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Abstract
The contrast-based model (CBM) is the most popular network meta-analysis (NMA) method, although alternative
approaches, e.g., the baseline model (BM), have been proposed but seldom used. This article aims to illuminate
the difference between the CBM and BM and explores when they produce different results. These models differ in
key assumptions: The CBM assumes treatment contrasts are exchangeable across trials and models the reference
(baseline) treatment’s outcome levels as fixed effects, while the BM further assumes that the baseline treatment’s
outcome levels are exchangeable across trials and treats them as random effects. We show algebraically and
graphically that the difference between the CBM and BM is analogous to the difference between the two analyses
in a statistical conundrum called Lord’s Paradox, in which the t-test and analysis of covariance (ANCOVA) yield
conflicting conclusions about the group difference in weight gain. We show that this conflict arises because
the t-test compares the observed weight change, whereas ANCOVA compares an adjusted weight change. In
NMA, analogously, the CBM compares observed treatment contrasts, while the BM compares adjusted treatment
contrasts. We demonstrate how the difference in modeling baseline effects can cause the CBM and BM to give
different results. The analogy of Lord’s Paradox provides insights into the different assumptions of the CBM and
BM regarding the relationship between baseline effects and treatment contrasts. When these two models produce
substantially different results, it may indicate a violation of the transitivity assumption. Therefore, we should be
cautious in interpreting the results from either model.

Highlights
What is already known?
The CBM for NMA assumes treatment contrasts are exchangeable across the included studies, while the BM
further assumes the baseline (or reference) treatment’s outcome level is also exchangeable across trials. A
recent study showed that these two models may yield different results when the baseline risks vary across
different designs of studies that compared different sets of treatments.

What is new?
We show that a key distinction between these two NMA models is similar to Lord’s Paradox, a statistical
conundrum about whether a t-test or ANCOVA should be used to compare two groups according to a
change in the outcome. We show that the CBM uses the observed treatment contrasts as the outcome in the
analysis, while the BM uses adjusted treatment contrasts as the outcome. Alternatively, the CBM estimates
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the unconditional differences between one treatment and the baseline treatment, while the BM estimates the
conditional difference by adjusting for the baseline effects.
Potential impact for RSM readers
The two NMA models make different assumptions about the relationship between treatment contrasts and the
reference treatment effects. These differences in statistical assumptions reflect different perspectives on how
the data were generated and how treatments impact patients. Therefore, choosing the appropriate model should
depend on evaluating the validity of these assumptions in real-world scenarios.

1. Introduction

Network meta-analysis (NMA) combines direct and indirect evidence to compare the benefits and
harms of multiple treatments.1–3 Several approaches have been proposed to estimate relative effects
between treatments; differences in their model specifications reflect different assumptions about how
treatments should be compared.4,5 The contrast-based model (CBM), also called the Lu and Ades
model, uses the difference in outcome between a pair of treatments in a given study, i.e., a treatment
contrast, as the unit of analysis, assuming that a given treatment contrast is exchangeable across
studies.6,7 The baseline model (BM) further assumes that the reference treatment’s outcome levels are
exchangeable across studies.1,5 Although these two models are closely related, there has been debate as
to which should be preferred.4–6,8,9

White et al.1,5 discussed when the CBM and BMs yield different results. We aim to illuminate a key
difference between these two models and to show that this difference is analogous to Lord’s Paradox,
a conundrum about whether a t-test or analysis of covariance (ANCOVA) should be used to compare
two groups according to a change in an outcome.10,11

Our article is organized as follows. First, we give a brief overview of the CBM and BM and their
assumptions. We then describe Lord’s Paradox and how the paradox occurs, after which we discuss how
the assumptions of the two NMA models are related to Lord’s Paradox, using directed acyclic graphs
(DAGs) to illustrate the relation. Finally, we discuss how Lord’s Paradox can illuminate the differences
between the two NMA models.

2. NMA models and their statistical assumptions

Both NMA models were initially described within the Bayesian statistical framework.1,4,12 For
simplicity, we use the frequentist framework.

2.1. Contrast-based model

The CBM assumes a given treatment contrast is exchangeable across studies, as standard pairwise
meta-analysis does. The CBM can be written as

𝑦𝑖𝑘 = 𝑠𝑏 (𝑖) + 𝛿𝑖𝑏 (𝑖)𝑘 + 𝜀𝑖𝑘

𝜀𝑖𝑘 ∼ 𝑁
(
0, 𝑠𝑒2

𝑖𝑘

)
(Model 1)

𝛿𝑖𝑏 (𝑖)𝑘 ∼ 𝑁
(
𝑑𝑏 (𝑖)𝑘 , 𝜏

2
)
, 𝑑𝑏 (𝑖)𝑘 = 𝑑𝐴𝑘 − 𝑑𝐴𝑏 (𝑖) , 𝑑𝐴𝐴 = 0,

where 𝑦𝑖𝑘 is treatment k’s response in study i with standard error 𝑠𝑒𝑖𝑘 ; 𝛿𝑖𝑏 (𝑖)𝑘 is treatment k’s trial-
specific effect relative to trial i’s baseline treatment 𝑏(𝑖); 𝑑𝑏 (𝑖)𝑘 is the average of the contrast between k
and 𝑏(𝑖); 𝜏2, a variance, describes heterogeneity between trials in this contrast, and 𝑑𝐴𝑘 is the difference
between the average of treatment k and a reference treatment A. The heterogeneity 𝜏2 is usually assumed
identical for all treatment contrasts, so their covariances are 1

2𝜏
2. For binary data, 𝑦 is usually the
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log odds or log risk, so 𝛿 and 𝑑 are the log odds ratio or log risk ratio between two treatments. For
continuous data, 𝑦 is the outcome or change in outcome from the start of observation, so 𝛿 and 𝑑 are
the mean difference in the outcome between two treatment groups. For either type of data, 𝑠𝑏 (𝑖) is a
fixed-effect parameter specific to study i, often interpreted as a study effect, while 𝛿𝑖𝑏 (𝑖)𝑘 is a random
effect following a normal distribution, implying that it is exchangeable across studies.

2.2. Baseline model

The BM differs from the CBM in that the reference treatment’s level is modeled as a random effect with
a separate draw from a normal distribution for each study. If we designate treatment A as the reference
treatment, regardless of whether it was included in every study, we can write the BM (in arm-based
form) as12

𝑦𝑖𝑘 = 𝑠𝑖 + 𝛿𝑖𝐴𝑘 + 𝜀𝑖𝑘

𝑠𝑖 ∼ 𝑁
(
𝑠𝐴, 𝜎

2
𝐴

)
, 𝜀𝑖𝑘 ∼ 𝑁

(
0, 𝑠𝑒2

𝑖𝑘

)
(Model 2)

𝛿𝑖𝐴𝑘 ∼ 𝑁
(
𝑑𝐴𝑘 , 𝜏

2
)
, 𝑑𝐴𝐴 = 0,

where 𝑠𝑖 is the (possibly hypothetical) true response for treatment A in study i, and 𝑠𝐴 and 𝜎2
𝐴 are

the mean and variance across studies of this true response; 𝜏2 is assumed identical for all treatment
contrasts, so their covariances are 1

2𝜏
2. The random effects 𝑠𝑖 and 𝛿𝑖𝐴𝑘 are assumed independent.

(Model-2 is equivalent to Model 3 in the article by White et al. therein called the CBM with random
study intercepts.)5 Different specifications of this model have been published. As specified in Model 2,
the analysis results do not depend on the choice of reference treatment; as specified in White et al.5, the
results do depend on the choice of reference treatment. The Supplementary Material gives more details.
Other parameters are as in the CBM. Thus, the baseline and CBMs differ in that 𝑠𝑖 is a draw from a
random effect in the former but a fixed effect in the latter.

2.3. Statistical assumptions of these NMA models

The study effect 𝑠𝑏 (𝑖) in the CBM, a fixed effect, is the response of study i’s control group to the
baseline treatment; the baseline treatment response is specific to each study and is not assumed
exchangeable across studies. Rather, the difference in responses between two treatment groups—the
treatment contrast or relative effect—is exchangeable.

This assumption that treatment contrasts are exchangeable further implies no association between
study i’s baseline effect 𝑠𝑏 (𝑖) and study i’s relative effect 𝛿𝑖𝐴𝑘 . Suppose all studies include the reference
treatment A. The assumption is that if A has a large or small absolute effect in study i, this has no
relation to the relative effect between A and the other treatments in study i. Even if the included studies
come from different populations with different distributions of treatment effect modifiers, such as age,
the relative treatment effects between A and other treatments in different studies remain similar by
assumption, although the absolute effect of A may vary from study to study with differences in age.

The BM assumes baseline treatment A’s effect is exchangeable across studies, a random effect with
a normal distribution. When a study’s patients are randomly assigned to A and other treatments, that
study’s other treatments are thus randomly sampled from the same population, so the BM implicitly
assumes all treatment effects are exchangeable across studies.5 We revisit this later when we discuss
the selection of a baseline treatment.

3. Lord’s Paradox

We may gain insight into the differences between the CBM and BM from the literature about Lord’s
Paradox.10,11 This literature is vast13–16; we do not provide a comprehensive review.
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Table 1. Summary statistics for the hypothetical body
weight data with 100 male and 100 female students.

Gender

Females Males

N 100 100
bw1 56.21 (9.50) 70.90 (9.13)
bw2 55.75 (9.61) 70.08 (9.10)
cw −0.46 (6.60) −0.83 (6.17)
Note: bw1, body weight measured at baseline; bw2, body weight measured at
follow-up; cw, change in weight.

In FM Lord’s original article, a university studied the effect on students’ body weight of the diet
provided in the university dining halls. The study also asked whether males and females differed in the
effects of the diet. Each student’s weight was measured upon their arrival in September and again the
following June. Two statisticians analyzed the data independently.

3.1. A numerical example

For our demonstration, we simulated body weights of 100 female and 100 male students. Table 1
summarizes the simulated data.

The first statistician calculates the mean weights of female students at the beginning and end of
the year (56.20 kg and 55.75 kg, respectively) and finds the change (−0.46 kg) very small. The mean
weights of male students at the beginning (70.90 kg) and end of the year (70.08 kg) are also similar, and
the change (−0.83 kg) is also small. She compares weight change between females and males using a
t-test, obtains a p-value of 0.68, and concludes that females and males did not differ in weight change.
This t-test can be written as a linear regression model:

𝐵𝑊2 − 𝐵𝑊1 = 𝑎0 + 𝑎1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑒 (𝑎) , (1)

where 𝐵𝑊1 and 𝐵𝑊2 are body weights measured at baseline and follow-up, respectively, and Gender is
a dummy variable with females coded 0 and males 1. The estimate of 𝑎0 is −0.46 kg, the mean weight
change in females, and 𝑎1 is −0.37 kg, suggesting no difference between sexes in mean weight change.

The second statistician notices that males are larger than females at baseline on average (70.9 kg vs
56.2 kg), so she uses ANCOVA to adjust for the baseline difference in body weight. The ANCOVA
model can also be written as a linear regression:

𝐵𝑊2 = 𝑏0 + 𝑏1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑏2𝐵𝑊1 + 𝑒 (𝑏) . (2)

The estimate of 𝑏0 is 12.49 kg, the estimated mean body weight at the end of the year for females
whose baseline body weight is zero, so 𝑏0 has no practical meaning. The estimate of 𝑏1 is 3.02 kg, the
estimated difference in follow-up body weight between females and males with the same baseline body
weight. The estimate of 𝑏2 is 0.77, the estimated difference in follow-up body weight between students
of a given gender whose baseline body weights differ by 1 kg. Because 𝑏1 is statistically significant,
the second statistician concludes that, on average, males gain 3 kg more than females. The horizontal
and vertical axes of Figure 1’s scatterplot are the baseline and follow-up body weights, respectively.
Red and blue circles represent females and males. Red and blue lines are fitted parallel regression lines
for females and males, respectively, both with slope 𝑏2 = 0.77. Their intercepts differ by 𝑏̂1 = 3.02.
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Figure 1. Scatterplot of the hypothetical data with 100 male (blue circles) and 100 female (red circles)
students. The blue and red solid lines are the fitted regression lines for male and female students,
respectively. The black solid line has an intercept of zero and a slope of 1.

3.2. How does Lord’s Paradox happen?

When the difference between males and females in mean body weight change is small, the regression
coefficient 𝑎1 in Equation (1) will be close to 0. However, 𝑏1 in Equation (2) equals 0 only under very
special conditions.

Equation (1) can be rearranged as

𝐵𝑊2 = 𝑎0 + 𝑎1𝐺𝑒𝑛𝑑𝑒𝑟 + 1 × 𝐵𝑊1 + 𝑒 (𝑎) . (3)

The t-test is thus a linear regression in which 𝐵𝑊2 is regressed on 𝐺𝑒𝑛𝑑𝑒𝑟 and 𝐵𝑊1 with 𝐵𝑊 ′
1s

coefficient constrained to 𝑏2 = 1, represented by Figure 1’s black line. When 𝑎1 is close to 0 as in our
example, the fitted black lines for males and females are indistinguishable. Comparing Equations (3)
and (2), we see that Lord’s Paradox arises when 𝑏2 is substantially less than 1 in Equation (2), in which
case the two statisticians will give different conclusions.

We can rearrange Equation (2) as

𝐵𝑊2 − 𝑏2𝐵𝑊1 = 𝑏0 + 𝑏1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝑒 (𝑏) . (4)

Comparing Equations (1) and (4), Lord’s Paradox can be interpreted as follows: The first statistician
regresses the observed weight change 𝐵𝑊2 − 𝐵𝑊1 on 𝐺𝑒𝑛𝑑𝑒𝑟 , while the second regresses the adjusted
weight change 𝐵𝑊2 − 𝑏2𝐵𝑊1 on 𝐺𝑒𝑛𝑑𝑒𝑟 . If 𝐵𝑊2 ≈ 𝐵𝑊1, as in our example, then 𝐵𝑊2 − 𝑏2𝐵𝑊1 ≈

(1 − 𝑏2) 𝐵𝑊1. Because both males and females have tiny observed weight changes, 𝐵𝑊2 ≈ 𝐵𝑊1
for both genders, so the two genders show a negligible difference in weight change. Thus, the first
statistician finds no difference in weight change between females and males. In contrast, males have
greater 𝐵𝑊1 than females, so males have greater adjusted weight change. In our example, the average
adjusted weight changes for males and females are 70.1 − 0.77 × 70.9 = 15.5 and 55.8 − 0.77 × 56.2 =
12.5, respectively, so the difference is about 3 kg, as the ANCOVA estimates.
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3.3. An alternative formulation of Lord’s Paradox

Alternatively, we can consider the difference between the first and second statisticians as arising from
their differing assumptions about the relationship between change score and baseline body weight. The
first statistician assumes no relationship between weight change and baseline body weight, because
Equation (1) can be expressed as

𝐵𝑊2 − 𝐵𝑊1 = 𝑎0 + 𝑎1𝐺𝑒𝑛𝑑𝑒𝑟 + 0 × 𝐵𝑊1 + 𝑒 (𝑎) . (5)

The coefficient for 𝐵𝑊1 is 0, so Equation (1) assumes weight change is not related to baseline body
weight. Thus, although males have greater body weight than females, on average, that plays no role in
comparing their weight changes.

The second statistician assumes there is a relationship between weight change and baseline weight,
as seen when Equation (2) is reexpressed as

𝐵𝑊2 − 𝐵𝑊1 = 𝑏0 + 𝑏1𝐺𝑒𝑛𝑑𝑒𝑟 + (𝑏2 − 1) 𝐵𝑊1 + 𝑒 (𝑏) . (6)

The two statisticians reach the same conclusion if 𝑏2 ≈ 1. Because of random errors in weight
measurements and natural variation in body weight within each student, 𝑏2 is likely to be rather less
than 1.14,17 This is what FM Lord tried to demonstrate in his short article.10

4. The relation between NMA models and Lord’s Paradox

We use an NMA with treatments X, Y, and Z to show how Lord’s Paradox illuminates the differences
between the two NMA models. Following White et al.1,5, our NMA includes only trials comparing two
treatments, one of which is treatment X. Thus, this NMA includes only two types of trials, also called
designs in the NMA literature18: one comparing X with Y (design XY) and the other comparing X with
Z (design XZ). X is each trial’s baseline treatment and also the network’s reference treatment, so it is
treatment “A” in Model-1 (the CB model) and Model-2 (the BM) above. We wish to know whether Z’s
effect differs from Y’s.

The CBM for this NMA can be expressed (in contrast-based form) as a regression model:

𝑦𝑖2 − 𝑦𝑖𝑋 = 𝛿𝑖𝑋2 + 𝑒𝑖,2𝑋 , 𝑒𝑖,2𝑋 = 𝜀𝑖2 − 𝜀𝑖𝑋 ∼ 𝑁
(
0, 𝑠𝑒2

𝑖𝑋 + 𝑠𝑒2
𝑖2

)
,

where group 2 is either Y or Z; group 1 is always X so the subscript “1” has been replaced by X.
Model 1’s trial-specific effect of treatment k relative to trial i’s baseline treatment 𝑏(𝑖), 𝛿𝑖𝑏 (𝑖)𝑘 , can be
expressed as

𝛿𝑖𝑋2 = 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖) + 𝑏𝑖2 − 𝑏𝑖𝑋

where 𝑑𝑋𝑌 and 𝑑𝑋𝑍 are as in Model 1; 1𝑋𝑌 (𝑖) = 1 when study i has design XY and 0 when study
i has design XZ; 1𝑋𝑍 (𝑖) = 1 when study i has design XZ and 0 when study i has design XY; and
𝑏𝑖 𝑗 ∼ 𝑁

(
0, 𝜏2) captures heterogeneity. The CBM is then

𝑦𝑖2 − 𝑦𝑖𝑋 = 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖) + 𝑏𝑖2 − 𝑏𝑖𝑋 + 𝑒𝑖,2𝑋 , (7)

where the subscript 2 for 𝑦𝑖2 represents each study’s second treatment group, Y or Z. We can add
0×𝑦𝑖𝑋 to Equation (7), so it becomes clear that the CBM assumes no relationship between the treatment
contrast and the baseline treatment:

𝑦𝑖2 − 𝑦𝑖𝑋 = 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖) + 0 × 𝑦𝑖𝑋 + 𝑏𝑖2 − 𝑏𝑖𝑋 + 𝑒𝑖,2𝑋 . (8)
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Equation (8) can be further rearranged by moving −𝑦𝑖𝑋 to the right side, yielding:

𝑦𝑖2 = 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖) + 1 × 𝑦𝑖𝑋 + 𝑏𝑖2 − 𝑏𝑖𝑋 + 𝑒𝑖,2𝑋 . (9)

The CBM can thus be viewed as regressing the test treatment level on the reference treatment
level, with the regression coefficient fixed at 1. In all these ways, the CBM’s analysis is like the first
statistician’s analysis in Lord’s Paradox.

Now consider the BM for this NMA, Model 2. Suppose we have an estimate 𝑠̂𝑠𝑖 for 𝑠𝑖 . Such an
estimate using Model 2, a mixed linear model, will be shrunk (hence the superscript) toward 𝑠̂𝑋 , an
estimate of 𝑠𝑋 , the mean of 𝑠′𝑖s distribution, so 𝑠̂𝑠𝑖 can be written

𝑠̂𝑠𝑖 = 𝑠̂𝑋 + 𝑞𝑖

(
𝑠̂𝑢𝑖 − 𝑠̂𝑋

)
,

where 𝑞𝑖 is the shrinkage factor and 𝑠̂𝑢𝑖 is the unshrunk estimate of 𝑠𝑖 from a CBM fit, where the
baseline treatment is a fixed effect. Each study and arm has its own sampling-error variance (usually
treated as known), so 𝑞𝑖 is a complex function of the heterogeneity 𝜏2 and reference-group random-
effect variance 𝜎2, but it is easy to show that as 𝜎2 ↑ ∞ i.e., as the BM tends toward the CBM, 𝑞𝑖 ↑ 1.

Now 𝑠̂𝑢𝑖 = 𝑠𝑖 + 𝛾𝑖 and 𝑠̂𝑋 = 𝑠𝑋 + 𝜉, where 𝛾𝑖 and 𝜉 have mean zero because the respective estimates
are unbiased. Therefore,

𝑠̂𝑠𝑖 = (1 − 𝑞𝑖) 𝑠𝑋 + 𝑞𝑖𝑠𝑖 + 𝜔𝑖 ,

where 𝜔𝑖 = 𝑞𝑖𝛾𝑖 + (1 − 𝑞𝑖) 𝜉 has mean 0. If we replace the hypothetical true response for treatment 𝑋
for study i, 𝑠𝑖 , in Model 2 with its estimate, 𝑠̂𝑠𝑖 , then

𝑦𝑖2 = (1 − 𝑞𝑖) 𝑠𝑋 + 𝑞𝑖𝑠𝑖 + 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖) + 𝑏𝑖2 + 𝜀𝑖2 + 𝜔𝑖 .

where the sum of the last three terms has a mean of zero.
Now 𝑦𝑖1 = 𝑠𝑖 + 𝑏𝑖1 + 𝜀𝑖1, so

𝑦𝑖2 − 𝑦𝑖1 = (1 − 𝑞𝑖) (𝑠𝑋 − 𝑠𝑖) + 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖)

+ (𝑏𝑖2 − 𝑏𝑖1) + (𝜀𝑖2 − 𝜀𝑖1) + 𝜔𝑖 , (10)

where the second line of Equation (10) has a mean of zero.
Equation (10) can be rewritten in ways that are analogous to Equations (4) and (6). First, recall that

𝑦𝑖1 = 𝑠𝑖 + 𝑏𝑖1 + 𝜀𝑖1. Gather these items from Equation (10)’s right side to give

𝑦𝑖2 − 𝑦𝑖1 = (1 − 𝑞𝑖) 𝑠𝑋 + (𝑞𝑖 − 1) 𝑦𝑖1 + 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖)

+ (𝑏𝑖2 − 𝑞𝑖𝑏𝑖1) + (𝜀𝑖2 − 𝑞𝑖𝜀𝑖1) + 𝜔𝑖 , (11)

where Equation (11)’s second line has mean zero. Equation (11) and Equation (6) have the same form:
The BM implicitly assumes the study-specific treatment contrast and baseline effect are associated,
while the CBM assumes they are independent.

Finally, we can move (𝑞𝑖 − 1) 𝑦𝑖1 to the left-hand side of Equation (11), giving

𝑦𝑖2 − 𝑞𝑖𝑦𝑖1 = (1 − 𝑞𝑖) 𝑠𝑋 + 𝑑𝑋𝑌 1𝑋𝑌 (𝑖) + 𝑑𝑋𝑍1𝑋𝑍 (𝑖)

+ (𝑏𝑖2 − 𝑞𝑖𝑏𝑖1) + (𝜀𝑖2 − 𝑞𝑖𝜀𝑖1) + 𝜔𝑖 , (12)

where the second line of Equation (12) has mean zero. Equation (12) and Equation (4) have the same
form: The BM, in effect, has as its dependent variable an adjusted difference between the non-reference
and reference treatments, where the adjustment depends on the shrinkage induced by the random effect
used to model the reference treatment.
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We make two comments about the BM. First, the shrinkage factor 𝑞𝑖 has the same role that 𝑏2 has
in Lord’s Paradox in Equations (4) and (6), but 𝑏2 and 𝑞𝑖 differ in other ways: 𝑏2 is the same for all
students in Lord’s example, while 𝑞𝑖 takes different values for different studies 𝑖, and 𝑏2 is estimated
by fitting the regression in Equation (4), while the 𝑞𝑖 depend on the data indirectly through the study
sample sizes, the estimates 𝜎̂2 and 𝜏̂2, and the 𝑠𝑒2

𝑖 𝑗 . The 𝑞𝑖 will be close to zero only for very small
studies. Second, (1 − 𝑞𝑖) 𝑠𝑋 is present in Equations (11) and (12) but has no analog in Equations (4)
and (6). From Equation (11), biases in the BM’s estimates of treatment effects are a function of these
terms.

4.1. NMA models and the two statisticians in Lord’s Paradox

Comparing Equations (5) and (8) and Equations (6) and (12), the CBM is the first statistician, while
the BM is the second statistician. Each student has two measurements of body weight, as each trial has
two treatments. Each student’s weight change corresponds to the treatment contrast in each trial. Males
and females correspond to designs XZ and XY, respectively. The two statisticians’ approaches yield
different results when males have larger baseline body weight; the two approaches to NMA may yield
different results when the effects of baseline (and reference) treatment X differ between the two trial
designs.

5. Graphical comparisons of NMA models

Figure 2 graphically explains the difference between the two models’ results in different scenarios.
In terms of the preceding development for the BM, Figure 2 connects most directly to Equation (10). In
Figure 2, two filled circles connected with a solid line represent a trial comparing two treatments, Arms
1 and 2. The horizontal axis is the treatment arms, and the vertical axis is the absolute treatment effects.
In Figure 2a, the two arms in each of the six trials have the same outcome levels. In Figures 2b and 2c,
the two arms have different outcome levels, but the difference between the two arms is identical in all
trials. The open circles are the BM’s shrunken estimates for Arm 1, which are “shrunk” toward Arm
1’s average level.

Figure 2. Line plots for comparing contrast-based and baseline models. The two filled circles
connected with a solid line represent a trial comparing two treatments, Arms 1 and 2. The open circles
are the shrunken estimates of Arm 1 given by the baseline model; these open circles are “shrunk” closer
to the average effect of Arm 1. The horizontal axis is the treatment arms, and the vertical axis is the
absolute treatment effects. In (a), the two arms in each of the six trials have the same treatment effects.
In (b), Arm 2 is better than Arm 1, and in (c), Arm 1 is better than Arm 2. The difference between the
two arms is identical in every trial.

https://doi.org/10.1017/rsm.2025.10036 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10036


Research Synthesis Methods 9

Suppose we include two types of trials in the analysis: design XY and design XZ. X is Arm 1,
each study’s baseline treatment, and the network’s reference treatment, and we aim to know whether
Z differs from Y. In the CBM, the difference between the two arms’ outcomes in each trial is the
difference between the values of each trial’s two filled circles. In the BM, however, the difference in
treatment levels is the difference between the open circle on the left and the solid circle on the right,
connected by the dashed line. Because X’s level is modeled as a random effect, for trials with above-
average levels of X, their estimated levels of X are shrunk downward, and for trials with below-average
X, their estimated X are shrunk upward.

When designs XY and XZ have the same distribution of X, e.g., each design includes all six trials in
Figure 2, Y and Z do not differ using the CBM or BM. But if the top three trials have design XZ and the
bottom three trials have design XY, the two models give different results. In Figure 2a, the CBM finds
no difference between Z and Y, but the BM finds Z is better than Y (because Z is better than X in design
XZ, and X is better than Y in design XY). In Figure 2b, the CBM finds that both Z and Y are better
than X, and Z and Y do not differ. The BM, however, finds that both Z and Y are better than X, but Z is
also better than Y. In Figure 2c, the CBM finds that X is better than Z and Y, and again Z and Y do not
differ. The BM now finds that X is slightly better than Z but much better than Y, so Z is better than Y.

6. Directed acyclic graphs for Lord’s Paradox and NMA models

Figure 3a is a DAG for Lord’s Paradox, slightly modified from Pearl’s DAG.19 Each node represents a
variable in the model; an arrow’s direction describes the relation between the two nodes. In Figure 3a,
node G, gender, is a cause of baseline body weight (𝑊0) and final weight (𝑊1), while 𝑊0 is a cause of
𝑊1 and weight gain (𝑌 ), and 𝑊1 is a cause of 𝑌 . The letter or number associated with an arrow denotes
the strength of the path represented by the arrow and can be interpreted as a regression coefficient. For
example, because on average, weight does not change for either males or females, the effect of 𝐺 on
𝑊0 is equal to its effect on 𝑊1, which can be written as

𝑐 + 𝑎𝑏 = 𝑎,which implies 𝑐 = 𝑎 (1 − 𝑏) .

Statistician 1 considers the total effect of 𝐺 on 𝑌 , the sum of three paths from 𝐺 to 𝑌 , 𝐺 → 𝑊0 →

𝑊1 → 𝑌 , 𝐺 → 𝑊0 → 𝑌 , and 𝐺 → 𝑊1 → 𝑌 , so the total effect is 𝑎𝑏 − 𝑎 + 𝑐 = 𝑐 − 𝑎 (1 − 𝑏) = 0.
Statistician 2, however, considers the conditional effect of 𝐺 on 𝑌 by blocking paths through 𝑊0; this
conditional effect is 𝑐 = 𝑎 (1 − 𝑏). The two statisticians have the same result if 𝑎 = 0 or 𝑏 = 1, i.e.,
(respectively) males and females do not differ in baseline body weight, or the regression of final weight
on baseline weight has a coefficient of 1.

Figure 3. Directed acyclic graphs for (a) Lord’s Paradox: 𝐺 represents gender; 𝑊0 and 𝑊1 denote
the baseline body weight and final weight, respectively; 𝑌 is the weight gain and (b) NMA models:
𝐷 represents study design (XY vs XZ); 𝑇𝐵 and 𝑇𝐼 denote the effects of baseline treatment 𝑋 and the
intervention treatment (Y or Z); 𝐸 is the difference in the effects between 𝑌 and 𝑍 .

https://doi.org/10.1017/rsm.2025.10036 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10036


10 Yu-Kang Tu and James S. Hodges

Figure 3b shows an analogous DAG for NMA. Node 𝐷 represents design (XY vs XZ), which
influences the effects of both the baseline treatment 𝑋 (𝑇𝐵) and the intervention treatment Y or Z (𝑇𝐼 ).
𝑇𝐵 is a cause of 𝑇𝐼 and of the difference in the effects of 𝑌 and 𝑍 (𝐸), and 𝑇𝐼 is a cause of 𝐸 . Suppose
the average relative treatment effect (difference between treatments) is the same in designs XY and XZ,
so the effects of Y and Z relative to X do not differ, on average. Then the effect of 𝐷 on 𝑇𝐵 and 𝑇𝐼 are
the same, which implies

𝑐 + 𝑎𝑏 = 𝑎, thus 𝑐 = 𝑎 (1 − 𝑏)

The CBM considers the total effect of 𝐷 on 𝐸 , the sum of three paths from 𝐷 to 𝐸 : 𝐷 → 𝑇𝐵 →

𝑇𝐼 → 𝐸 , 𝐷 → 𝑇𝐵 → 𝐸 , and 𝐷 → 𝑇𝐼 → 𝐸 , so the total effect is 𝑎𝑏 − 𝑎 + 𝑐 = 𝑐 − 𝑎 (1 − 𝑏) = 0. The
BM estimates the conditional effect of 𝐷 on 𝐸 by blocking paths through 𝑇𝐵; this conditional effect is
𝑐 = 𝑎 (1 − 𝑏). The two models give the same result if 𝑎 = 0 or 𝑏 = 1, i.e., (respectively) X has the same
effect in designs XY and XZ, or the regression of the intervention treatment (Y or Z) on the baseline
treatment (X) has a coefficient of 1.

Figure 3a shows that the t-test and ANCOVA give the same result if either the average baseline
body weights are identical or the coefficient for regressing final body weight on baseline body weight
is 1. In his 1967 article, FM Lord was more concerned about the latter, as this coefficient tended to be
less than 1 because of natural fluctuations in body weights and measurement errors, causing imperfect
correlation between two body weight measurements. In a NMA, even if the differences in the average
treatment effects between X and Y and between X and Z are the same, the correlations (across studies)
between treatment effects are unlikely to be 1, so the CBM and BM give different results.

7. Discussion

7.1. Comparing the two NMA models

When the baseline effects have similar distributions in the different trial designs, the contrast-based and
BMs yield similar results. This is analogous to using the t-test or ANCOVA to analyze change scores
from a randomized trial: both tests yield the same results because the treatment groups have similar
baseline values.20 The key question, therefore, is which model is more appropriate when trial designs
have different baseline effects.

Variation between trials in the effect modifiers of individual patients can lead to differences in
baseline effects. Including study-level effect modifiers in the analysis may reduce unexplained variation
between trials, but caution is still necessary. Moreover, some effect modifiers may be unknown or
unavailable. Also, trials with similarly distributed effect modifiers may still have different baseline
effects. If the baseline and CBM show substantially different results, this suggests that baseline effects
are heterogeneous across trial designs. Caution is therefore needed in interpreting results from either
model, as this heterogeneity may reflect an imbalance in the distribution of some effect modifiers,
resulting in violation of the transitivity assumption. We may need to reassess the eligibility of individual
trials against the prespecified criteria in the systematic review’s protocol.

Figure 3’s DAGs offer another perspective on the differences between the two models. The BM
estimates the adjusted difference between Y and Z in the treatment effects conditional on the effect
of X, while the CBM estimates the total, unadjusted difference. Whether the adjusted or unadjusted
difference is more clinically meaningful is likely to be context specific. For instance, suppose the effect
modifiers are distributed similarly in trials of different designs, while the effects of X are on average
slightly higher in design XZ than in design XY. The BM may give a more precise estimate for the
difference between Y and Z by adjusting for the heterogeneity in X’s effect. In contrast, if patients’
characteristics differ substantially in designs XZ and XY, neither of these two models can provide a
definitive answer about the difference between Y and Z.
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7.2. Different formulations of NMA models and selection of the baseline treatment

In our discussion of the two NMA models, the treatment X was included in every trial, so it was the
natural candidate for both the baseline and reference treatment. However, it is rare for a treatment to be
included in all trials, so our single-level formulation of the BM in Equations (10)–(12), with treatment
contrasts as the unit of analysis, is not applicable to most NMAs. Nevertheless, we used this formulation
to show the similarity between these NMA models and Lord’s Paradox. A more practical formulation
of these NMA models uses treatment arms as the unit of analysis, in which case any treatment can be
the reference or baseline treatment (if Model 2’s specification is used; see the Supplementary Material).

In a previous study, Shi and Tu6 used structural equation modeling to show that the CBM is a BM
with the variance of the random study effects approaching infinity. This implies that results from the
BM are not affected by the selection of reference treatment. There are, in fact, two versions of the
BM that differ in their specification of random effects.5,6 The choice of a reference treatment affects
the results in one specification but not the other. The Supplementary Material gives a more thorough
technical discussion of the BM’s two specifications and of how the choice of the reference treatment
affects their results differently.

Finally, although we used a specific NMA to demonstrate the analogy between Lord’s Paradox and
the two NMA models, the conclusions and implications of this analogy extend beyond the specific
NMA. For instance, we showed that the CBM uses observed treatment contrasts as outcomes, while
the BM uses adjusted treatment contrasts. Thus, if the baseline treatment’s effect varies substantially
across different designs of trials, these two models may yield different results. We refer readers to our
previous article on bias propagation in NMA for simulations and a complex example in which results
from these models can differ greatly.21

8. Conclusion

This article used Lord’s Paradox to provide a framework for comparing the CBM and BMs for NMA.
These two models make different assumptions about the relationships between baseline and relative
treatment effects. When they yield substantially different results, we need to be cautious in interpreting
either model’s results.
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