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On the equivalence of a countable disjoint class
of sets of positive measure and a weaker
condition than total ¢ —finiteness of measures

V. Ficker

Let (X,S) be a measurable space and S be a 0o-algebra of
subsé;s of X . A nonempty class M is said to be a class of
null sets if MC S , M is closed under countable unions of sets
and EN FE M whenever EE€M and FE€ S . It is possible to
show that such concepts as absolute continuity, singularity and
independence of measures can be studied simply by classes of null
sets and that similar results can be obtained under the condition
that each disjoint subclass of S - M is countable, denoted

(S -Mc . If (x,S,u) is a measure space then

M={Ee€S : uE) =0} is a class of null sets of S and S - M
the class of all sets of positive measure. We say that a measure

4 has the property o if there exists a sequence of totally

o

on S such that u(E) = Zw un(E) for

finite measures {un}
n=1

n=1
all E € S . This property of measures is weaker than total
O-finiteness of measures. The main result of the present paper is
as follows: Let (X,S,u) be a measure space and

M={Ee€S: ukE) =0} . Then (S - M)C if and only if u has
the property o .

1.

Throughout this paper S is a 0-algebra of sets and (X,S,u) 1is a

measure space. We shall say a measure | has the property o , if there
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o
exists a sequence of totally finite measures {un}n—l defined on S such

that W(E) = ).

=1 un(E) for all E €S . We note that each totally

0-finite measure Y has the property o . The purpose of this paper is to

prove the following Theorem.

THEOREM. Each class of disjoint sets of positive measure is countable
1f and only if w has the property o .

Next we give an example of a measure U which is not o-finite but
has the property o .

EXAMPLE. Let X bYe a nonempty set. Suppose S = {¢,X} , and
(X)) =+ , u@) =0 . Put un(X) =1, un(¢) =0 for mn=1,2,3,...,

then W(E) = z:=1 un(E) for all E € S

2.

Let (X,S) bve a measurable space. A nonempty class N of sets, where

N cS 1is called a class of null sets of S

(i) if E €N and FE€S, then ENF EN , and

o

(i1) if E €N, n=1,2,3,..., then U E €N .

n=1

We note, if (X,S,u) is a measure space, that the nonempty class M
of all those measurable sets E for which u(E) =0 is a class of null
sets of S and S - M 1is the class of all measurable sets E of positive
measure. The notation (S - M)C indicates that each subclass of disjoint
sets of S - M is countable. The symmetric difference of two sets E Aand

F 1is denoted by EF A F and is defined by
EAF=(E-F) U(F-E)=(ENF) VU(FNE) .

The following Theorem is due to T. Neubrunn [4].

THEOREM 1. Let (X,S) be a measurable space and N be a class of
null sets of S . Suppose (S - N)C and let P be a property of
measurable sets E , and be preserved under the formation of countable
wnionsg of disjoint sets. If at least ome set E in S - N has the
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property P , then there exists a maximal set M in S - N with the
property P such that the conditions E € S, E has the property P ,

EcM imply E e N .

Let (X,S,u) be a measure space. A set E in S is called an atom
if W(E) >0 , and if F € S such that F C E , then either we have
U(E-F) =0 or W(F) =0.

LEMMA 1. ret (X,S,u) be a measure space. If E, and E, are
atoms, then either U(E, A E;) =0 or w(E, NEy) =0 . (ef. [1, p. 308]1).

All other concepts are used as in [3].

3.

LEMMA 2. Let (X,S,u) be a measure space. If y has the property
o then (S - M)C .

Proof. Since u has the property o , there exists a sequence of

totally finite measures {un}n—l such that u(E) = Z:=1 un(E) , whenever

E € S . Then there exists a probability measure W' equivalent to u .
It is sufficient to put p'(E) = z:—l
Ee€S . It is well known that (S - M')C . Since p = yp' i.e., M=M
we have (S - M)C .

-7 -1
2 un(E) [un(X)] , whenever

COROLLARY. If (x,S,u) <is a measure space and W has the property

o then the class A of all atoms in S 1is countable.

Proof. According to Lemma 1 for any two sets A,B € A we have either
AAB€EM and the set A N B represents an atom or A N B € M and then
the sets 4 - B and B - A4 represent two disjoint atoms i.e., two disjoint
sets in S - M . Each class of disjoint sets in S - M is countable

according to Lemma 2.

LEMMA 3. Let (X,S,u) be a measure space. If there are no atoms in
S and v is not oO-finite, then there exists in S - M an uncountable

class of disjoint sets of finite measure.

Proof. There exists at least one set E of positive and finite

measure such that EC X and E + X , since X is not an atom. Now,
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suppose (S - M)C and let P be the following property of measurable sets
G ..

P : G 1is a countable union of disjoint sets of finite measure from

S-M.

There exists at least one measurable set with the above property, E
itself. Evidently the property P 1is preserved under the formation of
unions of countable disjoint sets. According to Theorem 1 there exists a

maximal measurable set M with property P such that the conditions

EeS ,EC 1Y , imply E € M . Otherwise M would be an atom. Since M

is a countable union of disjoint sets of finite measure from S - M and

X=MUM then U is a O-finite measure. This is a contradiction.

LEMMA 4. Let (X,S,u) be a measure space. If there are no atoms in
S and u is not o-finite, then u has not the property o .

Proof. According to Lemma 3 there exists an uncountable class of

disjoint sets of positive and finite measure W , say A = {At’ t €T} . On
the contrary let us assume that Y has the property o , then

U(At) = Z (At) for t €T . Then, there exists a positive integer n,

n=1 un

such that M (At) > 0 for an uncountable set T' of indices, where
o

t €T CT . This contradicts the total finiteness of the measure un .
o

Thus 1y has not the property o .

REMARK 1. We note, if u has the property ¢ , then also Hp has
the property ¢ , where uE,(F) = u(E NF) , wvhenever F €8S .

LEMMA 5. Let (X,S,u) be a measure space and let (S - M)C . Then
U has the property o .

Proof. (i) Suppose, there are no atoms in S . Then we prove that
M is a O-finite measure. On the contrary if U is not O-finite, then
according to Lemma' 3 the class of all disjoint sets of positive measure
is uncountable. This is a contradiction with (S - M)C . Therefore u is

a 0o-finite measure, hence WU has the property o .
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(ii) Let us admit that there are also atoms but of finite u-measure

only. Then the class A of all disjoint atoms is countable, i.e.

©

A= {4,,45,45,...} . Put 4= U A; A, €A, 4 =1,23,..., adput
i=1

A(F) = W(F nA) and V(F) = u(FNnA®) , forall FE€S . Then A and Vv

are two O-finite measures. Evidently pu=A+v on S8 and u is a

O-finite measure, hence W has the property o .

(iii) Suppose now that there exist atoms B such that u(B) = + « .

The class of all such disjoint atoms is countable since A CS - M . Put
o

4= U A, , Ay €A, 1 =1,23,... Let us define
i=1

i ! . = .
1, if w(E Az) “(Az) B

0, if WENA.) +uca.),
7 7
whenever E € § . We prove uy is a measure for each positive integer <
Fix 1 , then evidently My 2 0 and ui(tb) =0 . Let {Ek}k=l be a
sequence of disjoint sets from S . Put F = 8 Ek . If
k=1
wE n Ai) = u(Ai) then “i(E) =1 . Then from

=3 . 11 that . ) = ). W
WE NA;) = J3 , WE, NA ) follows that [/ - W(E, NA ) =u(d,) e
prove that there is exactly one positive integer ko such that

u(Ek ﬁAi) = U(Ai) . On the contrary suppose there are at least two such
0

integers, say k; and k2 then Wu(g, NA.) >0 and WweE, NA.) >0,
k1 1 ko 7
i n = N A. CA. NaA.CA4.
since Ekl Ek2 ¢ for k; %k, and By, Ag C A 5 By N Ay A
The latter two relations contradict the assumption that Ai is an atom.

Therefore y-(E, ) =1 , and u;(E,) = 0 for all Kk ¥ k. Then we have
T ko i "k o}

“i(E) = ZZ=1 “i(Ek) . Further ui(E) =0, if u(® ﬂAi) ¥ U(Ai) , then
wWE nA;) =0, since p(A;) =+ = and A. is an atom. This implies
u(Ekn Ai) =0 for k=1,2,3,..., hence u(Ek nAi) + u(Ai) and we have

“i(Ek) = 0 for k=1,2,3,..., this implies ui(E') = Zk=1 “i(Ek)
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Therefore ].17: is a 0O-additive set function, hence ui is a measure,.

n

Let n be a positive integer, put \Jn = Zi=1 ui . Evidently \)n is

a totally finite measure on S . Now we prove W(E NA4) = Z:_l

vn(E) s
vhenever E € S . Evidently WENA) =]° WENA) . It E€S is
such a set that there exists at least one index io that

u(E N Ai ) = U(Ai ) > then WE NA) = + « and then for all n 2 io we have
0 o

\)n(E’) > 1 , therefore u(EN A)

Yoeg V,(B) - If W(ENA) $ul4,) for
7 =1,2,3,..., then U(E N Ai) = 0 for all positive integers < and also

ui(E') = 0 . The latter condition implies \)n(E') =0, for n=1,2,3,...,

therefore W(E N A) = z:=1 Vn(E') . Hence has the property o .

M
Let E €S, then W(E) = v(E) + X(E) , wvhere V(E) = W(E N 4) and
A(E) = u(E n Ac) . Then X is a o-finite measure, since it is either (i)

or (ii), therefore A(E) = z:=1 )\n(E’)

Finally, if u2n_1(E) = \)n(E) and u2n(E) = )\n(E') , for

n=1,23..., whenever E € S then W(E) = z:=1 un(E) . This completes
the proof.

Now from Lemmas 2 and 5 immediately follows,

THEOREM 2. Let (X,S,u) be a measure space. Then (S - M)C if and
only ©f u has the property o .
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