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Abstract We prove that the determination of all M∗-groups is essentially equivalent to the determi-
nation of finite groups generated by an element of order 3 and an element of order 2 or 3 that admit a
particular automorphism. We also show how the second commutator subgroup of an M∗-group G can
often be used to construct M∗-groups which are direct products with G as one factor. Several applications
of both methods are given.
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1. Introduction

It is well known that the full conformal automorphism group Aut(X) of a Riemann
surface (or complex algebraic curve) X of genus g � 2 satisfies |Aut(X)| � 84(g − 1).
Automorphism groups of Riemann surfaces with this maximal number of automorphisms
are called Hurwitz groups. The article by Conder [5] contains a nice survey of known
results about Hurwitz groups.

A corresponding analysis of real algebraic curves has also received a good deal of
attention. If X is a real algebraic curve with real points (or bordered Klein surface) of
algebraic genus p � 2, then its full automorphism group satisfies |Aut(X)| � 12(p − 1).
Groups isomorphic to the automorphism group of such a real curve with this maximal
number of automorphisms are called M∗-groups. Several infinite families of M∗-groups
have been discovered. In particular, it is known [15] that PSL(2, q) is an M∗-group if
and only if q �= 2, 7, 9, 11 or 3n, where n is odd; some values of q for which PGL(2, q) is
an M∗-group are also known (see [11]). For a summary of known families of M∗-groups,
see the survey article [3].
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In this paper we examine the role played by the first and second commutator sub-
groups of M∗-groups. We show how the second commutator subgroup of an M∗-group
G can often be used to construct M∗-groups which are direct products with G as one
factor. Using the first commutator subgroup, we then prove that the determination of all
M∗-groups is essentially equivalent to the determination of finite groups generated by an
element of order 3 and an element of order 2 or 3 that admit particular automorphisms.
This relates M∗-groups to groups such as

(m, n, r; s) = 〈a, b | am = bn = (ab)r = [a, b]s = 1〉

and

(l, m | n, k) = 〈α, β | αl = βm = (αβ)n = (αβ−1)k = 1〉,

which are currently an active area of research. Several applications of these methods
are given. For example, we determine the precise values of q for which PGL(2, q) is an
M∗-group.

2. Preliminaries

Real algebraic curves can be viewed as symmetric Riemann surfaces, namely, Riemann
surfaces which admit an anti-analytic involution, or symmetry (see [1]). The quotient of a
Riemann surface under a symmetry is known as a Klein surface. Some topological features
of the real curve can be obtained from the associated Klein surface in the following way.
The real curve disconnects its complexification if and only if the corresponding Klein
surface is orientable, and the set of real points of the curve, which consists of a disjoint
union of ovals, is homeomorphic to the boundary of the surface. In turn, it is known
that the orientability and the number of boundary components of a Klein surface can be
obtained from a presentation of its uniformizing non-Euclidean crystallographic (NEC)
group. The algebraic genus of the Klein surface is defined to be the genus of its Riemann
double cover. It is well known [13] that if X is a bordered Klein surface of algebraic genus
p � 2, and G is its full automorphism group, then |G| � 12(p − 1). If G = 12(p − 1), then
we say G is an M∗-group.

A useful way of constructing Klein surfaces of algebraic genus p � 2 is by considering
them as the orbit space of the hyperbolic plane under a group of isometries. An NEC
group is a discrete subgroup Γ of the group PGL(2, R) of orientation-preserving and
orientation-reversing isometries of the hyperbolic plane U such that the quotient U/Γ is
compact. An NEC group is called a bordered surface group if it contains a reflection but
does not contain elliptic isometries of finite order. Each compact bordered Klein surface X

of algebraic genus p � 2 is the quotient U/Λ for some bordered surface group Λ. Moreover,
given a surface X so represented, a finite group G is a group of automorphisms of X if
and only if there exists an NEC group Γ and an epimorphism from Γ onto G which has
Λ as its kernel. Such an epimorphism, whose kernel is a bordered surface group, is called
smooth. All groups of automorphisms of bordered Klein surfaces arise in this way.

Assume that Λ is a bordered surface group, X = U/Λ has algebraic genus p, and
G = Γ ∗/Λ satisfies |G| = 12(p − 1), for some NEC group Γ ∗. Then G is an M∗-group
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acting on X and it is well known [13] that Γ ∗ is isomorphic to the abstract group with
the presentation

〈c0, c1, c2, c3 | c2
0 = c2

1 = c2
2 = c2

3 = (c0c1)2 = (c1c2)2 = (c2c3)2 = (c3c0)3 = 1〉, (2.1)

where each ci is a reflection. For each M∗-group G there is a smooth epimorphism θ :
Γ ∗ → G. Since Λ = ker(θ) is a bordered surface NEC group, at least one of {c0, c1, c2, c3}
must belong to Λ. It is easy to see that neither c0 nor c3 can belong to Λ since c0c3 has
order 3. We may assume, by a trivial change of notation if necessary, that c1 ∈ Λ; so
c2 /∈ Λ. Therefore, writing θ(c0) = α, θ(c2) = β and θ(c3) = γ, we see that each M∗-group
admits the following (partial) presentation:

〈α, β, γ | α2 = β2 = γ2 = (βγ)2 = (αγ)3 = · · · = 1〉. (2.2)

For an M∗-group G with presentation (2.2), we define the index of the presentation to
be q = ord(αβ). Observe that G may have different indexes since it may have differ-
ent presentations of the form (2.2). The topological type of a Klein surface X = U/Λ

associated with G = Γ ∗/Λ can be obtained from this presentation. Indeed, the number
of boundary components of X equals |G|/2q, and X is orientable if and only if all the
relators have an even number of letters α, β and γ (see [8]). It is easy to observe that if G

has presentation (2.2), then G has an alternate presentation defined by α′ := α, β′ := βγ,
γ′ := γ, whose generators satisfy the corresponding relations in (2.2). The index of this
new presentation is q′ := ord(αβγ). We let tG denote G with this new presentation, and
note that t(tG) is G with its original presentation.

It is known that the quotient of a Hurwitz group is either trivial or a Hurwitz group
(see, for example, [5]). In the case of M∗-groups, the situation is slightly different. If G

is an M∗-group and N is a normal subgroup of G of index greater than 6, then G/N is
an M∗-group (see [11]).

In this paper, the subgroups of Γ ∗ of index 4 or less which contain a bordered surface
NEC group as a normal subgroup play a crucial role. There are precisely three subgroups
of Γ ∗ of index 2 which contain c1 [2]. They are

(i) the group Γ1 generated by c0, c1, c2c0c2 and c3;

(ii) the group Γ2 generated by c2c3, c3c0 and c1; and

(iii) the group Γ3 generated by c3c0, c1, c2 and c3c1c3.

There is a unique normal subgroup which contains c1 and has index 4 in Γ ∗ (see [2, § 3]).
It is

(iv) the group ∆ generated by c0c3, c2c3c0c2 and c1.

This shows, in particular, that Γi ∩ Γj = ∆ for all i �= j.

Notation. We state some conventions used throughout the paper. The cyclic group of
order n will be denoted by Zn, and An and Sn will denote the alternating and symmetric
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groups on n letters, respectively. We will let Λ denote a bordered surface NEC group, Γ ∗

will always denote a group with presentation as given in (2.1), and G will always denote
an M∗-group. Generators of Γ ∗ will be denoted, as above, by c0, c1, c2, c3. If Λ � Γ ∗,
we will always assume that c1 ∈ Λ. In addition, Γ1, Γ2, Γ3 and ∆ will have the above
meanings. For any group H, the first and second commutator subgroups of H will be
denoted by H ′ and H ′′, respectively.

Let Λc1 denote the normal subgroup of Γ ∗ generated by c1. If Φ	Γ ∗ and it contains c1,
we let Φ̄ denote Φ/Λc1 ; in particular, Γ̄ ∗ = Γ ∗/Λc1 . Note that Γ ∗/Φ ∼= Γ̄ ∗/Φ̄. With ∆

defined as above, we see that Γ̄ ∗/∆̄ ∼= Z2 × Z2. This implies that the commutator sub-
group (Γ̄ ∗)′ is contained in ∆̄. Note that Γ̄ ∗/(Γ̄ ∗)′ is generated by elements of order 2.
Since Γ̄ ∗/(Γ̄ ∗)′ is abelian, c0(Γ̄ ∗)′ and c3(Γ̄ ∗)′ commute; however, c0c3 has order 3. This
implies that c0c3 ∈ (Γ̄ ∗)′, so Γ̄ ∗/(Γ̄ ∗)′ is actually generated by two elements. This yields
that ∆̄ = (Γ̄ ∗)′. Note that ∆̄ is a free product generated by two elements of order 3. This
implies that ∆̄/∆̄′ ∼= Z3 × Z3, which yields that Γ̄ ∗/(Γ̄ ∗)′′ ∼= S3 × S3.

For future reference, we will need the following lemma.

Lemma 2.1. Let H be a group and let N be a normal subgroup of H. Then (H/N)′ =
H ′N/N and (H/N)′′ = H ′′N/N .

3. Commutator subgroups of M∗-groups

Theorem 3.1. Let G be an M∗-group. Then there exists a normal subgroup N of
S3 × S3 such that we have the following.

(i) G/G′′ ∼= (S3 × S3)/N .

(ii) For each N1 	S3 ×S3 with N1 � N , let K = N/N1. Then there exists an M∗-group
Ĝ such that

1 → K → Ĝ → G → 1

is a short exact sequence. Furthermore, Ĝ contains a subgroup isomorphic to
G′′ × K.

Proof. Since G is an M∗-group, there exists a smooth epimorphism θ : Γ ∗ → G, such
that c1 ∈ Λ := ker(θ). Since G ∼= Γ̄ ∗/Λ̄, we obtain from Lemma 2.1 that G′ ∼= (Γ̄ ∗)′Λ̄/Λ̄

and G′′ ∼= (Γ̄ ∗)′′Λ̄/Λ̄. Since Γ̄ ∗/(Γ̄ ∗)′′ ∼= S3 × S3, we define N := (Γ̄ ∗)′′Λ̄/(Γ̄ ∗)′′ to obtain
that G/G′′ ∼= Γ̄ ∗/(Γ̄ ∗)′′Λ̄ ∼= (S3 × S3)/N . This proves (i).

To prove (ii), let N1 	 S3 × S3 with N1 � N . Since N = (Γ̄ ∗)′′Λ̄/(Γ̄ ∗)′′, there exists
an NEC group ∆̄1 � (Γ̄ ∗)′′Λ̄ such that N1 ∼= ∆̄1/(Γ̄ ∗)′′. Since (Γ̄ ∗)′′ � ∆̄1 � (Γ̄ ∗)′′Λ̄,
we get (Γ̄ ∗)′′Λ̄ = ∆̄1Λ̄ and N ∼= (Γ̄ ∗)′′Λ̄/(Γ̄ ∗)′′ = ∆̄1Λ̄/(Γ̄ ∗)′′. Define Ĝ = Γ̄ ∗/(Λ̄ ∩ ∆̄1).
Then Ĝ contains the subgroup

Λ̄

Λ̄ ∩ ∆̄1

∼=
Λ̄∆̄1

∆̄1

∼=
(Γ̄ ∗)′′Λ/(Γ̄ ∗)′′

∆̄1/(Γ̄ ∗)′′
∼=

N

N1

∼= K.
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Furthermore, the subgroups K ∼= Λ̄/(Λ̄ ∩ ∆̄1) and G′′ ∼= ∆̄1/(Λ̄ ∩ ∆̄1) are both normal,
generate Λ̄∆̄1/(Λ̄ ∩ ∆̄1) and have trivial intersection. Therefore, Λ̄∆̄1/(Λ̄∩∆̄1) ∼= G′′×K.
This proves (ii). �

Recall that a group is said to be perfect if G = G′. If G is perfect, then G′′ = G;
therefore, for each factor group K of S3 × S3, there is an M∗-group Ĝ of order |G| |K|
which contains a subgroup isomorphic to G × K. Therefore, Ĝ ∼= G × K. This shows the
following.

Corollary 3.2. Let G be a perfect M∗-group. Then G × Z2, G × Z2 × Z2, G × S3,
G × Z2 × S3, and G × S3 × S3 are M∗-groups.

Example 3.3. Recall that PSL(2, q) is an M∗-group if and only if q �= 2, 7, 9, 11 or
3n, where n is odd [15]. For these values, PSL(2, q) is simple, therefore PSL(2, q) × Z2,
PSL(2, q) × Z2 × Z2, PSL(2, q) × S3, PSL(2, q) × Z2 × S3 and PSL(2, q) × S3 × S3 are
M∗-groups.

Example 3.4. Using the generators of the alternating group An given in [4], it was
shown [9] that An is an M∗-group for all but finitely many values of n. For these values
we get that An×Z2, An×Z2×Z2, An×S3, An×Z2×S3 and An×S3×S3 are M∗-groups.

Proposition 3.5. An M∗-group possesses either zero, one or three subgroups of
index 2. An M∗-group possesses at most one normal subgroup of index 4.

Proof. Let G = Γ ∗/Λ be an M∗-group with presentation (2.2). It can have at most
three subgroups of index 2 and one normal subgroup of index 4 since Γ ∗ has exactly
three subgroups of index 2 which contain Λ (namely Γ1, Γ2 and Γ3) and a unique normal
subgroup of index 4 which contains Λ (namely ∆). The subgroups of G corresponding
to each of Γ1, Γ2, Γ3 and ∆ are G1 := 〈α, βαβ, γ〉, G2 := 〈βγ, γα〉, G3 := 〈β, γα〉 and
G4 := 〈αγ, βαγβ〉. Note that Gi = G if and only if Λ is not a subgroup of Γi. It may
occur that an M∗-group has no subgroups of index 2, or exactly one subgroup of index 2,
as evidenced by Examples 3.3 and 3.4. However, if G has two different subgroups of
index 2, then Λ � Γi ∩ Γj = ∆ and so Λ is contained in Γ1, Γ2 and Γ3. This yields three
subgroups of index 2 in G, and one of index 4. �

Let Inn(H) denote the group in inner automorphisms of the group H, and let Inn2(H)
denote its subset consisting of those induced by an element of order 2. If G is an
M∗-group, then [G : G′] = 1, 2, or 4, so G is a semidirect product of G′ with a group of
order 1, 2 or 4. We use the following lemmas to precisely determine the structure of such
groups. The proofs are left to the reader.

Lemma 3.6. Let H be a group, let A be a group of automorphisms of H and let
G = H � A denote the semidirect product. Then there is an element (g, φ) ∈ G which
commutes with every element of H if and only if φ is the inner automorphism of H

induced by g.
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Lemma 3.7. Let H be a group, and let G = H � 〈φ1, φ2〉, where φ1 and φ2 are
commuting automorphisms of H which each have order 2. Define φ3 := φ1φ2. Then we
have the following.

(i) The semidirect product G is actually the direct product H × Z2 × Z2 if and only if
the following both hold.

(a) φi ∈ Inn2(H) for i = 1, 2, 3.

(b) There are an h1 and an h2, each of order 2, which induce φ1 and φ2, respec-
tively, and h1h2 has order 2.

(ii) The semidirect product H�〈φ1, φ2〉 does not split as in (i) but is the direct product
(H � 〈φi〉) × Z2 if and only if the following both hold.

(a) φi /∈ Inn2(H).

(b) For some j �= i, φj ∈ Inn2(H). There is an hj ∈ H of order 2 which induces
φj by conjugation and hj = φi(hj).

Lemma 3.7 can be restated far more simply if we consider the quotient of H by its
centre.

Lemma 3.8. Let H be a group and let φ1 and φ2 be commuting automorphisms of
H which each have order 2. Define φ3 := φ1φ2. Let Z(H) denote the centre of H, let
H̄ = H/Z(H) and let G = H̄ � 〈φ1, φ2〉. Then

(i) the semidirect product G is actually the direct product H̄ × Z2 × Z2 if and only if
two of φ1, φ2 and φ3 are inner automorphisms of H; and

(ii) the semidirect product G does not split as in (i) but is the direct product
(H̄ � 〈φi〉) × Z2 if and only if φi /∈ Inn(H) and, for some j �= i, φj ∈ Inn(H).

Definition 3.9. Let G be as in Lemma 3.7. If (i) holds we say that the pair {φi, φj}
is a fully splitting pair for H, or that {φi, φj} fully splits. If (ii) holds, we say (φi, φj) is
a partially splitting pair for H, or that (φi, φj) partially splits. In this case, the automor-
phisms are listed so that φi /∈ Inn2(H) and φj ∈ Inn2(H). If neither (i) nor (ii) holds, we
say {φi, φj} is not a splitting pair for H, or that {φi, φj} does not split.

We will denote the M∗-group G, with a particular choice of generators α, β and γ, as
in (2.2) by G(α, β, γ). Let M denote the set of all such groups, in other words, M yields
all of the ways in which M∗-groups can be epimorphic images of Γ ∗. Let H be a finite
group which can be generated by elements a and b, each of order 3, and which possesses
the group automorphisms

φ1 : a �→ b, b �→ a, and φ2 : a �→ a−1, b �→ b−1.

We let H(a, b) denote H with this particular pair of generators. Let X{3, 3} denote
the set of all groups H(a, b). We now show that the determination of all M∗-groups is
essentially equivalent to the determination of all groups in X{3, 3}.
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Theorem 3.10. Define Ψ : M → X{3, 3} by Ψ(G(α, β, γ)) = G′(αγ, βαγβ). This
map is onto X{3, 3}. For each H(a, b) ∈ X{3, 3} with |H(a, b)| > 6,

Ψ−1(H(a, b)) =

⎧⎪⎨
⎪⎩

{H � 〈φ1, φ2〉} if {φ1, φ2} does not split,

{H � 〈φi〉, (H � 〈φi〉) × Z2} if (φi , φj ) partially splits,

{H, H × Z2, H × Z2 × Z2} if {φ1, φ2} fully splits.

Observe that if the generators of each group are not considered, then Ψ maps each
M∗-group to its first commutator subgroup.

Proof. Let G(α, β, γ) be an M∗-group with presentation (2.2). From the introduction,
(Γ ∗)′ = ∆ and is generated by c0c3, c2c3c0c2 and c1. Lemma 2.1 yields that G′ is
generated by the image of ∆, so G′ = 〈αγ, βαγβ〉. Note that G′(αγ, βαγβ) ∈ X{3, 3},
since αγ and βαγβ each have order 3, conjugation by β interchanges the two generators,
and conjugation by γ maps each generator to its inverse. Therefore, the map is well
defined.

We now show that Ψ is onto. Given H(a, b) ∈ X{3, 3}, define G := H � 〈φ1, φ2〉 and
define an epimorphism θ : Γ ∗ → G by

α := θ(c0) = (a, e)(e, φ2), β := θ(c2) = (e, φ1), γ := θ(c3) = (e, φ2). (3.1)

It is easily verified that the images of the generators of Γ ∗ satisfy presentation (2.2), and
Ψ(G(α, β, γ)) = G′(a, b) = H(a, b). This proves that the map is onto, but Lemma 3.7
also shows that G can be rewritten as H � 〈φ1, φ2〉, (H � 〈φi〉) × Z2 or H × Z2 × Z2

when the pairs are not splitting, partially splitting and fully splitting, respectively. We
now show that the three remaining groups listed in the theorem map to H(a, b). Assume
that {φ1, φ2} is fully splitting, and let conjugation by h1 and h2 induce φ1 and φ2,
respectively. Replacing (e, φ1) and (e, φ2) in (3.1) by (h1, e) and (h2, e), respectively,
yields that H(α, β, γ) = H(a, b), and it is an M∗-group which maps to H(a, b). Replacing
only (e, φ1) in (3.1) by (h1, e) yields that H � 〈φ2〉 = H ×Z2 is an M∗-group which maps
to H(a, b). Assume now that (φi, φj) is partially splitting, and let hj be an element of
order 2 which induces φj by conjugation. If j = 1 or 2, then replacing (e, φj) in (3.1) by
(hj , e) yields that H � 〈φi〉 maps to H(a, b). If j = 3, then replacing (e, φ1) by (h3, φ2)
yields that H � 〈φi〉 maps to H(a, b). Therefore, each of the six indicated groups maps
to H(a, b).

We now show that the inverse image of H(a, b) contains no groups other than the ones
listed. Let G(α, β, γ) be an M∗-group such that G′ = H(a, b). We know that [G : H] = 1,
2 or 4. If G = H, then conjugation by β, γ and βγ are inner automorphisms of H, so
{φ1, φ2} is a completely splitting pair. If [G : H] = 2, assume first that β /∈ H. Then
either γ ∈ H or βγ ∈ H. The first possibility yields that (φ1, φ2) is a partially splitting
pair and G ∼= H � 〈φ1〉; the second possibility yields that (φ2, φ3) is a partially splitting
pair and G ∼= H � 〈φ2〉. If β ∈ H, then γ /∈ H, so (φ2, φ1) is a partially splitting pair and
G ∼= H � 〈φ2〉. Finally, if [G : H] = 4, then clearly neither β nor γ nor βγ can be in H.
This yields that {β, γ} is not a splitting pair and G ∼= H � 〈φ1, φ2〉. �
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All M∗-groups G are generated by three elements; however, if G = G′, then G ∈
X{3, 3}. This yields the following.

Corollary 3.11. Every perfect M∗-group is generated by two elements of order 3.

The map Ψ in Theorem 3.10 yields a canonical way of associating generators for an
M∗-group with generators for its commutator subgroup. We will always consider the
relationship of a group H(a, b) ∈ X{3, 3} to an M∗-group G with G′ = H in terms
of the map Ψ . For example, we will say that there is a unique M∗-group G(α, β, γ)
with commutator subgroup H(a, b) if there is a unique G(α, β, γ) which maps to H(a, b)
under Ψ . It may happen, however, that if we consider H with other generating sets, then
there may be several M∗-groups which have H as their commutator subgroup.

Corollary 3.12. Let H(a, b) ∈ X{3, 3}. If φ2 ∈ Inn(H), then H = H ′. If φ1 or
φ3 ∈ Inn(H), then [H : H ′] = 1 or 3. In particular, if [H : H ′] �= 1 or 3, then H � 〈φ1, φ2〉
is the only M∗-group which has H(a, b) as its commutator subgroup.

Proof. If h2 ∈ H induces φ2 by conjugation, then h2ah−1
2 H ′ = a2H ′ implies a ∈ H ′.

Similarly, b ∈ H ′, therefore H = H ′. If j = 1 or 3, and if hj ∈ H induces φj by
conjugation, then hjah−1

j H ′ = bH ′ or b2H ′. This implies that H = 〈H ′, a〉, which implies
[H : H ′] = 1 or 3. The last statement follows from the first two and Theorem 3.10. �

Theorem 3.10 reveals that the determination of all M∗-groups is equivalent to the
determination of all groups in X{3, 3}. It also relates M∗-groups to the groups (3, 3 | n, k)
and (3, 3, r; s) which belong to families which have been extensively studied (see [7]
and [12] and the references contained therein for an examination of these groups). The
group (l, m | n, k) has the presentation

〈a, b | al = bm = (ab)n = (ab−1)k = 1〉 (3.2)

and the (m, n, r; s) group is defined by

〈a, b | am = bn = (ab)r = [a, b]s = 1〉. (3.3)

For each family, it is known precisely when (l, m | n, k) and (m, n, r; s) are finite, with
the exception of the (2, 3, 13; 4) group, whose finiteness is still an open problem.

The groups (3, 3 | n, k) and (3, 3, r; s) admit the automorphism φ1, which interchanges
a and b, and the automorphism φ2, which maps each generator to its inverse. If they
are finite, then they belong to X{3, 3} and therefore Theorem 3.10 shows that they
provide M∗-groups. In addition, it also shows that the commutator subgroup of each
M∗-group can be realized as a finite factor group of the groups (3, 3 | n, k) or (3, 3, r; s)
for some n and k and r and s. Using (3, 3 | n, k) as an example, a normal subgroup of
N 	 (3, 3 | n, k) must be defined in such a way as to ensure that H ∼= (3, 3 | n, k)/N pos-
sesses the group automorphisms φ1 and φ2. This can be done by adding in relations of the
form R(a, b) = R(b, a) = R(a−1, b−1) = R(b−1, a−1) = 1. Every finite group H obtained
in this way will be the commutator subgroup of an M∗-group, and the related M∗-groups
can be obtained by Theorem 3.10.
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Example 3.13. It is known [6] that H = (3, 3, 3; s) is a finite group of order 9s2.
Then G = H � 〈φ1, φ2〉 is an M∗-group. Clearly, Z3 × Z3 is an epimorphic image of H.
Therefore, [H : H ′] = 9 and so Corollary 3.12 yields that G is the only M∗-group which
has H(a, b) as its commutator subgroup.

Example 3.14. It is known [6] that H = (3, 3, 4; 5) is a finite group of order 1080.
Using GAP∗ we determine that φ2 is induced by conjugation by an element h2 ∈ H of
order 2 and φ1(h2) = h2. Therefore, both G := (H � 〈φ1〉) × Z2 and K := H � 〈φ1〉 are
M∗-groups, and they are the only M∗-groups whose commutator subgroup is H(a, b).
It can be shown that G ∼= G3,8,10, which is a known M∗-group [8]. In addition, K ∼=
(2, 3, 8; 5), so (2, 3, 8; 5) is an M∗-group of order 2160. Using GAP, we determine that
K possesses a normal subgroup isomorphic to Z3 and K/Z3 ∼= PGL(2, 9). Therefore,
PGL(2, 9) is an M∗-group.

We now examine how the index of the presentation of an M∗-group can be obtained
from its commutator subgroup.

Proposition 3.15. Let H(a, b) ∈ X{3, 3} and let q = ord(ab−1). Assume that
G(α, β, γ) has H(a, b) as its commutator subgroup. If [G : H] = 2 or 4, then the index
of the presentation of G is 2q. If [G : H] = 1, then the index is either q or 2q.

Proof. Recall that the index of G(α, β, γ) is defined to be the order of αβ. If [G :
H] = 4, then G = H � 〈φ1, φ2〉 with generators as in (3.1). Note that

(αβ)2 = ab−1, so (αβ)2k+j = (ab−1)k(a, φ2φ1)j . (3.4)

This shows that αβ has even order, so ord(αβ) = 2 ord(ab−1). Assume now that
[G : H] = 2. Then G = H ×Z2 if {φ1, φ2} fully splits, or G = H �〈φi〉 if (φi, φj) partially
splits. In both cases, generators α, β and γ for G are given in the proof of Theorem 3.10.
The same calculation (3.4) yields that ord(αβ) = 2 ord(ab−1). If G = H, then the index
of G may be odd or even, so the index of G will be either ord(ab−1) or 2 ord(ab−1). �

In § 1 we noted that if G(α, β, γ) is an M∗-group, then tG = G(α, βγ, γ) is also an
M∗-group with index ord(αβγ). It is easy to observe that G′(α, β, γ) = H(a, b) if and
only if G′(α, βγ, γ) = H(a, b−1).

4. Subgroups of index 2

We continue with the notation of the previous section with one small modification. Let
G(α, β, γ) ∈ M be an M∗-group. Let H(a, b) now denote a finite group generated by a

and b, of orders 2 and 3, respectively, which possesses the automorphism

φ : a �→ a, b �→ b−1.

Let X{2, 3} denote the set of all such groups H(a, b). We now show that the determination
of all M∗-groups is essentially equivalent to the determination of all groups in X{2, 3}.

∗ The GAP Group, GAP—groups, algorithms, and programming, v. 4.1 (2000) (http://www.
gap-system.org).
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Theorem 4.1. Define Ψ : M → X{2, 3} by Ψ : G(α, β, γ) �→ 〈βγ, αγ〉. This map is
onto X{2, 3}. For each H(a, b) ∈ X{2, 3} with |H(a, b)| > 6,

Ψ−1(H) =

{
{H � 〈φ〉} if φ /∈ Inn2(H),

{H, H × Z2, } if φ ∈ Inn2(H).

Proof. Recall from § 1 that Γ2 is a subgroup of index 2 in Γ ∗. Let G be an M∗-group
with presentation (2.2). The subgroup of G corresponding to Γ2 is the subgroup gener-
ated by βγ and αγ and these elements have orders 2 and 3, respectively. In addition,
conjugation by γ maps βγ �→ βγ and αγ �→ (αγ)−1. Therefore, the map Ψ is well defined.

Given any H(a, b) ∈ X{2, 3}, it is easy to see that H � 〈φ〉 with generators α := (b, φ),
β := (a, φ), γ := (e, φ) is an M∗-group. This shows that φ is onto and it shows that
H � 〈φ〉 is in the inverse image of H(a, b). In addition, if G(α, β, γ) is any M∗-group
with Ψ(G) = H(a, b) and [G : H] = 2, then G ∼= 〈βγ, γα〉 � 〈γ〉, so G ∼= H � 〈φ〉. If φ

is an inner automorphism by an element of order 2, then Lemma 3.6 yields that G is
actually a direct product. The only other possibility is if G = 〈βγ, γα〉 = H. In this case,
γ is generated by these elements, therefore φ ∈ Inn2(H). This proves the theorem. �

Theorem 4.1 reveals that the determination of all M∗-groups is equivalent to the
determination of all groups in X{2, 3}. These are the finite quotient groups of the modular
group PSL(2, Z) = 〈a, b | a2 = b3 = 1〉 that admit the automorphism φ. This can be done
by adding in relations of the form R(a, b) = R(a, b−1) = 1 to PSL(2, Z).

Notice that we have examined the subgroups of index 2 of M∗-groups corresponding
to Γ2; it is reasonable to ask if an analysis of Γ3 might have yielded different results.
However, the map Ψ ′ corresponding to Γ3 is G(α, β, γ) �→ 〈β, αγ〉. It is easy to observe
that this is the same as

G(α, β, γ) �→ tG(α, β, γ) = G(α, βγ, γ) �→ Ψ(G(α, βγ, γ)) = 〈β, αγ〉.

Therefore, G ∈ Ψ−1(H) if and only if tG ∈ Ψ ′−1(H).
The map corresponding to Γ1 yields subgroups of index 2 that are generated by three

elements a, b and c of order 2 such that bc and ac both have order 3 and which admit
φ : a �→ b �→ a, c �→ c as an automorphism (see [2]). Using this criterion to determine
M∗-groups appears to be more difficult than determining M∗-groups by using the pre-
sentation (2.2). In addition, less things are known about this family of groups. For these
reasons, we do not examine this map further.

Corollary 4.2. An M∗-group which possesses at most one subgroup of index 2 is
generated by two elements of orders 2 and 3, respectively.

Proof. The indices of 〈βγ, αγ〉 and 〈β, αγ〉 in G(α, β, γ) are 1 or 2. The hypothesis
implies that G = 〈βγ, αγ〉 or G = 〈β, αγ〉, and we are done. �
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5. Applications

Theorems 3.10 and 4.1 can be used to find M∗-groups associated with particular groups.
Theorem 4.1, in particular, provides more flexibility than using presentation (2.2) in
determining M∗-groups; only two generators need to be determined, the third generator
is replaced by an automorphism which does not need to be an inner automorphism. In
addition, by finding sets of generators for which the corresponding automorphisms can
be chosen to be either inner or not, several M∗-groups can be determined simultaneously.

Example 5.1. Let H be a finite group with |H| > 6. The following is a procedure,
based on Theorem 4.1, that determines M∗-groups which are related to H. A similar
procedure can be defined using Theorem 3.10.

(i) Is H generated by elements a and b of orders 2 and 3, respectively?

(ii) Does H possess the automorphism φ : a �→ a, b �→ b−1?

(iii) Can a and b be chosen so that φ is an inner automorphism?

(iv) Is φ an automorphism induced by conjugation by an element of order 2?

Affirmative answers to (i) and (ii) yield that H � 〈φ〉 is an M∗-group. An affirmative
answer to (iii) yields, in addition, that H/Z(H) is an M∗-group. An affirmative answer
to (iv) yields, in addition, that H is an M∗-group.

Let q = pn, where p is a prime. Singerman showed that PSL(2, q) is an M∗-group if
and only if q �= 2, 7, 9, 11 or 3n, where n is odd [15]. Singerman’s analysis, in conjunction
with Theorems 3.10 and 4.1, allows us to determine all values of q for which PGL(2, q)
is an M∗-group. We may assume that q �= 2n, since PGL(2, 2n) ∼= PSL(2, 2n).

Theorem 5.2. PGL(2, q) is an M∗-group if and only if q �= 2 or 5.

We seek the values of q for which PSL(2, q) ∈ X{2, 3} and φ is an outer automorphism.
For these q, Theorem 4.1 yields that PSL(2, q)�〈φ〉 ∼= PGL(2, q) is an M∗-group. Matrices
A, B ∈ PSL(2, q) of orders 2 and 3, respectively, can be defined that have the property
that they generate PSL(2, q) if γ := tr(AB) is ‘admissible’ (see [15] for the precise
definition). There are at most pn−1 + εpn/2 + 11 inadmissible values for γ, with ε = 1 if
n is even and ε = 0 otherwise [15]. For an admissible γ, there exists Z ∈ PSL(2, q) such
that Z2 = (AZ)2 = (BZ)2 = 1 if and only if 3 − γ2 is a square in GF(pn); Singerman
was concerned with this case in [15]. However, if 3 − γ2 is not a square, then Z satisfies
the same relations but Z ∈ PGL(2, q) \ PSL(2, q). This implies that if 3 − γ2 is a non-
square, then conjugation by Z is an outer automorphism φ of PSL(2, q), and therefore
PGL(2, q) ∼= PSL(2, q) � 〈φ〉. We focus our attention on this case.

Assume first that p > 3. Then there are at least (pn − 3)/2 values of γ for which
3 − γ2 is not a square in GF(pn) [15]. If q = p > 23 or q �= 52, 72, then (pn − 3)/2 >

pn−1 + εpn/2 + 11. So for these values of q there exists an admissible γ such that 3 − γ2

is not a square; therefore, PGL(2, q) is an M∗-group.
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Table 1. Admissible values for γ = zk with 3 − γ2 a non-square

q 13 17 25 49

k 4 1 1 1

Also PGL(2, q) is an M∗-group for q = 3, 7, 11, 19 or 23, since in these cases q is
prime and q ≡ 3 (mod 4) (see [11]). Example 3.14 shows that PGL(2, 9) is an M∗-group.
Using GAP to determine all possible generators of PGL(2, 5) yields that PGL(2, 5) is not
an M∗-group. For q = 13, 17, 52 and 72, Table 1 below indicates a value for which γ is
admissible and 3 − γ2 is a non-square. If z is a generator for GF(q)∗, then the table lists
a power k such that zk = γ.

The remaining case to consider is q = 3n, with n > 2. If n is odd, then 3 − γ2 = −γ2

is a non-square since −1 is a non-square [15]. So PGL(2, 3n) is an M∗-group if n > 2 is
odd.

We now consider q = 3n with n > 2 and even. We show that PGL(2, q) is an M∗-group
in this case; however, this cannot be done using Theorem 4.1. For this case, PSL(2, q) is
a subgroup of index 2 of PGL(2, q) which corresponds to Γ1, and therefore PSL(2, q)
is not generated by two elements A and B of orders 2 and 3 for which φ is an outer
automorphism. We employ Theorem 3.10 instead.

We define matrices B1, B, S and T , respectively, by

(
1 1

−1 0

)
,

(
1 w

0 1

)
,

(
−1 2w + 1
2 1

)
,

(
i i
0 −i

)
. (5.1)

Lemma 2.10 of [10] yields that γ := tr(B1B) = 1 + 2w is admissible if γ2 �= 0, 1, 2, 3, 4,
γ2 ± γ − 1 �= 0 and γ does not belong to a proper subfield of GF(pn). In (5.1), we
choose ‘i’ to be a square root of −1, and w to be a non-square of GF(3n) such that
1 + 2w is admissible. Clearly, this can be done if n � 4. Note that B, B1 and T are in
PSL(2, 3n), have orders 3, 3 and 2, respectively, and the choice of w guarantees that
B1 and B generate PSL(2, 3n). Note that TB1T

−1 = B−1
1 and TBT−1 = B−1. Since

det S = −4w is a non-square in GF(3n), S /∈ PSL(2, 3n). In addition, S has order 2,
SB1S

−1 = B and SBS−1 = B1. Therefore, PSL(2, 3n) possesses the automorphisms
required in Theorem 3.10, so PSL(2, 3n) � 〈S〉 ∼= PGL(2, 3n) is an M∗-group.

Example 5.3. Using Theorem 3.10 and the known description of automorphisms of
PSL(2, q) (see [14]), it can be proved that if PSL(2, q) is the commutator subgroup of
an M∗-group G, then G = PSL(2, q), G = PGL(2, q), or G is a direct product which
contains either PSL(2, q) or PGL(2, q) as a factor.
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