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Abstract. We give a sharp lower bound for the supremum of the norm of the
mean curvature of an isometric immersion of a complete Riemannian manifold with
scalar curvature bounded from below into a horoball of a complex or real hyper-
bolic space. We also characterize the horospheres of the real or complex hyperbolic
spaces as the only isometrically immersed hypersurfaces which are between two
parallel horospheres, have the norm of the mean curvature vector bounded by the
above sharp bound and have some special groups of symmetries.
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1. Introduction. A classical problem in submanifold theory is the existence of
complete non planar minimal surfaces in some “bounded” set in R3. A break-
through in this problem was the construction, by Jorge and Xavier (see [10]), of non
planar, minimal, isometric immersions of complete surfaces between two parallel
planes in R3. The same authors [11] and Koutroufiotis [9] showed that if the
immersed manifold has scalar curvature bounded from below, then there is no
minimal immersion inside a ball.

Another negative result was given by Hoffman and Meeks in [7]. They proved
that the only properly immersed minimal surfaces in R* which are contained in a
halfspace are the planes parallel to the boundary of the halfspace. They show also
that this theorem is not true for higher dimensions.

An analogous problem for the hyperbolic space H"(1) of constant sectional
curvature 4 < 0, is the existence of minimal immersions (or, with more generality,
immersions of constant mean curvature) with their images contained in a horoball.

In this paper, we consider this problem for immersed submanifolds from the
point of view of [9] and [11], and we shall prove the following result.

THEOREM 1. Let v : M — H"(1) be an isometric immersion of a complete Rie-
mannian manifold M of dimension n — 1 with scalar curvature bounded from below. If

W(M) C HB for some horoball HB of H"(1), then

sup eyl HIl = V14

where H denotes the mean curvature vector of the immersion, and sup denotes the
supremum.
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As a consequence we have that if M is an (n — 1)-dimensional connected and
complete Riemannian manifold with scalar curvature bounded from below, then there
is no isometric immersion of M in H"(1) contained in a horoball and with
IH| < ¢ < V1AL

Do Carmo and Lawson [4] proved that the only embedded hypersurfaces in the
hyperbolic space with constant mean curvature and only one point in the infinite
boundary of H"(A) are the horospheres. Since any complete non-compact embedded
submanifold contained in an horoball has only one point in the infinite boundary of
H"(%), this result solves the problem quoted before about immersions contained in
horoballs for embeddings. But Do Carmo and Lawson say that the assumption of
embeddedness in their result is necessary because of some examples given by Gomes
in [5].

If, in the above theorem by Do Carmo and Lawson, we change the hypothesis
“constant mean curvature” to “||H| < +/]A]”, then there are many embeddings with
only one point in the infinite boundary of H"(1). A simple example is the hypersur-
face of H*(—1) given (in the Poincaré’s upper halfspace model of H*(—1)) by the
parametrization x(u,v) = (u,v,¢"). For this surface the mean curvature is
IH| = (2 + 3¢2")/(2(1 + €*')*/?) < 1. However, we have not found any example of a
proper immersion in H"(1) with ||H| < +/]A] and with its image contained in a
horoball. Here we will characterize the horospheres as the unique properly immersed
hypersurfaces contained between two parallel horospheres, having these symmetries
and with || H| < +/|4] and having some special group of symmetries.

The “group of symmetries” of an immersion ¥ : M — H"(Z) is usually defined
by people working on minimal immersions (see [8,12]) as the restriction to M of the
group of isometries of H"(1) preserving y(M). The meaning of this definition is clear
when ¥ is an embedding. For the convenience of the reader, we shall give the details
of the definitions for general immersions.

Given any isometric immersion ¥ : M — H"(1), the group of symmetries
Sym(M) of this immersion is the group

Sym(M) = {4 € Iso(M) : there is some o € Iso(H"(1)) such that Yo 4 = a o ¥},

where Iso(M) and Iso(H"(2)) denote, respectively, the group of isometries of M and
H"(A).
When v is a proper embedding we may speak of the isomorphism of groups

Sym(M) — Iso(H"(1)) defined by A+>yro Aoy

which takes any subgroup G of Sym(M) onto a subgroup G of Iso,,(H"(1)). When
is not an embedding, we do not have the above isomorphism, but we can still
associate to any subgroup G of Sym(M) a subgroup G of Iso(H"(1)) defined by

G = {a € Iso(H"(1)) such that there is some 4 € G satisfying Yo 4 = a o ¥}

In the language of the definitions in [12] and [8], G will be the restriction of G to
M.

Moreover we shall say that two hypersurfaces of a Riemannian manifold are
parallel if the points of one of them are at a constant distance from the other.

With these definitions we have the following result.
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THEOREM 2. Let  : M — H"(A) be a proper isometric immersion of a connected
and complete (n — 1)-dimensional Riemannian manifold M satisfying:

(a) ¥(M) C D=HB,—HB,, where HB; is an horoball having the horosphere H; as
boundary and H, and H, are parallel horospheres,

(b) 1H|| < /141, and

(c) there is a subgroup G of Sym(M) such that D is invariant under a properly
discontinuous action of G and the quotient manifold D|G is compact.

Then (M) is a horosphere and \ is an embedding.

We would like to remark that, in some sense, we may see the hypersurfaces in
H" () with ||H|| < +/]A] as the objects analogous to minimal hypersurfaces in R". In
fact, in [11] and [9], to prove the above mentioned result of non-immersibility, the
authors give the following more general result: “If M is a complete Riemannian
manifold with scalar curvature bounded from below, there is no isometric immer-
sion of M into a space of constant sectional curvature u < 0, having mean curvature
|H|| < +/Ii] and with its image contained in a ball”’. When u = 0, we have the non-
immersibility theorem for minimal submanifolds in R" contained in a ball (and we
have also that there are no immersed compact hypersurfaces with || H| < /|u].
Then, relative to this property, minimal hypersurfaces in R" and hypersurfaces in
H"(2) with || H| < +/[A] have the same behaviour.

For the complex case, Hg(4) will denote the complex hyperbolic space of con-
stant holomorophic sectional curvature 44 < 0, H¢ will denote a horosphere of
H&(4), which has constant mean curvature 23—’_’] |A], and HB¢ will denote the
horoball having H¢ as its boundary. With the same notation as in the real case, but
changing the group Iso(H"(2)) of the isometries of H"(1) to the group Iso,(HE(4)) of
the holomorphic isometries of H¢(4), we shall prove the following.

THEOREM 3. Let y: M — HE(L) be an isometric immersion of a connected and
complete Riemannian manifold of dimension 2n — 1.
(1) If ¥(M) € HB¢ and M has scalar curvature bounded from below, then

2n
sup ey 11l = 5 V/Iil.

(ii) Let D¢ be the domain in H" (1) defined by D¢ = HB& — HB%C, where HB& is a
horoball with boundary the horosphere HL., and HtID and Hé are parallel horospheres.
If Y is proper, y(M) C Dc, |H| < 2;%1 |Al, and there is a subgroup G of Sym(M)
such that G(D¢) = De, G(He) = He., the action of G on Dg is properly discontinuous
and the quotient manifold D¢c/G is compact, then W(M) is a horosphere and  is an
embedding.

I wish to express my gratitude to V. Miquel for his careful proofreading
and many useful suggestions, and to V. Cervera and V. Palmer for some useful
talks.

2. Notation and preliminary results. Let ¥ : M — H"(1) be an isometric
immersion of a hypersurface, such that ¥(M) C HB. Let r: H"(1) — R be the dis-
tance (in H"(2)) to the horosphere H which is the boundary of HB, and we denote
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also by r the composition r o 1. Let us denote by 9, the gradient of r in H"(1) and by
3] the vector field on M defined by 9 (¢) = ¥, ' (P,(3,(¥(q))) for every ¢ € M, where
P, denotes the orthogonal projection P, : TyyH" (1) = . T,M.

We denote by S(r) the (1,1)-tensor field on H"(1) defined by:

S(r)(A) = =V 48,, 2.1)

where V denotes the covariant derivative on H"(A). Let us observe that S(r)d, = 0,
and S(r) restricted to the subspace {9,}> of the tangent space to H"(1) is the
Weingarten map (associated to the unit normal vector 9,) of the tubular hyper-
surface of radius r around the horosphere H, and trS(r) is (n — 1) times the mean
curvature of this tubular hypersurface. It is known that the tubular hypersurface of
a horosphere in H"(/) is again an horosphere; then we have (cf., for instance, [3,
p. 184]) that

S(r)(X) = /| A|X for all X € {9,}". (2.2)

From now on, V, A and H will denote, respectively, the covariant derivative of M,
the laplacian of M, and the mean curvature vector of the immersion. If f: R — R is
any function, f{(r) will denote the composition fo r. Then (see, for instance, [2]), we
have the following formula:

n—1
Af(r) = ="(MN18] 17 +f/(r){z < S(rei, e; > —(n—1) < H, 9, > 2.3)
i=1

where {ei}:-1=_11 is a local orthonormal frame of vector fields tangent to M, S(r)e;

means S(r).(e;), and <,> is the metric on H"(4).
We shall use the following lemmas.

OMORTI’S LEMMA [13]. Let M be a complete Riemannian manifold whose sectional
curvature is bounded from below. Let g: M — R be a smooth function bounded
from above. Then, for every p € M and every & > 0, there is a point p' € M with the
properties:

gp) =), lgradgl(®) <e, VgX, X) <ellX|’
Jorevery X e TyM.

The next lemma follows in the same way as the Lemma of theorem H in [9],
taking into account the fact that the ambient manifold is of constant sectional
curvature.

LEMMA 1. Let ¥ : M — H"(X) be an isometric immersion of a complete Rie-
mannian manifold of dimension n — 1 with the scalar curvature bounded from below. If
|H|| < Hy, for some constant Hy > 0, then the sectional curvature of M is bounded in
absolute value.
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3. Proof of the results.

Proof of Theorem 1. Under the hypothesis of Theorem 1.1, using the equations
(2.2) and (2.3),

n—1

A = ~f" O] 1P +f/(r){z < S)ene; > —(n—1) < H, 9, >]
i=1
n—1

=" P +f/(r){ > < S0 < €0 > B+ < €, dy > B, e >

i=1

—(n—1)<H,09 > }
= /" OO+ ) (n = DI = VI 0] I = (0 = 1) < H. 0, >
= (1" + VIS O) 1011 + 0= D ) (Vid= < Hod, >). (3.1)

Now, if we take as function f the solution f{(r) = Te " of the differential
equation 8

"+, () =0, (3.2)
taking account of | < H, 3, >| < | H||, we get from (3.1) that
) = (0 = VeV (71= < 1.5, >)
< (= De VW (Vid = 1a1). (3.3)

If there is some point p € M such that /|4] — || H| <0, then the theorem is
obvious. On the contrary, Lemma 1 allows us to apply Omori’s lemma to the

function g(m) = f(r(m)) —T —/i I"m). then we have that for every p € M and

every ¢ > 0 there is a point p’ in M such that

] /
NI 5 i) (3.4)
VI Jw

and

n—1
Afir(p) = = Y V2 fr(p)ei, ) > —s(n — 1). (3.5)
i=1

Inequality (3.4) is equivalent to the inequality
0> C=—e VI > _o= i),

By combining this with (3.3) and (3.5) we have that, for every ¢ > 0,

Cln = VWV = 1HI) = =V (V7] = 1H]l) > —sn = 1),
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Then
Cln = Dsup,ey (VI = 1H]) = 0,

1.e.

supyer (1HI) = V/I2I.

Proof of Theorem 2. From the definitions it is easy to see that if the action of G
on D is properly discontinuous, then so is the action of G on M. Then M/G and D/G
are manifolds and the projection maps 7 into the quotient manifolds M/G and D/G,
respectively, are covering maps. These facts allow us to define on M/G and D/G the
metrics induced by 7. Then

v M/G— D/G

defined as ¥ o w = w o is a well defined isometric immersion. If we take for H"(A)
Poincaré’s upper half-space model, the isometries of the hyperbolic space are the
conformal maps of R" preserving the upper half-space. These isometries, by Liou-
villes’s theorem, are the composition of an isometry, i, of R”, a dilatation, d, and an
inversion, /, at point in x,, = 0, and at most one of these.

Let ¢ € G. Then « is a difftomorphism and «(9D) = dD, so a(HUH,) =
Hi UHs. If a(H) = H,, from the above classification of the isometries of H"(1),
there is no inversion in the expression of o because the isometries of R" preserving
the upper half-space and the dilatations take hyperplanes onto hyperplanes, and an
inversion at a point in x, =0 take hyperplanes in spheres. Then ¢« =iod or
a = doi. Since i(H;) = H;, the only possibility for the equality a(H;) = H, is that
d(H,) = H,, but this will imply a(H,) = d(H,) C D, which is a contradiction. Then
a(Hy) = H; and a(H,) = H, and we have that G(H;) = H; and n(H;) = H1/G.
Since 7 is a local isometry, if we denote also by r, 9, and S(r) the analogs for
¥ : M/G — D/G of the objects defined for v : M — H"(A), changing H, to H,/G, we
have that the expressions for S(r) and the formula (3.3) also hold in this case.

If the mean curvature of the immersion ¥ is bounded from above by +/|/], the
same is true for the immersion ¥, and from (3.3) it follows that

Af(r) < 0. (3.6)

Since w : D — D/G is a Riemannian covering and D/G is compact, there is a
compact set L C D such that 7(K) = n(D). As v is proper map, ¥~ (K) is compact.
Let m € M, then we have that n(y¥(m)) € D/G = n(K), so there is some « € G and
some k € K satisfying a((m)) = k. By definition, there is some 4 € G such that
Y(A(m)) = a(Y(m)) = k; then A(m) e v~ '(K). This fact implies that M/G =
m(y~1(K)). Since ¥~ !(K) is compact and 7 is continuous, M/G is compact. Then, by
the Stokes’ Theorem, 0 = [ M/G Af(r), and from (3.6) we will have Af{(r) = 0. Then all
the inequalities we have used to get (3.6) must be equalities. This will imply that r
has to be constant and ||H| = +/[4]. So ¥(M/G) must be a tubular hypersurface of
constant radius around H;/G. Then /(M) is contained in a horosphere H at constant
distance from H;. Since M and H have the same dimension, M is complete and  is
a local isometry, so ¥(M) = H and  is a covering map (see [3, p. 150]). Then ¢ is a
diffeomorphism, since H is simply connected.
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Proof of Theorem 3. (i). Let ¥ : M — H{(4) be an isometric immersion of a real
hypersurface in the complex hyperbolic space, such that ¥(M) C HB¢, and let N be
the normal vector field of the immersion . We will denote by r the distance in Hg (1)
to the horosphere Hc. If 9, is the gradient of r in H{.(4), and 9] denotes the vector
field on M defined from 9, defined as in the real case, J3 (q) W111 denote the vector
field on M defined by J3(¢) = w;l(Pq(Ja,(w(q)))), where J denotes the almost-
complex structure in H{(4), and J3/N(g) the vector field J3/V(¢q) =
v, (P ,(J3,(¥(q)))), where P, denotes the orthogonal projection P, : TyH"(A) —
{JN}* and {JN}? is the subspace orthogonal to the vector field JN in v, T,M.

In this case, the (1,1)-tensor field S(r) is defined on H{(4) also by (2.1). Since
Yw(M) C HBg¢, the vector 9, points inside the horoball bounded by Hc, and S(r)
satisfies the following equalities [1]:

S(r)a, =0,
S(r)(J3,) = 2/14173,,
S(N(X)=+IAX  forall X € {3, J3,}" (3.7)

Let f: R — R be any function and f{(r) the composition f'o r. Then, if {e; }2” lisa

local orthonormal frame of vector fields tangent to M, from (2.3) and (3.7) we get

Afr) == (0 + VIS ) 10T 12 + VAL () 190] |
-1y (r)( - < H, 3, >) (3.8)

Now using the function f{(r) = TWQ_Z Wl "a solution of the differential equation

')+ VL) = =1L @),
and noting that

19717 + 173117 = 10,— < 8, N > I + |J3,— < Jo,, N > |I?
=1-<9,N>>+1— < Jo,, N>
=14 |J8,I>= < J3,, JN >* — < 9,, JN >>
=1+ |J8,— < Jd,, N> N— < J3,, JN > JN||?
=14 JVP > 1,

(where we have used the compatibility between J and <,>), we have

Af(r) < —e7? V"’(2n\/m —(2n—-1)< H, 0, >>
< —(n— eV (Vizl = 1) (3.9)

From now on part (i) follows as in the real case.
Part (ii) follows from formula (3.9) as Theorem 2 follows from (3.3).
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