zjl 
[ifi+A -'/. J 

(AJ2J3 e B(X)). 

(Note that C(X, su(2) ) can be defined in the same way: recall that 

Clearly, B(X, su(2) ) is a real Banach-Lie algebra under the sup norm, 
containing C(X, su(2) ) as a closed subalgebra. It is easy to see that 
B(X, su(2) ) is the space of bounded functions F.X —> su(2), where F is the 
pointwise limit of a sequence of functions in C(X, su(2) ). Since B(X) is a 
commutative C*-algebra, B(X, su(2) ) is canonically identified with 

B(X) ® su (2) 

(injective tensor product norm). Of course, since su(2) is finite-
dimensional, B(X) ® su{2) is, as a space, an algebraic tensor product (no 
completion necessary). I f / e B(X) and Z e su(2) t h e n / ® Z is the 
function given by: 

x ~>f(x)Z (x e X). 

We sometimes writefZ in place o f / ® Z. Let 

© - C(JST, J K ( 2 ) ). 

PROPOSITION 2. L ^ a <E Rep^ © a« J Q be the Hilbert space of a. Then 
there exists a norm continuous representation 

P:B(X, su(2) ) -» Sk £ 

swc/z //z^tf: 

(i) 0,@ = a; 
( i i) | | j8(/0Z)|| ^ | | /0Z| | (= II/IIIIZH); 
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(iii) / / {fn} is a bounded sequence in B(X, su(2) ), / e B(X, su(2) ) and 
fn —>/pointwise on X, then P(fn) —> /?(/) in the weak operator topology. 

Proof. Let M(X) be the space of bounded, complex, regular Borel 
measures on X. For £, 17 <= $ and Z <= .SM(2) there exists, by the Riesz 
representation theorem, a unique measure ^ e M(X) such that 

(a(* ® Z)£, 7,) = / 4 ^ (4, G C(X) ). 

The map 

(& T?) -> lif^ 

is sesquilinear. For e a c h / <= i?(X), define /?(/&> Z) G Sk § by setting: 

(2) 0 6 ( / ® Z ) £ , T O = ffdvlr 

(Of course, every function in B(X) is Borel.) Clearly (ii) holds. 
The map ( / Z) —» /?(/ ® Z) is bilinear, and so extends to a 

norm-decreasing map, also denoted by /?, from the projective tensor 
product space B(X) ® su(2) into Sk $ . Since sw(2) is finite-dimensional, 
the projective and injective norms are equivalent on B(X) ® su(2). So fi is 
continuous on B(X, su(2) ). 

Le t / , a n d / b e as in (iii). Let {Z,, Z2, Z3} be as in (1); we can write 

/„= 2/Î0Z,, /= 2/'®z,. 

For each /, the sequence {fl
n} is bounded in #(X), and/^ ~^ / z pointwise 

on X The assertion of (iii) now follows using (2) and the dominated 
convergence theorem. 

The fact that ft is a Lie homomorphism follows from the corresponding 
fact for a together with (iii) and the separate continuity of multiplication 
in B($r>) for the weak operator topology. (We use here the fact that if 
g e B(X, su(2) ), then there exists a bounded sequence {fn} in C(X, 
su (2) ) converging to g pointwise.) 

As above, let © = C(X, su(2)). Clearly 0 e ê>d. Further, if x <= X, 
then the pair (JC, a2) G ®</> where we define 

(x, a 2 ) / = a 2 ( / (x) ). 
A 

Our next result shows that these account for the whole of %d. 

PROPOSITION 3. %d = (X X {a2} ) U {0}. 

Proof. Let a e ©^ — {0}. We must show that a e X X {a2}. Let $ be 
the Hilbert space of a and let fi be the extension to B(X, su(2) ) given in 
Proposition 2. 

Let E, F e ^ (X) with £ n F = 0. We first show: 

https://doi.org/10.4153/CJM-1987-029-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-029-0


CONTRACTIVE REPRESENTATION THEORY 619 

(3) P(XESU(2))/3(XFSU(2)) = {0}. 

To this end, let /5£, fiF G Rep^ su(2) be given by: 

&(Z) = p(xEz), pF(Z) = p(xFzy 

From Proposition 1, fiE is a direct sum of representation (il
E (i G / ) in 

su(2)A
d. Further, for each /, fil

E G (0, a2}. Let 

7 = { i e / : ^ = <*2} 

and §• be the space of fiE. Let 

£>£ = (Bjfy and ©0 = $£. 

Let P'E be the restriction of j$E to $ £ . Then PE is a direct sum of copies of 
<x2, j8£($0) = {0} and 0E = /3'E 0 0. Suppose that $E * {0} (i.e., fiE * 0). 
Now £>£ can be identified with a tensor product C 0 ®, and with this 
identification, /}£ = a2 0 1. Further, the commutant of fiE(su(2)) is 
1 ® B ( H ) ( c i . [8], p. 187). 

Now 

[X^«(2), XFSUQ) ] = {0} 

since XEXF = 0. Applying /}, we see that fiF(su(2) ) is contained in the 
commutant of fiE(su(2) ). It follows that both §E and $ 0 are fiF(su(2) ) 
invariant. Let yF be the restriction of fiF to $ £ . Since yF(sw(2) ) is 
contained in the commutant of PE(su(2) ), we can define an element 
SF G Repj 51/(2) on ® by setting yF = 1 0 SF. So 8F is a direct sum of 
representations in {0, a2}. Suppose that 8F ^ 0. Then at least one a2 

occurs in this direct sum, and we can find TJ G ®, ||TJ|| = 1 such that 

M z 3 > ? = ""?• 

Pick£ G C2, ||£|| = 1 such that 

<*2(Z3)£ = ht. 

Recalling that E n F = 0 and using Proposition 2, we have 

P(X £ Z 3 + XFZ 2 ) H = P ( X £ U F ® Z3) || =i HZ3II = l-. 

So 

^ â IIA(X£ + XF)Z3X€®ÎJ)II 
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â I ( (pE(z3) + pF(z3) )€ 0 T,, € ® T]) | 

= I(<*2(z3)£®Î, + ^ ® Mz3>i. €® i?)I 

= l. 

This is a contradiction. So either $)E = {0} or $ £ ^ {0} and yF = 0, and 
(3) immediately follows. 

Now suppose that E and F are, in addition, compact, G5-subsets of X. 
For 4> G £(X), let 

^ = 4>X£ e £ ( * ) and ^ ( X ) = {<f>E: <t> e £ ( * ) }. 

Let <t> G £(X), i// G 5 £ ( ^ ) and <o G £ F ( X ) . Let Z, T e <?w(2). We now 
claim: 

(4) PWZtf&Zi) = j8(^Z,)i8(^Z2), 

(5) PWZx)&{i*Z2) = 0. 

To prove this, let £, r/ G ,§ and i)f = ^(x^Z,)*?]. Let 

M = / ^ 

in the notation of the proof of Proposition 2. Let C be a compact, 
G5-subset of Y - X - £. By (3), with C = F9 we have /i(C) = 0. It follows 
that jujy = 0, and hence that /*(<> — <j>E) = 0. Thus 

G8(x£Z,Xi8(4>Z2) - £(<^Z2))£, i,) = 0, 

and so (4) is true in the case \p = XE- A similar argument, using compact 
G5-subsets of E, then establishes (4). The equality (5) follows from (4) by 
putting <j> = cô. 

Let 21 be the C*-subalgebra of B(§) generated by P(B(X, su(2) ) ), IE be 
the closed subalgebra of 21 generated by the set 

{B^Zy ^ G BE(X\ Z G su(2) } 

and IF be the corresponding subalgebra for F. From (4) and (5), both IE 

and IF are ideals in 31, and IEIF = {0}. Since a G ®d, 21 is irreducible on 
$ , and as in the associative version discussed earlier, either IE = {0} or 
IF = {0}. Continuing along the same lines as this version, use a partition 
of unity argument together with the facts that distinct points JC, y of X can 
be separated by disjoint, compact G5-neighbourhoods and that a ¥= 0 to 
obtain that there is exactly one point x0 G X such that 

a( {<|>c: <j> G C(X, ™(2) ) } ) * {0} 

for every compact Gô-neighbourhood C of x0. The continuity of a then 
gives that f o r / G C(X, su(l) ), a ( / ) depends only on the value of f(x0), 
and that there exists fi G su(2)A

d such that a = (JC0, /?) as required. Of 
course, ft = a2. 
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3. Proof of the main theorem. Let 

Q:C(X, SU(2) ) X C(X, T) -* G 

be given by: 

Ô ( / g ) ( * ) =f(x)g(x). 

Clearly, Q is a continuous homomorphism, and since X is connected, 

k e r g = {( / , 1 ) , ( - / , - 1 ) } . 

Let d' be the metric on C(X, SU(2) ) X C(X, T) given by: 

d\ (f, g), (*, *) ) = 11/ " *ll + \\g -xPW (= d(l <j>) + d(g, *) ). 

Then 

d(Q(f, g), Ctt», *) ) = ll/g - #11 ̂  II ( / - *)gll 
+ | | * ( g - * ) | | â < f ( ( / , g ) , (* ,*) ) , 

so that g is contractive. 
We now claim that Q is surjective. To this end, let 

h G C(X, U(2)) and h\x) = det h(x)(x e X). 

Clearly, A' e C(X, T) = C(X, Sl). 
We claim that /zr has a square root g e C(X, S1). To this end, let p:Sl —* 

S1 be given by/?(z) = z2. From [5], p. 156, there exists g e C(X, Sl) such 
that the diagram 

(6) 

h' 

commutes if and only if 

P*(*x(S])) 3 ( * 0 « W J Q ) . 

We assert that 

(h'u^x) ) = {0} 

so that the required square root g exists. To prove that 

{h%{mx{X)) = {0}, 

first note that since TTX (S ) = Z is abelian, the homomorphism (/z% is of 
the form a o r where 

a:Hx(X, Z) -> Z 
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is a homomorphism and r is the quotient map from TTX(X) onto its 
abelianisation HX(X, Z). The finitely-generated abelian group HX(X, Z) is 
of the form 

( g Z„) © Z'\ 

and since 

H](X, Z) = Wom(Hx(X, Z), Z) = {0}; 

we must have r = 0. So //^A", Z) is finite. But then a(Hx(X, Z) ) is a finite 
subgroup of Z and so is {0}. Hence 

(h%(7rx(X) ) = {0} 

as required. 
Let g be as in (6). Then g G C(X, T), g2 = h\ 

hi g <= C(X, SU(2) ) and 6(A/g, g) - A. 
A 

So Q is onto. Hence Gj can be regarded, using Q, as a subset of 

(C(*, SU(2) ) X C(*, T) )*, 

in the obvious way. Using Schur's lemma, the latter set is just 

C(X, SU(2) fd X C(X9 T)A
d. 

We know, from Theorem A, what C(X, T)d is. We now have to determine 
C(X SU(2) t , 

We claim that C(X, SU(2) ) is connected. For let 

/ e C(X, SU(2) ). 

Then / is homotopic to a cellular map f':X -* S3 and since 
dim X = 2 < 3 , / ' cannot be onto. It follows t h a t / ' is homotopic to a 
trivial map. So all functions in C(X, SU(2) ) are homotopic to one 
another. Hence C(X, SU(2) ) is connected. 

Let 77 e C(X, SU(2) ) d . Since C(X, SU(2) ) is connected, it follows that 
a = dir belongs to 

C(X, su(2) Td = (XX {a2} ) U {0} 

by Proposition 3. Hence, in an obvious notation, 

7T G (XX {772}) U { 1 } , 

and one readily checks that 

C(X,SU(2))A = (XX {772}) U {1}. 

It remains to determine which of the elements of 

C(X SU(2) )d X C(X, T)A
d 
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"pass through" Q to give elements of C(X, U(2) )j. 
Let 

p = (A, ft) G C(X9 SU(2) Yd X (C(X, T)2). 

Since 

ke rQ = {( / , l ) , ( - 7 , - 1 ) } , 

/? will define a representation of G if p( (I, 1) ) = /?(( — /, — 1) ), i.e., if 

(7) a( /)6(l) = a ( - / ) 6 ( - l ) . 

Suppose that a = (x, 772). Let 6 G S^(X) (in the notation of Theorem 
A). Since Xis connected, S^(X) = P(X), the set of probability measures 
on X. Then (7) becomes: 

j . ^ ( 0 ) = _ / . jHv)^ 

which is always true. Now let b = 0. Then (7) becomes: I = —I, which is 
always false. If b e — P(X) then, as above, (7) is always satisfied. 

Suppose, now, that a = 1. Then (7) becomes: 

eib(0) = jb{>n) 

and for b e P(JQ U {0} U - P ( X ) , this is satisfied only when b = 0. So 
the set of pairs (a, b) satisfying (7) is: 

(8) [ (X X {TT2} ) X (P(X) U - /> (* ) ) ] U { (1, 0) }. 

It remains to determine which of these pairs is contractive on G. 
Let a = (x, 772) and b e P(X). Suppose that b ¥- 8X. Then we can find 

y G X — {x} with y in the support of b. Since y ^ x, we can find compact 
neighbourhoods Ux of x and f/v of _y in X such that L^ n £/v = 0, and 
functions/, g e C(X, R) such that 

f(X~ Ux) = {0}, 0 = i / ^ 1,/(X) = l, and 

g(X ~ t/y) = {0}, 0 =i g ^ 1, g(j>) = 1. 

Let 

w = e^V'^ e C(JT, £7(2) ). 

Let w = (a, 6), a representation of C(X, SU(2) ) X C(X, T). Since the 

eigenvalues of Z-, are ±-i, we have 
3 2 

|k(w) - *</) || = ||e/<*> V ^ - I\\ 

= max{ |e '-(('/2)+^)) - i|, k«-<i/2)+H?)) _ ,| } 
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Since y is in the support of b, we have 0 < b(g) = 1/2, and it follows 
that 

|k(w) - 77(/)|| = |^(0'2>+A(s)> - 1| > M1/2>< - l|. 

But 

\\w - I\\ = max{sup \\ef{z)Z' - 7||, sup \elg{z) - 1| } 
z^Ux z&Uy 

= max{ k(1/2)/ - 1|, \e(V2)l - 1| } < |k(w) - TT(I) ||. 

So for 77 to be contractive, we must have b = 8X. Similarly for 77 to be 
contractive when a = (x, ir2), b e — P(X), we must have b = — 8X. 

Suppose, now, that (a, Z?) = (1, 0). Trivially, (a, b) is contractive on 

C(X, SU(2) ) X C(X, T)c. 

So the set of contractive (a, by s is: 

({•n2) X(XU ~X))U { ( 1 , 0 ) } . 

The theorem now follows. 
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