THE NUMBER OF GRAPHS WITH A GIVEN
AUTOMORPHISM GROUP

J. SHEEHAN

1. Introduction. In this paper, the graphs under consideration may
have multiple edges but they do not have loops. We enumerate the number
N[H: n, p] of topologically distinct graphs with # vertices and p edges whose
automorphism group is the permutation group H. As in (5), this enumeration
is considered in the context of the theory of permutation representations of
finite groups. We begin with some definitions and notation.

Let N denote the set of natural numbers 0,1,2,..., etc., and let
21, %2, . . ., x,] denote an unordered n-tuple of elements from some set. Sup-
pose & is a permutation group of degree ¢ which permutes the elements of
the set X = {ay, as, . . ., a,}. The set of trivial orbits of g € & will be denoted
by T'(g) and |T'(g)| will be denoted by m(g). Let K(®) denote the symmelric
group of order ¢g! which consists of all permutations of the elements of X.
Usually, when the elements permuted by the symmetric group of degree ¢
and order ¢! are not specified explicitly, it will be denoted by &,. The per-

mutation
<(L1(l2 .. .(L,,)
Qg Qigy - - aiq

belonging to K(®) will be denoted, when no ambiguity arises, simply by

(1)

etc. Let (8)7, p € N, denote the group of permutations (see 1, p. 300) of the
homogeneous products of p dimensions of the elements of X induced by the
permutations belonging to & of elements of X. More precisely, suppose
a¥, a,€ X, denotes the unordered set [ay, ay, .. ., a,] of k elements and a‘g, g€ ®,
denotes the unordered set [« g, asg, . .., ag] of k elements. Then (®)? is the
permutation group, which permutes all elements of the form
[, @, . . ., o]

PN, pr+po+ ...+ ps=p; an € X, ay; 7% ayy, © ¥ j), consisting of
permutations ¢?(g), g € &, defined by

) a1, a%, ..., a2l
' (g) = :

[ 12 D, Ds
a11g, edg, . . ., Assf
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Example. Suppose that X = {a,b,c} and © = {gi, gs, g3}, where
g1=(a)®)(c), g2= (@ b ¢) and g3 = (@ ¢ b). Then

(©)* = {¢%(21), 97 (g2), ¢*(gs)},

where, in an obvious notation, ¢2(g1) = (a?)(02) (c¢?) (ad) (b¢c) (ac), ¢2(g2) =
(a® b2 ) (ab bc ac), and ¢2(g;) = (a® ¢ b%)(ab ac bc). A permuta-
tion representation u of an abstract finite group P of order 7 is a homomorphism
from P into a permutation group @, e.g., ¢?: & — (&)?is (see 1, p. 300), a permu-
tation representation of & called, say, the (p)-representation of ®. Now
suppose u1: P — &; and ws: P — @, are permutation representations of P,
and &, and &, permute the elements of the sets A; = {xy, %, ..., xo},
As = {v1, 99, ..., ve}, respectively. Then u;, us are equivalent, denoted by
w1~ wg, if there exist mappings o¢: u1(P) — ua(P), 7: A1 — A, such that
for every x; € 4,4,

(i ())T = (x47) (uo(r)o), 7 € P.

Let pu: P — & be a permutation representation of P. The characteristic x(r),
r € P, of 7 in u is the number of trivial orbits of u(r), i.e., x(*) = m(u(r)).
The character x of P in u is the set of characteristics x(r), » € P. If u(P)
consists of just the identity element of ¢, then u is called the unit repre-
sentation of P and x(r) = 1, r € P. In this case, x is called the unit character
of P and is denoted by 1. If P, is a subgroup of P, then the mark (see 1,
p. 236) m(Py; ) of Py in u is defined by

m(Po; ) = | ) T

If Py, Ps, ..., Pg are all the distinct, up to conjugacy, subgroups of P, then
m(u) is the set of marks m(P;;u), 2 =1,2,...,Q. Suppose ui, w2, . . ., uy
are permutation representations of P and xi, Xx», . - . , x5 are the characters
of P in uy, pe, ..., uy, respectively. The scalar product (xi, x2, - .., xy) of
X1, X2y + + - » X 18 defined by

G ooy ) = 7 2 )3l - x0):

We shall now restrict the discussion to the case when P = &,. Suppose
Hy, H,, ..., H, are all the distinct, up to conjugacy, sugbroups of &,. Let
S: = {Hxu, Hx:, ..., Hix.} be the set of left cosets of &, with respect
to H,. Let &,7¢ denote the group of permutations

/J,i(f) = <(Hixik>>, r € @nr 1 é k é a g, 1 é 7 é w.

Hx o

©,%i is a transitive group and u;is called the iransitive permutation represen-
tation of &, tnduced by H,; Let

¢%: K(&") = (K@)}
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denote the (p)-representation of K(&%:). Clearly, the composition ¢’u; of
¢% and p; is again a permutation representation of &, called (sec 4) the
symmelrized Kronecker product representation of &, of dimension p induced
by H,; We write ¢ = ¢iusy, 1 £ 7 =< w. Let x; X7 denote the character
of &, in p; and o, respectively, and let % denote the character of K (S9+)
in ¢ It is well known (see 2, p. 273) that x.,(r) = (nlh,/|H/g,), r € &,,
where C, is the class of &,, of order g,, which contains r and %, = |C, N H|.

2. The main theorem. Let u be a permutation representation of &,
and let x be the character of &, in u. If 7" is a transitive constituent of
w(&,), let g (r) denote the restriction of u(r) to a permutation on the ele-
ments of T, e.g., if u(&,) permutes the elements: 1,2,3,4,5,6,7; T = {4, 5,
6,7} and p(r) = (12)(3) (456) (7), then fu(r) = (456) (7). Therefore, by
definition, @y is a transitive permutation representation of &,.

Lemya 1. (See 3, p. 57.) Oy ~ pay 1 = ¢ £ w, where u(H,) s the stabilizer
of some element of T.

Remark 1. u, is called « tramsitive constitieent of u. Suppose u(E,) has
transitive constituents 7Ty, T, . .., T and @y ~ pg, B: €N, 1 £ 8, £ o,
1 27120 {ug:1=1,2,...,0} is called the decomposition of u into ils tran-
sitive comstituents and we write p = ZLl ug;. The decomposition of u is
unique up to equivalence.

The following lemma is well known and follows immediately from the
definitions.

Levara 2.
/]
(1) x(r) = Zl xs; (), 1€ G,

Remark 2. (1) is usually written as x = 2‘2:1 Xp:- Xp; 1s called « tramsitive
constituent of x and {xz:17 = 1,2,...,68} is called the decomposition of x
into its tramsitive constituents. Equivalent representations of &, have the
same character, therefore, the decomposition of x is unique. The following
lemma is well known.

Lianta 3. (See 3, p. 280.) (x, 1) = 0, where 6 is the number of tramsitive
constituents of u (and x).

Let N[n, p] denote the number of topologically distinct graphs with =
vertices and p edges and N[H: n, p] the number of such graphs with auto-
morphism group H. Suppose H;, 1 £ L. £ w is the subgroup of €, permu-
tationally isomorphic to the direct product &,_.Z. of &, » and &, then we
have the following lemma.

Leyya 4. Nin, p] = (X3, 1).
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Proof. Hy is permutationally isomorphic to the automorphism group of a
graph with n vertices consisting of one edge and #» — 2 isolated vertices.
Now, applying Theorem 3 of (5), the lemma follows immediately.

THEOREM 1. x7 =Y %1 a;x: if and only if a; = N[H: n, p].
Proof. We recall that o%: &, — {K(S;£)}?. Suppose x% => %-1 a;x; Let

Tlly T12v e ey Tlau T?l) T22y ce ey T?azy s ey Twly Tw2' ceey Twaw be the tran-
sitive constituents of ¢%,(&,) and suppose, from Lemma 1, that 677,y ~ u;
i=1,2,...,a,1 =17 = o when ¢2(H,) is the stabilizer of some element

of T';;. Let this element be
U = ﬂHzlean?chz: L] yHthLc;]]y HLchk 6 SL»
pi €N, pr+ p2+ ...+ p, = p. Thus, for every h € H,, Uy (h) = U, i.e.,

2) [HD %y, Hix ook, . .. Hiepe Bl = UL
Let N be the set {uy, us, ..., u,}, and suppose N & N denotes the set
consisting of [uq u,], 4,7 = 1,2, ..., n. Suppose &, permutes the elements

of N and, in particular, suppose &, permutes the elements u1, #, and S,_,
the elements us, 4, . . ., #,. A mapping ¥: S, > N & N from S;, into N & N
is defined as follows:

Hypxpy = [u, uy], 120 = ay,

if [wahxpy, wshxry] = [u,, wl, B € H, (= ©,048,). This mapping is well-
defined, one-to-one and onto, and induces, in a natural way, a one-to-one
mapping ¥? (say) of the set of elements permuted by ¢%(&,) onto the set of
sets each consisting of p elements of N & N. If G is the graph with vertex
set N(G) = N and edge set E(G) = ¢*(u), we write G = G(u). Thus G(u)
is a graph with # vertices and p edges. If # and ' are elements permuted by
o (3,), then, by definition, G(x) and G(#') are topologically similar if and
only if # and #’ belong to the same transitive constituent. Furthermore, from
equation (2), H, is the automorphism group of G (). Therefore, there exists
at least «; topologically distinct graphs with # vertices,  edges and auto-
morphism group equal to H;. Since, from Lemmas 3and 4, N(x, p] =Y _1a;,
it follows that N[H;: #n, p] = a;, 1 £ 1 = w. Since ¢” is one-to-one and onto,
the converse of the theorem is also true. This completes the proof of the
theorem.

3. The marks of a subgroup in ¢%. In Theorem 1 it was proved that
if x% =X %-1axi then a; = N[H; n,p]. To obtain the value of «,,
1 £1 = w, a knowledge of x7 is insufficient. However, we note the following
theorem.

THrEOREM 2. (See 1, p. 238.) xz = Y%—1 awx: if and only if

m(on) =2 aim(u)
i=

(i.e., if und only if m(H;;07) =X miam(Hj;p), 1 £ j = w).
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Remark 3. In (1, p. 238) and (2) it was shown that if the sets of marks
m(o), m(us), 2 =1,2,...,w, are known, then they determine the a;'s
uniquely. This is essentially due to the ‘“‘triangular nature’’ of the table of marks
mH iy uy), 4,7 =1,2,...,0, illustrated in the example below. We will
assume the marks m(H;; u;), 4,7 = 1,2,..., w, are known. We now show
how to calculate the marks m(H;;o%),7=1,2,...,w. Once these are
known, it is a simple matter (see the example below) to determine the a,'s

and hence, by Theorem 1, to determine N[H;;n, p], 2 =1,2,..., w. Some
further definitions and notation are now required.
Suppose Py, P, . .., P,are the transitive constituents of u;, (H,),1 = ¢ = w,

where Pl = {d’[ly diz, “eey di‘yi}v dij S SLv ] = 17 2! e Y Z%=l Yi = Op.
Let £(¢) be the permutation defined by

f(a) = (dn, dm, e ey dl—”)(dgh d22, ey d272) [P (dql, dqg, ooy d,”q).

Thus £(a) € K(S52) but is not necessarily in &L, £(a) will be called the
H,-induced permutation of K(SLL). Note that if £(a) € S5z, then there
exists 7 € &, such that u,(r) = £(a) and in this case m(£(¢)) = xz (7).
Finally, suppose the cycle-index Z[S,] of &, is defined by:

1 PR .
®3) Z[&,] = Zf'; Aoy o fiE A
c

where the summation is over all partitions [j] of » and

p!
Aty = gl e gl

then Z[&,;m(¢(a))] denotes the natural number obtained by writing

ft=mEa)), t=1,2,...,p, in (3).
LemMa 5. (See 4, p. 90.)
Xe(E(@)) = Z[8,im(E(@))], 1=a =
THEOREM 3.
m(H,;01) = Z[Sy;m(E(@))], 1=a=o.
Proof. Let u be an element permuted by (S7£)?. For example, suppose

— P11 4P12 Pry Po1 P22 Pyy Pq1  3Pq2 Pgy
u = [Id]l ,dlg,...,dhll,dzl, 227y ¢ o0y Q2yy2y o 0 ,dqf ,dq;‘,...,dq‘;qu]],

P €N, é ;PUZP-
Assume, furthermore, that
@) wuol(h) = ldii'h, d¥°h, . .., dU0h, doih, dsih, . .., dB0h, . . .
o', Ay ., )R]
= u for every & € H,.
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Then, by definition, m(H,; ¢%) is the number of elements u which satisfy
(4). Since P; is a transitive constituent of wuz(H,), for any two elements d,q
and d; of P; there exists A’ € H, such that

(5) diallL(hl) = dmh, = diB-
Therefore, from (4) and (5),

On the other hand, if « is an element for which (6) is satisfied, then uo? (k) = u
for every & € H,. Let p;; = pu = ps, 1 =7 = ¢, then u may be denoted by

w= [d,di, ... di, de, ds, ... doy, ..., dysdyt, .. dit ]
) YiP1 + vope 4+ . ..+ v, = P
However, if %’ is an element permuted by (SFz)? then, from the definition
of £(a),
() w ¢z (E(@)) = o'

if and only if %’ is of the same form as u (as denoted by equation (7)), i.e.,
w'¢%(£(a)) = ' if and only if #'o% (k) = ' for every b € H,. Therefore

m(H,; o) = x2(E(@)) = Z[S,;m(£(a))]

(by Lemma 5). This completes the proof of the theorem.

4. Example (z = 5). Let &; permute the symbols a, 0, ¢, d, and e, and
1 denote the identity permutation. We denote: (i) the cyclic subgroup of &,
generated by an element of cyclic decomposition (ji, js, . . ., jx) by C(j1, Ja,
...y J1), eg., C(2?) denotes the subgroup of &, generated by (ad)(cd);
(ii) the dihedral subgroups of orders 8 and 10 of ©; and &; by D and D;,,
respectively; (iii) the alternating subgroups of &, and &; by A4, and 45,
respectively; (iv) the direct product of groups P; and P, by P;1P,. Then the
distinct, up to conjugacy, subgroups of ;s are: Hy = {1}; H, = GiSy;
H; = C(12%); Hy = C(123); Hs = C(14); Hs = {1, (ab)(cd)(e), (ac)(bd)(e),
(ad) (be)(e)}; Hr = ©:@3; Hs = C(5); Hy = ©i;; Hip = C(3)Sy;
Hy = {1, (abc)(@)(e), (acb)(@)(e), (ab)(c)(de), (ac)(b)(de), (a)(bc)(de)};
Hy, = ©1Dyg; Hys = Dyy; Hyy = @11‘14; His = ©,83; Hyg is a metacyclic
group of order 20 generated by (abcd) () and (cedch); Hin = ©:&s; His=A45;
ng = @5.

Thus Hy = ©,_28, is, when n = 5, the subgroup Hi;. By inspection, the
table of marks (see 1, p. 241) for &; is as follows.
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H, H, Hy Hy H; H¢ H; Hs Hy Hyy Hy Hi» Hys Hiw Hys Hyg Hiyp His Hy

w 120 0 0 0 0O O O O O O 0 O o 0 O o 0 0 0
w 60 6 0 0 O O O O O 0O O O o0 o0 o0 o 0 0 0
u3 60 0 4 0 0 O O O O O O O o0 0 0 0o 0 0 0
we 40 0 0 4 0 O O O O O O O O 0 o0 o 0 0 0
ws 300 2 0 2 0 O O O O O 0 0 0 O o o0 0 0
us 30 0O 6 0 0O 6 O O O O O O O 0 O o 0 0 0
w 30 6 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
us 24 0 0 0 O O O 4 0 O O O 0 0 0 0 0 0 0
ue 20 o 2 o0 0 o0 0 2 0 0O O o0 O o o0 o0 0 0
o 202 0 2 0 0 O 0 0 2 O O O o0 o0 0 0 0 0
w1 200 4 2 0 0 0 O 0 O 2 O 0 O o 0 0 0 0
w2 153 3 0 1 3 1 0 0 0 O 1 o o o o0 o0 0 0
w3z 12 0 4 0 0 0 0 2 0 0O O 0 2 0 0 0 0 0 0
wse 100 2 4 0 2 0 O O O O O 0 2 0 0o 0 0 0
ws 1004 2 1 0 0 2 0 1 1 1 o o0 0 1 o 0 0 0
wme 6 0 2 0 2 0 0 1 0 O 0 O 1 0o 0 1 0 0 0
w7 53 1 2 1 1 1 0 2 0 O 1 0 1 0 0 1 0 0
ws 20 2 2 0 2 0 2 0 0 2 o 2 2 0 0o 0 2 0
me 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(the entry in the 7th row and jth column is m (H;; uy)).

Since m (H;; u;) =0, 7 > %, the rows of the table are independent. The cyclic
decomposition of the H,-induced permutation ¢(a) of K (S5%) will be denoted
by p[é(a)], 1 £ @ = 19. The following results have been obtained:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1o 7428 1220 3% 247 234 12224 5 133 136 136 242 5 46 136 10 46 10 10

715 71 27 4 3 7 15 o 4 2 2 3 0 1 2 0 1 0 0
2002 140 42 4 0 0 22 2 4 2 2 0 2 0 2 0 0 0 0
5005 259 7710 3 13 35 0O 10 4 4 3 0 1 4 0 1 0 O
11440 448 112 10 0 0 48 4 4 0 0 4 0 0 0 O

0 10

(where the entry in the 7th row and jth column is m(H,; o15), 7 1, and
plE(7)] when 7 = 1).

. 5 ~ «
As an example, in order to calculate m (Hy; o15) we note, from Theorem 3,
that

m(Hy; 015) = Z[Ss;m(E(9))].
Now
Z[&5] = (G + 10f1f> + 15/f5 + 20f5fs + 30/1fs + 2475 + 20/2/3)

and, by inspection, p[£(9)] = (13%). Therefore, writing f1 = m(£(9)) = 1;
fo=m(E)) = Lifs = m(E©) = 10:f = m(E©) = 1; s = m( ) = 1,
we obtain
m(Hy; 035) = Z[Ss;m(E9))] = G)7{1° + 10.1°.1 + 15.1.1* 4+ 20.1%10

4+ 30.1.1 4+ 24.1 4 20.1.10} = 480/5! = 4.
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Furthermore, it is very easily verified from the table of marks that

m(als) = 6m(ur) + 12m(us) + 4 (us) + 9m(ur) + m (uo) + 7 (u1s) + 2m (uss).

Then from Theorems 1 and 2, N[H;: 5, 5] = 6, N[H,: 5, 5] = 12,
N[H;:5, 5] = 4, N[H+ 5, 5] =9, N[He: 5, 5] = 1, N[His: 5, 5] =1,
N[His: 5, 5] = 2, and, finally, N[H;: 5,5] = 0,7 = 4, 5, 6, 8, 10, 11, 12, 14, 16,
17, 18, 19. These graphs are sketched below.

The following results have been obtained:

16 17 18 19

(ST

a 1 2 3 45 6 7 8 9 10 11 12 13 14
N[H,: 5, 4] 1 5 2000 4000 0 2 0 0 2 0 1 0 0
N{H,: 5, 5] 6 12 4000 901 0 0 0 1 0 2 0 0 0 0
N[H.:5,6) 21 25 8 0 01 12 0 2 O O 2 O 4 0 1 0 O
N[H.: 57 57 49 16 0 0 0 20 0 3 0 0 0O O O 4 O 0 O O

Graphs with 5 vertices and 5 edges

The automorphism group of the graph is written below each graph.

(IR0

S N N g

iy pRAS Ry

TEOE RN
N

| >

(0]
(o]

D =
s
\

I‘[: FI7 H7
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=0 « _»® o o
H, H, Hi, Hys

Hy;
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