
Canad. Math. Bull. Vol. 56 (3), 2013 pp. 510–519
http://dx.doi.org/10.4153/CMB-2011-179-0
c©Canadian Mathematical Society 2011

Linear Forms in Monic Integer Polynomials
Artūras Dubickas

Abstract. We prove a necessary and sufficient condition on the list of nonzero integers u1, . . . , uk,
k > 2, under which a monic polynomial f ∈ Z[x] is expressible by a linear form u1 f1 + · · · + uk fk in
monic polynomials f1, . . . , fk ∈ Z[x]. This condition is independent of f . We also show that if this
condition holds, then the monic polynomials f1, . . . , fk can be chosen to be irreducible in Z[x].

1 Representations by a Linear Form

In 1965, Hayes [4] proved that every polynomial in Z[x] of degree d > 1 is expressible
as the sum of two irreducible polynomials in Z[x], each of degree d. This result was
later rediscovered by Rattan and Stewart in [8], and its various generalizations and
specializations (for monic polynomials, for polynomials in the ring R[x], where R is
not necessarily Z, for matrices, etc.) have been given in [1,3,5,7,11–13]. In particular,
for a monic polynomial f in the ring Z[x], there is an asymptotical formula for the
number of representations of f by the sum of several irreducible monic polynomials,
each of height at most T (see [2, 6, 9]).

To give a more complete treatment of the subject, we shall investigate the repre-
sentations of a monic polynomial f ∈ Z[x] of degree d > 2 by a linear form

(1.1) f (x) = u1 f1(x) + u2 f2(x) + · · · + uk fk(x)

in monic irreducible polynomials f1, . . . , fk ∈ Z[x], k > 2, each of height at most
T, where ui , i = 1, . . . , k, are some fixed nonzero integers. The cases k = 2, u1 =
u2 = 1, and k > 2, u1 = · · · = uk = 1, have been considered in [2, 6, 9]. It is shown
that then there are asymptotically ck,dT(k−1)(d−1) of such representations as T → ∞,
where d = deg f > 2 and ck,d > 0 is a constant independent of T.

Obviously, for some collections u1, . . . , uk, there are no representations (1.1) in
monic polynomials f1, . . . , fk ∈ Z[x]. For instance, if there is an integer s > 1 that
divides all the numbers u1, . . . , uk then the right hand side of (1.1) is a polynomial
whose coefficients are all divisible by s, so no monic polynomial f can be represented
by (1.1). The same is true if, for instance, k = 2, u1 = 5, u2 = −2. Then no
polynomial of the form 5 f1 − 2 f2 is a monic polynomial provided that f1, f2 are
monic, because the leading coefficient of 5 f1 − 2 f2 is in the set {−2, 3, 5}.

However, if, for instance, k = 3, u1 = 5, u2 = −2, u3 = −3, then one can prove
that every monic polynomial f ∈ Z[x] of degree at least 1 can be represented by the
linear form (1.1). Selecting, e.g., f (x) = x3 − x − 3, we see that

x3 − x − 3 = 5 · (xm + 2x3 − 2x + 2)− 2 · (xm + 2)− 3 · (xm + 3x3 − 3x + 3)
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for every m > 4. Moreover, the polynomials xm+2x3−2x+2, xm+2 and xm+3x3−3x+
3, where m > 4, are irreducible by Eisenstein’s criterion. Thus, for the polynomial
f (x) = x3 − x − 3, there are infinitely many of representations f = 5 f1 − 2 f2 − 3 f3

in monic integer polynomials f1, f2, f3 of height at most 3.
In this note we shall investigate the following natural questions:

• Given a monic polynomial f ∈ Z[x] of degree d > 1 and an integer k > 2, find
all collections u1, . . . , uk ∈ Z∗ such that f can be represented by the linear form
(1.1) in monic integer polynomials f1, . . . , fk.

• In the case when such a representation is possible, determine whether there is a
positive integer T0 such that for T = T0 (and so for each T > T0) there are
infinitely many of such representations in monic integer irreducible polynomials
of height at most T.

The answers to those questions are nontrivial, and we need some definitions be-
fore stating them. In particular, we remark that the answers given in Theorem 1.1 do
not depend on the choice of f .

For every finite collection of nonzero integers u j1 , . . . , u js with J = { j1, . . . , js} ⊆
{1, . . . , k}, we denote the greatest common divisor of its elements by

gcd(u j : j ∈ J) = gcd(u j1 , . . . , u js ).

Recall that it is the largest positive integer dividing each of the numbers u j1 , . . . , u js .
In case J = { j}, j ∈ {1, . . . , k}, we have gcd(u j) = |u j |.

We say that the list of nonzero integers u1, . . . , uk, k > 2, satisfies condition (C0) if
there are some nonempty sets of indices J0, . . . , J`, ` > 1, Js 6= Jt (except perhaps for
J`−1 = J`),

∅ ⊂ J0 ⊂ J1 ⊂ · · · ⊂ J`−1 ⊆ J` ⊆ {1, 2, . . . , k},

such that ∑
j∈ J0

u j = 0,(1.2)

gcd(u j : j ∈ Jt )
∣∣ ∑

j∈ Jt+1\ Jt

u j(1.3)

for every t = 0, . . . , `− 2 (if ` > 2), and

(1.4) gcd(u j : j ∈ J`−1)
∣∣ (−1 +

∑
j∈ J`\ J`−1

u j

)
.

(Throughout, the sum over the empty set is assumed to be zero.) In particular, for
` = 1, we have only two sets of indices J0 and J1 satisfying ∅ ⊂ J0 ⊆ J1 ⊆ {1, . . . , k}
and there are no conditions (1.3), but only (1.2) and (1.4), i.e.,

(1.5)
∑
j∈ J0

u j = 0 and gcd(u j : j ∈ J0)
∣∣ (−1 +

∑
j∈ J1\ J0

u j

)
.
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It may happen that no set J0 6= ∅ for which (1.2) holds exists, for instance, when
all of the ui are positive integers. In this case (when there is no set J0 6= ∅ for which
(1.2) holds), we say that the list of nonzero integers u1, . . . , uk satisfies condition (C1)
if there is a nonempty set J1 ⊆ {1, . . . , k} for which

(1.6)
∑
j∈ J1

u j = 1.

The above set u1 = 5, u2 = −2, u3 = −3 satisfies (1.5) with J0 = J1 = {1, 2, 3},
because 5− 2− 3 = 0 and gcd(5,−2,−3) = 1, so it satisfies condition (C0). The set

u1 = 10, u2 = −10, u3 = −20, u4 = −19

satisfies condition (C0) with J0 = {1, 2} (u1 +u2 = 10−10 = 0, so (1.2) holds), J1 =
{1, 2, 3} (gcd(10,−10) = 10 divides u3 = −20, so (1.3) holds), and J2 = {1, 2, 3, 4}
(gcd(10,−10,−20) = 10 divides u4 − 1 = −20, so (1.4) holds). The set

(1.7) u1 = 10, u2 = −10, u3 = 3, u4 = 2

does not satisfy condition (C0). Indeed, if the set (1.7) satisfies (C0), then J0 must
be {1, 2}, and it is impossible to choose J1 for which (1.3) or (1.4) holds, because
J1 6= J0 and the number gcd(10,−10) = 10 does not divide any of the numbers
in the list u3, u4, u3 + u4, u3 − 1, u4 − 1, u3 + u4 − 1. The set (1.7) does not satisfy
condition (C1) either, by the definition of (C1). Similarly, the set 6,−6, 12,−36, 7
satisfies condition (C0), but the set 6,−6, 12,−36, 5 does not satisfy condition (C0).

The aim of this paper is to prove the following theorem:

Theorem 1.1 Let f ∈ Z[x] be a monic polynomial of degree d > 1, and let k > 2,
u1, . . . , uk be nonzero integers.

(a) Then f can be represented by the linear form (1.1) in some monic polynomials
f1, . . . , fk ∈ Z[x] if and only if the list of integers u1, . . . , uk satisfies one of the
conditions (C0) or (C1).

(b) Moreover, for fixed T ∈ N, there are only finitely many such representations in
monic polynomials f1, . . . , fk ∈ Z[x] of height at most T if and only if the list
u1, . . . , uk satisfies condition (C1).

(c) Finally, if the list of integers u1, . . . , uk satisfies condition (C0), then there is a pos-
itive integer T0 such that for each T > T0 there are infinitely many representations
(1.1) in monic irreducible polynomials f1, . . . , fk ∈ Z[x] of height at most T.

It is well known that if a1, . . . , as are some fixed nonzero integers, then a ∈ Z is
expressible in the form a1Z + · · · + asZ if and only if gcd(a1, . . . , as)|a. Therefore, we
can write condition (1.3) in the equivalent form

(1.8)
∑
j∈ Jt

u jz j,t +
∑

j∈ Jt+1\ Jt

u j = 0,
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where t = 0, . . . , ` − 2 (if ` > 2) and z j,t ∈ Z. Analogously, condition (1.4) can be
written in the equivalent form

(1.9)
∑

j∈ J`−1

u jz j,`−1 +
∑

j∈ J`\ J`−1

u j = 1

for some integers z j,`−1.
Note that if the collection of nonzero integers u1, . . . , uk satisfies condition (C0)

(resp. (C1)), then (1.9) (resp. (1.6)) implies

(1.10) gcd(u1, . . . , uk) = 1.

The example (1.7) shows that the converse of this statement is false.

2 Proof of Part (c) and Sufficiency of Part (a)

For the proof of the theorem we need the following elementary lemma.

Lemma 2.1 Let b1, . . . , bm be nonzero integers b ∈ Z, t ∈ N, m > 2, and
t 6 m. Suppose that p1, . . . , pt are any distinct prime numbers greater than
max(|b1|, . . . , |bm|). If

(2.1) b1 y1 + b2 y2 + · · · + bm ym = b

is solvable in integers y1, . . . , ym, then one can choose y1, . . . , yt so that each yi (i =
1, . . . , t) is divisible by pi but not by p2

i .

Proof of the lemma Set g := gcd(b1, . . . , bm). As we remarked above, the linear
equation (2.1) is solvable in integers if and only if g|b. Assume that p1, . . . , pt >
max(|b1|, . . . , |bm|) and select yi = p2

i zi + pi , zi ∈ Z, for i = 1, . . . , t . Then yi is a
multiple of pi but not a multiple of p2

i . It remains to show that the linear equation

(2.2) b1 p2
1z1 + · · · + bt p2

t zt + bt+1 yt+1 + · · · + bm ym = b− b1 p1 − · · · − bt pt

is solvable in integers z1, . . . , zt , yt+1, . . . , ym. This is indeed the case, because, by the
choice of pi , we have

gcd(b1 p2
1, b2 p2

2, . . . , bt p2
t , bt+1, . . . , bm) = g.

Furthermore, g divides b and b1, . . . , bm, so g also divides the right-hand side of
(2.2).

Now, we will prove part (c) of the theorem. Assume that the list u1, . . . , uk satisfies
condition (C0). Without restriction of generality (by changing the indices of the
integers in the list u1, . . . , uk if necessary) we may assume that there exist the indices
it , t = 0, . . . , `, satisfying 2 6 i0 < i1 < · · · < i`−1 6 i` 6 k such that

J0 = {1, . . . , i0}, J1 = {1, . . . , i1}, . . . , J` = {1, . . . , i`}.
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Set also J`+1 := {1, . . . , k} and J−1 := ∅. Clearly, J`+1 = J` when i` = k. Fix some
integers

N`+1 := d− 1 < N` := d < N`−1 < · · · < N0.

For each index i ∈ {1, . . . , k} that belongs to the set Jt\ Jt−1, where t = 0, 1, . . . , `+1,
we will construct a monic polynomial fi ∈ Z[x] whose degree will be equal to Nt .

Observe that in the case i` < k, we can take any k− i` irreducible monic polyno-
mials fi`+1, . . . , fk ∈ Z[x] (say, of degree N`+1 = d−1 each), and apply the argument

to the polynomial f −
∑k

i=i`+1 ui fi instead of f and i` (i` > i0 > 2) instead of k. So
assume from now on that i` = k. Then J` = J`+1 = {1, . . . , k}, and all the polyno-
mials f1, . . . , fk will be of degree at least d. Note that the set J` \ J`−1 can be empty,
so it may happen that there are no polynomials of degree N` = d.

We shall construct the polynomials f1, . . . , fk in the form of a matrix M with
N0 + 1 columns and k rows, where the i-th row of the matrix M is composed from
the coefficients of fi(x) :=

∑N0

j=0 m( j, i)x j , written as(
m(N0, i),m(N0 − 1, i), . . . ,m(0, i)

)
.

To prove the irreducibility of the monic polynomials f1, . . . , fk ∈ Z[x], we fix k dis-
tinct prime numbers p1, . . . , pk greater than max(|u1|, . . . , |uk|). It will be shown
that the polynomial fi , i = 1, . . . , k, is irreducible by Eisenstein’s criterion with re-
spect to the prime number pi .

Let

f (x) = xd + ad−1xd−1 + · · · + a0.

Clearly, (1.1) holds if the coefficients m( j, i) are chosen so that

(2.3)
k∑

i=1

uim( j, i) =


0 for j > d,

1 for j = d,

a j for 0 6 j < d.

To ensure that the first i0 polynomials are monic, we must take

m(N0, 1) = · · · = m(N0, i0) = 1.

The first column of M is completed by zeros m(N0, i0 + 1) = · · · = m(N0, k) =

0, because deg fi < N0 for i > i0. In view of (1.2) this gives
∑k

i=1 uim(N0, i) =∑i0

i=1 ui =
∑

j∈ J0
u j = 0, which corresponds to the first line in (2.3).

We also select the coefficients for x j , where N1 + 1 6 j < N0, to be zeros, namely,

m( j, 1) = · · · = m( j, k) = 0 for N1 + 1 6 j < N0.

This gives
∑k

i=1 uim( j, i) = 0 for N1 +1 6 j < N0, which checks the next N0−N1−1
lines in (2.3).
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By Lemma 2.1, we may select the integers z j,t , t = 0, . . . , `−1 that appear in (1.8)
and (1.9) so that, for each j ∈ Jt , the number z j,t is divisible by p j , i.e.,

p j |z j,t for j ∈ Jt , t = 0, . . . , `− 1.

In order to use (1.8) for t = 0 (this step applies only if ` > 2), we select

m(N1, i) = zi,0 for 1 6 i 6 i0,

m(N1, i0 + 1) = · · · = m(N1, i1) = 1,

and m(N1, i) = 0 for i > i1. Then by (1.8),

k∑
i=1

uim(N1, i) =
i0∑

i=1

uizi,0 +
i1∑

i=i0+1

ui = 0.

In the same way, for each j = Nt+1, where 0 6 t 6 `− 1, we take

m(Nt+1, i) = zi,t for 1 6 i 6 it ,(2.4)

m(Nt+1, it + 1) = · · · = m(Nt+1, it+1) = 1,(2.5)

and m(Nt+1, i) = 0 for i > it+1. For Nt+1 + 1 6 j < Nt , t = 0, . . . , `− 1, we take the
coefficients for x j to be zeros, i.e.,

(2.6) m( j, 1) = · · · = m( j, k) = 0 for Nt+1 + 1 6 j < Nt .

Now, by (2.4)–(2.6), in view of (1.8) (resp. (1.9)), as above we obtain

k∑
i=1

uim( j, i) = 0

for each j greater than d (resp.

k∑
i=1

uim(d, i) =
k∑

i=1

uim(N`, i) =

i`−1∑
i=1

uizi,`−1 +
i∑̀

i=i`−1+1

ui = 1

for j = N` = d). This verifies the first N0 − d + 1 lines in (2.3). It remains to choose
m( j, i) for j 6 d− 1 and to check the last d lines of (2.3).

In case d > 2, using Lemma 2.1, for every j in the range 1 6 j 6 d − 1, we can
select some m( j, i) ∈ Z divisible by pi , i = 1, . . . , k such that

k∑
i=1

uim( j, i) = a j ,
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because, by (1.10), gcd(u1, . . . , uk) = 1. (For d = 1 we just do not use this step.)
This checks that all of the equalities in (2.3) hold except perhaps for the last equality.
As for the last equality, we will use the full statement of Lemma 2.1; namely, we take
m(0, i) ∈ Z divisible by pi , not divisible by p2

i , such that

k∑
i=1

uim(0, i) = a0.

This completes the construction of the matrix M with the property (2.3).
In this way, for i = 1, . . . , k, we obtain k monic polynomials

fi(x) =
N0∑
j=0

m( j, i)x j ,

i = 1, . . . , k, of degrees N0,N1, . . . ,N`−1 and possibly N` = d (when J`−1 6= J`)
satisfying (1.1). Moreover, by Eisenstein’s criterion with respect to the prime number
pi , the polynomial fi , i = 1, . . . , k is irreducible in Z[x].

Set T0 := max06 j6N0, 16i6k |m( j, i)|. Since N0 can be arbitrarily large and its
selection does not change the number T0, we obtain infinitely many collections of
monic irreducible polynomials f1, . . . , fk ∈ Z[x], each of height at most T0, for which
(1.1) holds. This completes the proof of Theorem 1.1(c).

In order to complete the proof of sufficiency in part (a), assume that condition
(C1) holds. Without restriction of generality we may assume that the set J1 satisfying
(1.6) is J1 = {1, . . . , s}, where 1 6 s 6 k. Suppose first that s > 2. Fix any monic
irreducible polynomials fs+1, . . . , fk ∈ Z[x] of degrees at most d − 1. We claim that
the polynomial

f (x)− us+1 fs+1(x)− · · · − uk fk(x) = xd + ad−1xd−1 + · · · + a0

can be written in the form
∑s

i=1 ui fi(x) with monic irreducible polynomials
f1, . . . , fs ∈ Z[x]. To do this we take

fi(x) = xd + m(d− 1, i)xd−1 + · · · + m(0, i) ∈ Z[x], i = 1, . . . , s,

where

(2.7)
s∑

i=1

uim( j, i) = a j

for j = 0, . . . , d − 1. As above, using (1.6), we see that the leading coefficient of the
polynomial u1 f1 + · · ·+ us fs is equal to

∑s
i=1 ui = 1. This yields gcd(u1, . . . , us) = 1.

Now, using this condition and Lemma 2.1, for every i = 1, . . . , s, we may choose
m( j, i) in (2.7) divisible by pi for j = 1, . . . , d − 1 and also m(0, i) divisible by pi

and not by p2
i . Consequently, the polynomials f1, . . . , fs are irreducible.
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Assume next that s = 1. Then u1 = 1. Take f3(x) = · · · = fk(x) = 1 and
f2(x) = x + t , where t ∈ N will be chosen later. Then (1.1) holds for the polynomial

f1(x) := f (x)− u2x −
k∑

j=3

u j − u2t.

By Hilbert’s irreducibility theorem (see, e.g., [10, p. 298]), there are infinitely many
t ∈ N for which the polynomial f1 is irreducible in Z[x], i.e., no polynomials g1, g2 ∈
Z[x] of degrees strictly less than deg f1 exist for which f1 = g1g2. Taking one of those
t we obtain the required representation (1.1) and so complete the proof in case s = 1.

This proves that if condition (C0) or (C1) holds, then every monic polynomial
f ∈ Z[x] of degree d > 1 can be represented by the linear form (1.1) in some monic
irreducible polynomials f1, . . . , fk ∈ Z[x].

3 Proof of Necessity of Part (a) and of Part (b)

Assume that we have some representation (1.1) in monic polynomials f1, . . . , fk ∈
Z[x]. There are two cases: first, when in (1.1) at least one fi has degree greater than
d and, second, when there is no representation as in the first case but there is a rep-
resentation when all the polynomials fi are of degree at most d. We claim that in the
first (resp. second) case the list of integers u1, . . . , uk satisfies condition (C0) (resp.
(C1)).

In the first case we must have a subset of indices J0 ⊆ {1, . . . , k} for which (1.2)
holds, namely,

∑
j∈ J0

u j = 0. This set consists of indices of polynomials fi of the
largest degree, say, N0 > d. Suppose we also have the degrees N1 > · · · > N`−1

(` > 1) greater than d in the list of degrees deg f1, . . . , deg fk. More precisely, let

I j := {1 6 i 6 k : deg fi = N j}

for j = 0, . . . , `− 1, so that J0 = I0. Put J j :=
⋃ j

l=0 Il for j = 0, . . . , `− 1.
Consider the coefficient for xN1 in the left-hand side of (1.1) if ` > 2. Since

deg f < N`−1, it must be zero. Assuming that the coefficients of f j , j ∈ J0, for
xN1 are z j,0 we obtain

∑
j∈ J0

u jz j,0 +
∑

j∈ J1\ J0
u j = 0, i.e., the first equality in (1.8).

Similarly, for every t = 1, . . . , ` − 2, assuming that the coefficients of f j , j ∈ Jt ,
for xNt+1 are z j,t , we obtain

∑
j∈ Jt

u jz j,t +
∑

j∈ Jt+1\ Jt
u j = 0, i.e., the equality in (1.8)

corresponding to t .
Assume now that the coefficients for xd in f j , where j ∈ J`−1, are z j,`−1. The

coefficient of the left hand side of (1.1) for xd is equal to 1, hence the coefficient of
the right hand side of (1.1) for xd must be 1 too. It follows that there exists a set J`
such that J`−1 ⊆ J` ⊆ {1, . . . , k} for which∑

j∈ J`−1

u jz j,`−1 +
∑

j∈ J`\ J`−1

u j = 1,

i.e., (1.9) holds. This proves that the list u1, . . . , uk satisfies condition (C0).
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In the second case, when there is no representation (1.1) as in the first case, but
there is a representation (1.1) with deg fi 6 d for i = 1, . . . , k there must be a set
J1 ⊆ {1, . . . , k} for which (1.6) holds. In order to prove that the list u1, . . . , uk

satisfies condition (C1) it remains to show that no nonempty set J0 ⊆ {1, . . . , k}
exists for which (1.2) holds. For a contradiction, assume that there is such a set J0.
Then

∑
j∈ J0

u j = 0 and
∑

j∈ J1
u j = 1. This implies that the conditions (1.2) and

(1.9) are satisfied for ` = 1 and the first two sets J0 and J0 ∪ J1, with z j,0 = 1 for
j ∈ J0. Indeed, then ( J0 ∪ J1) \ J0 = J1, so that∑

j∈ J0

u jz j,0 +
∑
j∈ J1

u j =
∑
j∈ J0

u j +
∑
j∈ J1

u j = 0 + 1 = 1.

Therefore, the list u1, . . . , uk satisfies condition (C0). Hence, by sufficiency of part
(a), we have infinitely many representations (1.1) in monic polynomials of bounded
height, where some degrees of f1, . . . , fk are greater than d, a contradiction. This
completes the proof of necessity of (a).

Finally, let us prove part (b) Assume that the list of integers u1, . . . , uk satisfies con-
dition (C1). The results of Section 2 imply that there exist monic (even irreducible)
polynomials f1, . . . , fk ∈ Z[x] for which (1.1) holds. In order to prove that there are
only finitely many representations (1.1) in polynomials f1, . . . , fk of height at most
T we shall use the fact that there is no nonempty set of indices J0 ⊆ {1, . . . , k} for
which (1.2) holds (by the definition of (C1)). In particular, this implies that the de-
gree of each fi does not exceed d. Obviously, there are only finitely many polynomials
of bounded degree and height, so there are only finitely many collections of monic
polynomials f1, . . . , fk satisfying deg fi 6 d, H( fi) 6 T, i = 1, . . . , k and (1.1). (In
fact, by the same method as in [2], one can show that for each monic f of degree
d > 2 there are asymptotically cT(d−1)(k−1) of such representations as T → ∞, with
some positive constant c = c(u1, . . . , uk, d) independent of T.)

On the other hand, assume that there are only finitely many representations (1.1)
in monic polynomials f1, . . . , fk ∈ Z[x] of height at most T. If there is at least one set
of indices J0 for which (1.2) holds, then, by the necessity of part (a), the list of integers
u1, . . . , uk satisfies condition (C0). However, then there are infinitely many of such
representations by part (c), a contradiction. So there is no such set of indices J0.
Thus, by part (a), if there is at least one such representation, then the list u1, . . . , uk

must satisfy condition (C1). This completes the proof of Theorem 1.1(b).
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