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Abstract. Extracting star formation histories from spectra is a process plagued by numerous
degeneracies among the parameters that contribute to the definition of the underlying stellar
populations. Traditional approaches to overcome such degeneracies involve carefully defined
line strength or spectral fitting procedures. However, all these methods rely on comparisons
with population synthesis models. This paper illustrates alternative approaches based on the
statistical properties of the information that can be extracted from uniformly selected samples
of observed spectra, without any prior reference to modelling. Such methods are more useful
with large datasets, such as surveys, where the information from thousands of spectra can be
exploited to classify galaxies. An illustrative example is presented on the classification of early-
type galaxies with optical spectra from the Sloan Digital Sky Survey.
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1. The Goal

In order to understand the process of structure formation and evolution in the Uni-
verse, it is essential to solve the problem of galaxy formation. Ab initio models of galaxy
formation come up against the many complexities of the baryon physics transforming
gas into stars. Hence, it is desirable to determine from the observations the distribution
in age and composition of the stellar populations in galaxies, enabling us to backtrack
their formation histories. The spectral energy distribution (SED) of galaxies encodes a
treasure trove of information about the underlying stellar populations. It consists of a
linear superposition of stellar spectra from a complex distribution of ages, metallicities,
and dust. In principle, one could derive the star formation and chemical enrichment his-
tories from an SED. However, the inherent degeneracies prevent us from reaching that
goal using straightforward techniques.

2. The Standard Method

The most used approach to the extraction of star formation histories from spectra
involves model fitting techniques, whereby the observations are compared with a grid
of synthetic stellar populations, parameterised by a distribution of ages, metallicities
and dust. A figure of merit is defined, often from a x? function, from which one defines
a likelihood, that can be combined with priors in a Bayesian way. The search for the
best fit and the uncertainties in the parameters can come in many flavours, such as
searches over a large library of models (Gallazzi et al. 2005); Metropolis-based algorithms
(Cid Fernandes et al. 2004); search on data-compressed models (Panter et al. 2003), or
least-squares solutions (Ockvirk et al. 2006). However, all these methods rely on the
accuracy of the synthetic models to explain all the subtleties of galaxy spectra.
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Figure 1. Independent components can be extracted from a PCA decomposition of the data.
Left: The first two principal components from a sample of SDSS spectra of early-type galaxies
is projected in different orientations, and the kurtosis of the projections (shown as a contour in
the main panel and as a function of position angle in the inset) shows the preferred orientation
to separate the signals from PC1 and PC2. Right: The distribution of the projected components
(n an ¢) are shown for a subsample where GALEX photometry is available. The histograms
correspond to NUV-bright (solid grey) and NUV-faint galaxies (dashed black). Notice only
optical spectra are used for the definition of the components.

3. Beyond Model Fitting SEDs

Large spectroscopic surveys, such as the Sloan Digital Sky Survey (SDSS, York et al.
2000) have opened up the possibility of extracting information on a purely statistical
basis. One could consider a sample of galaxy spectra as a set of multi-dimensional vectors,
converting this problem into a multi-variate analysis method. For instance, these vectors
can be expressed as linear combinations of a reduced set of “basis vectors” that constitute
fundamental stellar populations from which one can disentangle the observations. Such
methods have been applied to perform general classifications of spectra from surveys
such as 2dFGRS (Madgwick et al. 2003) or SDSS (Yip et al. 2004). They can also be
used to improve data reduction, such as in the removal of night sky lines (Wild & Hewett
2005). More relevant to this conference, these techniques can be exploited to disentangle
the information from the stellar populations (see e.g. Ronen et al. 1999, Ferreras et al.
2006).

In this paper, we present and extend recent results following this approach, focused
on a volume-limited sample of early-type galaxies (ETGs) from SDSS (see e.g. Rogers
et al. 2007 and Rogers et al. 2010). We emphasize that the method does not rely on
information from any model in order to extract information about the underlying stellar
populations.

3.1. Independent Component Analysis

In Fig. 1, we illustrate the technique of Independent Component Analysis (Hyvérinen
et al. 2001), where the observations are assumed to be created from superpositions of
spectra that are statistically independent. One could naively relate these independent
components to the populations that define the star formation histories of the galaxies
under scrutiny. In the left panel of Fig. 1, we show galaxy spectra as projections on to the
first and second components obtained from Principal Component Analysis (see Rogers
et al. 2007, for details). Principal components are decorrelated signals extracted from
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Figure 2. A sample of 1,000 galaxies from the sample of SDSS early-type galaxies, with available
GALEX photometry, is presented to an Information Bottleneck sorter (see text for details). Left:
The inset shows the decrease in information as the number of classes is reduced from the trivial
set (as many classes as galaxies) to a target of 10 classes. The main panel shows the NUV-r
colour of each of the 10 classes. Right: Spectral information of the 10 classes. The average
spectrum of the first class is shown in the top-left panel. For the other 9 classes, we show the
relative change with respect to the first one.

the original spectra. In order to go beyond a simple decorrelation, one can explore the
non-gaussianity of the distribution: if we assume that the observations are superpositions
of more fundamental spectra, according to the central limit theorem, the latter should
be less gaussian. We show as a solid line the contour of the kurtosis of the (PC1,PC2)
projections, as a function of the projeciton angle. There is a preferred set of directions
where the kurtosis reach extrema (see inset). These directions define a new pair of “co-
ordinates” for each spectra, which are the projections on to the new axes, given here
as 1 and (. It is possible to interpret the meaning of these new components when we
compare the distribution of n and ¢ as a function of NUV-r colour, combining SDSS and
GALEX photometry (rightmost panels of Fig. 1). Out of the two components, ¢ is found
to correlate strongly with NUV excess, a sign of recent star formation (Kaviraj et al.
2007).

3.2. The Information Bottleneck

In Fig. 2, we present another approach based on the concept of mutual information
between sets of data. The Information Bottleneck technique (IB, Slonim et al. 2001)
focuses at a classification of input data based on an algorithm that aims at minimising the
complexity of the set (i.e. the number of classes), while minimising the information lost
by the classification. For this example, we start with 1,000 early-type galaxies from the
above mentioned sample, and classify them into ten bins, according to the IB method. In
the inset of the left panel, the mutual information between spectra and classes is plotted
as a function of the total number of classes in each step, from full information at the top-
right corner, where we start with the trivial choice of having as many classes as galaxies,
to the bottom-left corner, where only ten classes are used to describe the entire set, and
60% of the initial information retained. On the left of Fig. 2, the distributon of NUV-r
colours is shown for each class, showing that there is a clear trend in the classification,
with respect to NUV flux, meaning that, to first order, the most important factor driving
the differences in the spectra of massive ETGs is the presence of recent star formation.
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Note that the classification of the spectra uses the optical range (A= 3800-7000A), where
the presence of recent star formation, as detected by an NUV excess, leaves a very weak
trend, which is hard to detect when using traditional methods of spectral fitting. The
panels on the right show the average spectra of all ten classes (from class 2 to 10, we
show the fractional change with respect to the spectrum of the first class). The excess
in blue light as one progresses down the class number is evident. Notice also the bumps
in the higher order classes, at the positions of the HJ (A=4102A) and Hy (A =4340A)
Balmer absorption lines, which is also a characteristic feature of age.

4. Epilogue

The methods described here are nothing but a tip in the iceberg of possible techniques
explored in the field of multivariate analysis. Machine learning methods such as neural
networks (Abdalla et al. 2008) or support vector machines (Tsalmantza et al. 2009) can
be applied to galaxy data, when prior information about the classes is robust. Clus-
tering methods have also been tentatively applied to galaxy spectra (Sdnchez Almeida
et al. 2011). However, a proper disentanglement of the underlying stellar populations still
remains an open problem.
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