
THE NUMBER OF GRAPHS WITH A GIVEN 
AUTOMORPHISM GROUP 

J. SHEEHAN 

1. I n t r o d u c t i o n . In this paper, the graphs under consideration may 
have multiple edges bu t they do not have loops. We enumera te the number 
N[H: n, p] of topologically dist inct graphs with n vertices and p edges whose 
automorphism group is the permuta t ion group H. As in (5), this enumera t ion 
is considered in the context of the theory of permuta t ion representat ions of 
finite groups. W e begin with some definitions and notat ion. 

Let N denote the set of na tura l numbers 0, 1, 2, . . . , etc. , and let 
[xi, x2, . . . , xJ denote an unordered n-tuple of elements from some set. Sup­
pose © is a permuta t ion group of degree q which permutes the elements of 
the set X = {cii, a2, . . . , aq). T h e set of trivial orbits of g G ® will be denoted 
by T(g) and \T(g)\ will be denoted by m(g). Let K(&) denote the symmetric 
group of order q\ which consists of all permuta t ions of the elements of X. 
Usually, when the elements permuted by the symmetr ic group of degree q 
and order ql are no t specified explicitly, it wTill be denoted by ©r/. T h e per­
muta t ion 

/ ai a,2 . . . a,j \ 

\atl ai2 . . . dij 

belonging to K(&) will be denoted, when no ambigui ty arises, simply by 

( ( : ) ) • 
etc . Le t (@)p, p G N, denote the group of pe rmuta t ions (see 1, p . 300) of the 
homogeneous products of p dimensions of the elements of X induced by the 
permuta t ions belonging to ® of elements of X. More precisely, suppose 
ak

s, as^X, denotes the unordered set {as, as,.. . , as} of k e lements and ak
sg, g£ ©, 

denotes the unordered set {asg, asg, . . . , asg} of k e lements. Then (&)p is the 
permuta t ion group, which permutes all e lements of the form 

lLaii, a22, • • . , a s J 

{pi G N, pi + p2 + . . . + ps = p; au G X, au ^ ajjy i ^ j), consisting of 
permuta t ions <t>v(g), g G ®, defined by 

( lali, all, . . . , aP
sll \ 

) ' 
laug, allg, . . . , aP

s*sg}/ 
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Example. Suppose tha t X = {a, b, c] and ® = {gi, g2, gz}, where 
gi = (a ) (5)(c) , g2 = (a b c) and g3 = {a c b). Then 

(@)2 = {02tei),02te2),0
2fe)î, 

where, in an obvious notat ion, <j>2(gi) = (a2) (b2) (c2) (ab) (be) (ac), <f>2(g2) = 
(a2 b2 c2)(ab be ac), and 02(g3) = («2 c2 b2)(ab ae be). A permuta­
tion representation n of an abs t rac t finite group P of order TV is a homomorphism 
from P i n t o a permutat ion g roup®, e.g., 0P: ® —> (@)pis ( see l , p. 300), a permu­
ta t ion representation of @ called, say, the (p)-representation of @. Now 
suppose m: P —» ®i and ^2: P —» ®2 are permutat ion representations of P , 
and ®i and @2 permute the elements of the sets Ai = {xi, x2, . . . , Xe}, 
A2 = {yi, y2, - - • , ye}, respectively. Then 111,1x2 are equivalent, denoted by 
Mi ^ M2, if there exist mappings c: / n ( P ) —>/x2(P), r : A\^> A2 such t h a t 
for every x* G Au 

(XifJLi(r))r = (xiT)(ii2(r)(r), r G P . 

Let /z: P —> @ be a permutat ion representation of P . The characteristic x(0> 
r £ P , of r in /x is the number of trivial orbits of ju(r), i.e., x ( 0 = nt(ii(r)). 
T h e character % of P in /x is the set of characteristics x(0> f € P . If M ( ^ ) 
consists of jus t the ident i ty element of ®, then /* is called the unit repre­
sentation of P and %(r) = 1, r É P . In this case, x is called the unit character 
of P and is denoted by 1. If P 0 is a subgroup of P , then the mar& (see 1, 
p. 236) m ( P 0 ; M) of PQ m M is defined by 

m (P o ; M ) = I n rOi(r))|. 
v u ' ^ y I r€Po I 

If P i , P 2 , . . . , PQ, are all the distinct, up to conjugacy, subgroups of P , then 
m(/j) is the set of marks m(P\\ /x), i = 1, 2, . . . , 12. Suppose /xi, /z2, . . . , iiN 

are permuta t ion representations of P and xi> X2, • • • , XN are the characters 
of P in m, /x2, . . . , Miv, respectively. T h e scalar product (xi, X2, . . . , XN) of 
Xi> X2, . . • , XN is defined by 

(Xi, X2, . . • , Xiv) = - Z ) Xi(OX2W . • • Xtf(0-

We shall now restrict the discussion to the case when P = @n. Suppose 
i7i, i J 2 , . . . , iJco are all the distinct, up to conjugacy, sugbroups of @w. Let 
Si = {HiXn, HiXi2, . . . , HiXiai} be the set of left cosets of ©w with respect 
to H^ Let <Sn

IIi denote the group of permutat ions 

"'(f) = ( G w ) ) ' * @« 1 * * £ «„ 1 * .' S ». 
®v

Hi is a transi t ive group and /z* is called //z£ transitive permutation represen­
tation of @n induced by Ht. Le t 

fi:K(!S>?)-+{K(!5?)} 
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denote the (p)-representation of K(&n{). Clearly, the composition <//̂ uz- of 
<f?i and ni is again a permutation representation of @w called (see 4) the 
symmetrized Kronecker product representation of ©w of dimension p induced 
by Ht. We write o^ = (JUHU 1 ^ i' S w. Let xu X% denote the character 
of ®n in Hi and u\ respectively, and let xt denote the character of i£(@Jf») 
in 4%. I t is well known (see 2, p. 273) that x tW = (n}-hp/\Hi\gp)> r G ©n, 
where Cp is the class of ©w, of order gp, which contains r and &p = |CP O Ht\. 

2. The main theorem. Let H be a permutation representation of ©w 

and let x be the character of ©w in /x. If 7̂  is a transitive constituent of 
M(@W)> let H(T)(r) denote the restriction of ju(r) to a permutation on the ele­
ments of T, e.g., if ju(©re) permutes the elements: 1, 2, 3, 4, 5, 6, 7; T = {4, 5, 
6,7} and /*(') = (12) (3) (456) (7), then /z(r)(r) = (456) (7). Therefore, by 
definition, /Z(D is a transitive permutation representation of ©w. 

LEMMA 1. (See 3, p. 57.) /Z(T) ^ //a, 1 ^ a ^ co, w/zere n(Ha) is the stabilizer 
of some element of T. 

Remark 1. jita is called a transitive constituent of /x. Suppose ju(2n) has 
transitive constituents 7\, !T2, . . . , T6 and /Z(7-) ^ Hpn ^ ^ N, 1 ^ /S* ^ «, 
1 S i S 6- {npi'. i = 1, 2, . . . , 0} is called ^ decomposition of y. into its tran­
sitive constituents and we write ju = ]£*=iMfr- The decomposition of /x is 
unique up to equivalence. 

The following lemma is well known and follows immediately from the 
definitions. 

LEMMA 2. 

e 
(1) x M = 2 X0i(r), r G @*. 

Remark 2. (1) is usually written as % = Ef=i X^- X& is called a transitive 
constituent of % ovnd {x^- i = 1, 2, . . . , 0} is called the decomposition of x 
into its transitive constituents. Equivalent representations of ©w have the 
same character, therefore, the decomposition of x is unique. The following 
lemma is well known. 

LEMMA 3. (See 3, p. 280.) (x, 1) = 0, where 6 is the number of transitive 
constituents of /x (and x). 

Let N[n, p] denote the number of topologically distinct graphs with n 
vertices and p edges and N[H: n, p] the number of such graphs with auto­
morphism group H. Suppose HLj 1 ^ L rg œ is the subgroup of @« permu-
tationally isomorphic to the direct product ©„_2©2 of ©n_2 and @2, then we 
have the following lemma. 

LEMMA 4. N[n, p] = (xi, 1). 
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Proof. HL is permutat ional ly isomorphic to the automorphism group of a 
graph with n vertices consisting of one edge and n — 2 isolated vertices. 
Now, applying Theorem 3 of (5), the lemma follows immediately. 

T H E O R E M 1. xl = Z"=i 0* x« tf and o n b if a% = N[Ht: n, p]. 

Proof. We recall t h a t ap
L: &n -> {K(<&£*)}*. Suppose xl = Z 1 - i a>iXt. Let 

T\\, 7̂ 12, . . . , Tiai, T2i, T22, • . . , 7̂ 202) • • • > ^wi, ^ 2 , . . . , Tœao) be the t ran­
sitive const i tuents of ap

L(@n) and suppose, from Lemma 1, t h a t âp
L(Tij) ~ fxt, 

j = 1, 2, . . . , a,i, 1 S i S co, when à I (Hi) is the stabilizer of some element 
of Ttj. Let this element be 

U = lHLxLci,HLxLc2f . . . ,HLxLcti, HLxLck £ SL, 

Pi G N, pi + P2 + . . . + Pt = p. Thus , for every h Ç i7 , , C/cri(A) = U, i.e., 

(2) I #?**„*, tf^A . . . , HÏxLeth] = U. 
Let N be the set {^1, u2, . . . , un}, and suppose N & N denotes the set 

consisting of \uu Ujj, i, j = 1, 2, . . . , n. Suppose ®w permutes the elements 
of N and, in particular, suppose ©2 permutes the elements u\, u2 and ©n_2 

the elements uz, uA, . . . , ww. A mapping \p: SL—> N & N from SL into N & N 
is defined as follows: 

HLxLh\p = {uu uj}, l S b S aL, 

if {uihxLb} ii2hxLb} = [Wj, %!, h £ HL (= ©w_2@2). This mapping is well-
defined, one-to-one and onto, and induces, in a na tura l way, a one-to-one 
mapping \[/p (say) of the set of elements permuted by ap

L(®n) onto the set of 
sets each consisting of p elements of N & N. If G is the graph with vertex 
set N(G) = N and edge set E(G) = tp(u), we write G = G(u). T h u s G(u) 
is a graph with n vertices and p edges. If u and u' are elements permuted by 
o"z,(©»), then, by definition, G(u) and G(u') are topologically similar if and 
only if u and u' belong to the same transit ive const i tuent . Fur thermore , from 
equat ion (2), Ht is the automorphism group of G(u). Therefore, there exists 
a t least at topologically dist inct graphs with n vertices, p edges and au to­
morphism group equal to Ht. Since, from Lemmas 3 and 4, N[n, p] = J^œ

i==iai, 
it follows t h a t N[Ht: n, p] = au 1 ^ i ^ co. Since \pp is one-to-one and onto, 
the converse of the theorem is also true. This completes the proof of the 
theorem. 

3. T h e m a r k s of a s u b g r o u p in ap
L. In Theorem 1 it was proved t h a t 

if XL = X n = i UiXi, then at = N[Ht: n, p]. T o obtain the value of au 

1 ^ i ^ co, a knowledge of XL is insufficient. However, we note the following 
theorem. 

T H E O R E M 2. (See 1, p. 238.) xz, = 2TLi atXi if and only if 
w 

m(crp
L) = ] C ai m(tJLi) 

i = i 

(i.e., if and only if m(Hj\ ap
L) = £ " = 1 a{m(Hf, /**), 1 ^ j ^ co). 
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Remark 3. In (1, p. 238) and (2) it was shown that if the sets of marks 
m((TP

L), m(ni), i = 1, 2, . . . , co, are known, then they determine the a / s 
uniquely. This is essentially due to the " triangular nature" of the table of marks 
m(Hi',iMj), i,j = 1, 2, . . . , co, illustrated in the example below. We will 
assume the marks m (Hi] nf), i,j = 1, 2, . . . , co, are known. We now show 
how to calculate the marks m(Hù ap

L), i = 1, 2, . . . , co. Once these are 
known, it is a simple matter (see the example below) to determine the a / s 
and hence, by Theorem 1, to determine N[Hi\ n, p], i = 1, 2, . . . , co. Some 
further definitions and notation are now required. 

Suppose Pi , P2 , • • • , P e are the transitive constituents of nL(Ha), 1 :g a ̂  co, 
where Pt = {da, di2j . . . , diyi], dtj G SL, j = 1, 2, . . . , yu 2Z1=i 7* = <*L. 
Let £(a) be the permutation defined by 

£(a) = (dn, di2, . . . , dlyi)(d21, d22j . . . , d272) • • • (d«?i, dç2, . . . , dÇ7g). 

Thus £(a) G K(^)n
L) but is not necessarily in ©W

L. J (a) will be called //^ 
Ha-induced permutation of i£(©fL). Note that if £(a) G ©fL, then there 
exists r 6 ©w such that iiL(r) = £(a) and in this case m(%(a)) = XL W-
Finally, suppose /Ae cycle-index Z[<&p] of ©p is defined by: 

(3) zmP] = ̂ E A ^ . . . , ^ . . ./*>, 
pi in 

where the summation is over all partitions [j] of p and 

A. . . = Pi 
*>i>*->P I'i2j*...ps*j1lj2\...jpl' 

then Z[(Bp;m(^(a))] denotes the natural number obtained by writing 
f = w(£'(a)), t= 1,2, ...,p, in (3). 

LEMMA 5. (See 4, p. 90.) 

x£(£(<*)) = Z[®p;m(i(a))l 1 ̂  a ^ co. 

THEOREM 3. 

m(tfG; CT̂ ) = Z[®p; m(£(a))], 1 ̂  a S co. 

Proof. Let w be an element permuted by (©fL)p. For example, suppose 

7 . = If jP 11 J^12 jPl7j J2>2 1 ^ 2 2 A ? / « I / 9 2 / / ^ ^ H 
& = ILcXil , #12 , . . . , &17!1, #21 , #22 , • • • , #2722> • • • i #<Z1 » #Ç2 » • • • » ̂ qjg h 

Q 7» 

£u € N, E E />i; = £• 
1=1 j=l 

Assume, furthermore, that 

(4) uap
L(h) = IdWh, dP

12% . . . , af^h, dl\% dll% . . . , dl%% . . . , 

= w for every h Ç i7a. 

https://doi.org/10.4153/CJM-1968-103-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-103-x


GRAPHS 1073 

Then, by definition, m(Ha; ap
L) is the number of elements u which satisfy 

(4). Since P* is a transitive constituent of ixL(Ha), for any two elements dia 

and dtp of Pt there exists hf £ Ha such that 

(5) dia»L(hf) = d t e i ' = difi. 

Therefore, from (4) and (5), 

(6) pij = p t t > 1 £j, k g yu 1 g i g g. 

On the other hand, if w is an element for which (6) is satisfied, then uap
L(h) = u 

for every h Ç Ha. Let £î;- = pi]c = p u l ^ i ^ q, then w may be denoted by 

w = iLrfn, du, . . . , ai71, a2i, tt22, • • . , d2y2, . . . , #J, d j , . . . , dQyJ} 

(7) Tl^l + 72p2 + . . . + Jçpq = p. 

However, if u' is an element permuted by {0^L)V then, from the definition 
of {(a), 

(8) u'&Ma)) = W 

if and only if uf is of the same form as u (as denoted by equation (7)), i.e., 
uf<i>VL(£(«)) = u' if and only if u'<jp

L(h) = u' for every h £ # a - Therefore 

»»(#,;<£) = x£(É(a)) = £[©,;»»(««))] 

(by Lemma 5). This completes the proof of the theorem. 

4. Example (n = 5). Let ©5 permute the symbols a, 6, c, <Z, and e, and 
1 denote the identity permutation. We denote: (i) the cyclic subgroup of ©& 
generated by an element of cyclic decomposition (j'1,72, • . . ,jk) by C(jlfj2, 
. • • ,jk), e.g., C(22) denotes the subgroup of ©4 generated by (ab)(cd); 
(ii) the dihedral subgroups of orders 8 and 10 of ©4 and ©5 by D8 and Di0i 

respectively; (iii) the alternating subgroups of ©4 and ©5 by A4 and A5, 
respectively; (iv) the direct product of groups Pi and P 2 by PiP 2 . Then the 
distinct, up to conjugacy, subgroups of ©5 are: Hi = {1} ; H2 = ©i©2 ; 
Hz = C(122); H, = C(l23); iJ5 = C(14) ; H, = {1, (o6)(cd)(«), (ac)(fed)(«), 
(ad)(6c)(*)}; #7 = ©i©2; Hs = C(5); #9 = ©i©3; #10 = C(3)©2; 
#11 = {1, (a6c)(d)to. (acb)(d)(e), (ab)(c)(de), (ac)(b)(de), (a) (be) (de)}; 
H u = ©i£>8 ; #13 = D10) jffi4 = ©1^4; #15 = ©2©3î -H"i6 is a metacyclic 
group of order 20 generated by (abcd)(e) and (aedeb); Hn = ©i©4; H18 = A5; 
H19 = @5. 

Thus HL = ©w_2@2 is, when n = b, the subgroup i7i5. By inspection, the 
table of marks (see 1, p. 241) for ©5 is as follows. 
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H i #2 Hz # 4 # 5 H, H7 H8 H* Hio Hu H12 His H"14 H i 5 Hi 6 H]7 His H19 

Mi 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M2 60 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ms 60 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M4 40 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ms 30 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M6 30 0 6 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 
M7 30 6 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

Ms 24 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 
M9 20 6 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 
Mio 20 2 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

Mil 20 0 4 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

M12 15 3 3 0 1 3 1 0 0 0 0 1 0 0 0 0 0 0 0 
Mi3 12 0 4 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 
MH 10 0 2 4 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 

M15 10 4 2 1 0 0 2 0 1 1 1 0 0 0 1 0 0 0 0 

M16 6 0 2 0 2 0 0 1 0 0 0 0 1 0 0 1 0 0 0 

M17 5 3 1 2 1 1 1 0 2 0 0 1 0 1 0 0 1 0 0 
Mis 2 0 2 2 0 2 0 2 0 0 2 0 2 2 0 0 0 2 0 

Mi 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

(the entry in the ith row and jth column is m(Hj] MO)-

Since m(H'_,; MO = 0, j > i, the rows of the table are independent. The cyclic 
decomposition of the i7a-induced permutation £(a) of i£(©f15) will be denoted 
by p[£(a)]> 1 = a = 19- The following results have been obtained: 

1 2 o 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

110 1423 1224 133 242 234 12224 52 133 136 136 242 52 46 136 10 46 10 10 

715 71 27 4 3 7 
2002 140 42 4 0 0 
5005 259 77 10 3 13 

11440 448 112 10 0 0 

15 0 4 2 2 3 0 1 2 0 1 0 0 
22 2 4 2 2 0 2 0 2 0 0 0 0 
35 0 10 4 4 3 0 1 4 0 1 0 0 
48 0 10 4 4 0 0 0 4 0 0 0 0 

(where the entry in the ith row and jth column is m(H); a{5), i ^ 1, and 
p[i(j)] when i = 1). 

As an example, in order to calculate m(H9; an) we note, from Theorem 3, 
that 

m(H9;<r\5) = Z[©5; m(£(9))]. 
Now 

Zm,] = (5!)_1{/î + 10/fo + I5/1/2 + 2O/I/3 + 30/i/4 + 24/5 + 20/2/3} 

and, by inspection, £[£(9)] = (133). Therefore, writing /1 = m(£(9)) = 1; 
h = ni(em) = l ; / 3 = m(£3(9)) = 10;/4 = m(£4(9)) = l ; / 6 = m(£«(9)) = 1, 
we obtain 

tn(Ht; a\b) = Z[©6; m(S(9))] = (5!)-1{ l5 + lO.l'.l + 15.1.1* + 20.12.10 
+ 30.1.1 + 24.1 + 20.1.10} = 480/5! = 4. 
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Furthermore, it is very easily verified from the table of marks that 

m(<rlb) = 6m (MI) + 12w(/z2) + 4w(/x3) + 9m 0?) + w(/z9) + w(/xi3) + 2ra(jLn5). 

Then from Theorems 1 and 2, iV[i?i: 5, 5] = 6, N[H2: 5, 5] = 12, 
N[Hz:5, 5] = 4, iV[#7: 5, 5] = 9, N[H9: 5, 5] = 1, JV[ffi8: 5, 5] - 1, 
N[HVo: 5, 5] = 2, and, finally, N[Ht: 5, 5] = 0, i = 4, 5, 6, 8, 10, 11, 12, 14, 16, 
17, 18, 19. These graphs are sketched below. 

The following results have been obtained: 

1 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 

N[Ha: 5, 4] 1 5 2 0 0 0 4 0 0 0 0 2 0 0 2 0 1 0 0 
N[Ha: 5, 5] 6 12 4 0 0 0 9 0 1 0 0 0 1 0 2 0 0 0 0 
N[Ha: 5, 6] 21 25 8 0 0 1 12 0 2 0 0 2 0 0 4 0 1 0 0 
N[Ha: 5, 7] 57 49 16 0 0 0 20 0 3 0 0 0 0 0 4 0 0 0 0 

Graphs with 5 vertices and 5 edges 

The automorphism group of the graph is written below each graph. 

H, 

H2 

O 

H, Hs 

H2 

O 

6 à 
H, 

9 O 

H, 

ô ô ô ô o ô o ô o o o 
Hx Hl Hi Hi Hi Hi 

H7 

O O O O O O C C ^ ^ D O O 

H: H-, Hi H: H7 H; 
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H7 H9 Hu His His 
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