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A CANONICAL DECOMPOSITION IN MIXED
EXTERIOR ALGEBRA

J.R. VANSTONE

1. Introduction. Let E be a vector space of dimension n € N over a field
T, of characteristic 0. Choose E*, dual to E, and form

AE = @,_(NE,
the space of exterior powers of E, as well as AE*. Finally, let
A(E*, E) = AE* ® AE.

Although A(E*, E) is constructed by the most basic vector space
operations, it is rich in algebraic structure:
(1) as a vector space over [ it is bigraded,

n

A(E*, E) = ,,920 (APE* ® AIE),

and has dimension 2%”;
(ii) it has a canonical inner product, {, ), induced from the duality of E*
and E, with respect to which,

(NVPE* @ NE, N'E* ® A°E) = 0,

unless p = s.

(ii1) since both AE* and AE are (exterior) algebras, their tensor product
is an algebra; we denote its product by a dot and call A(E*, E), with this
product, the mixed exterior algebra over E;

(1v) since A’E* ® AYE is isomorphic to the space of linear maps from
APE to AYE and the latter may be “composed”, A(E*, E) also has a
composition product, which we denote by “o”.

The inner product and both algebra structures restrict to the diagonal
space

AE) = @0 A (E), A (E) = AE* ® APE,
=
and the resulting “dot” algebra is commutative. We call it the diagonal
subalgebra. Henceforth, we shall only be concerned with A(E).

Many results about the structure of A(E) and its applications to
classical linear algebra are to be found in [1]. Others have been announced
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in [4]. One of these has been fully proved in [5]. The purpose of this paper
is to treat the other main result of [4].

2. Preliminaries. In this section we gather together the results of [S] and
[1] which will be needed in the sequel.
For any z € A(FE), we adopt the convention:

1
(D) N = l,zp:;(z....z),pz 1,2,...,n,and 2 = 0,

(p factors) otherwise.

The unit tensor ¢ € A(F) corresponds to the identity map of E under
the isomorphism of A;(E) with the space of linear transformations of £
and hence satisfies

(2) toz=zot=12z 1z € A(E).

For each u € A(E), we obtain a linear transformation of A(E), given by
vi=>u-v = v- u; it will be denoted by u(u). Its dual, p(u)*, is written i(u);
1.€.,

(v, wy = (v, i(ww), u, v, w € A(E).

The Poincaré map, D:A(E) — A(E), is defined by
(3) Du=iwt", ue AE).
It is an involutory isometry
(4) D* =, (Du, Dv) = (u,v ), u,v € AE),
and it satisfies
(5) i(uyoD = Do wu), uc AE).
One of the key identities of the subject, proved in [1], is

(6) i(z)(z1...2p)

p
=2 AT A7) SN
g=1

- 2 (zqozoz,+z,ozozq)-zl....@q...ﬁr...zp,
1=g<r=p
where z, zy, .. ., z, € Aj(E). The reason that this plays a basic rdle is that

it relates the two algebraic structures on A(E). For example, one may
deduce from (6), by induction on ¢, that

(7 i@t = (" _1(; + ‘I)z!'—q, 0=¢g=p=n
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Since the dot algebra A(E) is generated by Ag(E) = I' and A(E), there
are unique derivations A, p,, z € A(E), of A(E) such that A.(z)) = z o z|,
p-(z1) = z;y 0z, z; € A(E). In particular,

p
8) A(z1...z) = E] Zi...(zoz,) ... 2,
q=
P
po(zy ... 2p) = El 1. . (2g02). .. 2
g=
where z, zy, ..., z, € A|(E). Thus, it follows from (2) that

9 AN(u) = p(u) = pu, u€ Ap(E)~
Furthermore, the identity (6) may be written as

[i(z) o w(z1) — w(z1) 0 i(z) Nz2- .. 2p)

= [ <Z, Zl>L - }\ZIOZ - zOzl](ZZ cee Zp)~

We conclude that
(10)  [i2), mz1) ] = Tz, 21), 2,21 € A(E),
where
(1) r(z’ 7)) = <Z, Zl>" - >\z|Oz — P:oz

and [,] denotes the commutator of linear transformations of A(E).
The formula (10) was the main ingredient in the proof of the principal
result of [5]; namely,

(12) i@+ = (=1y 2 (=1 a@ )i,
reZ
P q € L, u € A(E).
3. A basic identity. The purpose of this section is to prove another
consequence of the formula (6).
LEMMA. For any z),z € A(E)andp € Z,
[li(z)), (") ] = W) 0 T(z1, 2) — W Yo plz 021 0 2),.

Proof. For p = 0, the formula is equivalent to (10).
Because A, and p, are derivations of A(E), we have

A, m(z)] = mzy02) and [p;, M(z)] = uz o z)).
It follows from (11) that
(13) [I(zy, 2), W2)] = —2mz 0 z102) z,2; € A(E).
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Now assume that the lemma holds for p; i.e., by (1),
liz), w(2)? ' = (p + Dp(zY o T(zy, 2)
—p(p + Dy "oz oz 02).
Then, by (13),
li(z), mz)" 2] = [i(z1), p(2)P "o wz) + w(z)P ™' o [i(z1), m(z) ]
=[(p + Duzy o T(zy. 2) = p(p+DHz)? ™!
omzozioz)omz) + mz)" " o Tz, 2)
= (p + DuzY o [m(z) o Iz, 2)
—2w(zozy02z)]
—p(p + D)’ "o pz) oz 0 21 0 2)
+ w2 o Tz, 2)
= (p + D) o I(z), 2)
—(p + D(p + uzY opzoz o0z2)
1.€.,
li(z1), (D] = ") o Tz, 2) — W) oz 0 2 0 2).

This closes the induction and hence proves the lemma for p € N. It is
clearly true for p << 0 (both sizes are zero) and hence for p € Z.

COROLLARY 1.
iz = (21, 2)2? — (zozioz) -2\, z|, z € A(E),
p € L.

Proof. Let both sides of the lemma act on 1 € Ay(E) and note that
derivations of A(E) map Ay(E) to 0.

COROLLARY 2.
i), pe”* )] = Py o [(n — p)e = A, — p)), p € Z
Proof. When z; = z = t, the right hand side of the lemma is
WPy o T(t, 1) — w(t? ™"y o u(t),
by (2). Since (7, t) = i(t)t = n, by (7), formula (11) yields
T't,t) =n — N\, — p,.
Finally,
w0 pt) = wt - 7Y = pue?),
by (1).
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Remarks. (i) In view of (9), Corollary 2 implies that
(14) (i), p@ Y v = (n — p = 2@y, v € Ay(E), p, q € L.
(ii) Suppose v € keri(t) N A (E). Then (14) reads
Oy = (0 = p = 2 )y

and hence, by induction, we obtain

(m + Dim+2)...(m + r)
r!

p(e? v,

(15) i()(? )y
where v € keri(/) N Ay(E),p,q € Z,r €« Nandm =n — p — 2q.

4. The subspaces F,, G, of A,(E). We define subspaces of A,(E) by
F, = keri(t) N A, (E), G, = kerp(t) N A, (E), p € L.
If p < 0orp > nboth F, and G, are zero. Also it is clear that Fy = Ay(E)
= I' and G, = A,(E), which is isomorphic to T, since ¢ is a basis. From

(5), we see that D maps F, isomorphically onto G,_,. A more precise
version of this result follows from the

LEMMA.
i(t")Du = Dp(tyu = (= 1Yp(t" * %u, u € F, p,q € L.
Proof. We have
iDu = D@7 u) = i(w)Dt? = i(u)i" 4,
by (5), (3) and (7). The lemma then follows from (12), since u € F,.
COROLLARY 1.
Du(t)F, = w(t"" ¥ ")F, = i(t)Gy—p, p.q € Z.
Proof. The first equality follows from the lemma which also shows
that
Du(t?)F, = i(t?)DF,.
Since DF, = G, ), as we have remarked above, the second equality holds
as well.
CorOLLARY 2. w(t?)F, # 0 if and only if p, q satisfy 0 = g = n — 2p.

Proof. The left hand side of the formula in the lemma vanishes unless g
= 0, while the right hand side vanishes unlessn — 2p — ¢ = O Since D is
an isomorphism, we conclude that p(t)F, = O unless 0 = ¢ = n — 2p.

We now prove that, if 0 = ¢ = n — 2p, then u(z7)F, # 0. First, note
that it is sufficient to prove that u(r"~ % )F, # 0, since p,(tq )F, = 0 implies
that p(¢")F, = 0 for r = q.
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Letej, ..., e, be a basis for E and let e*!' ..., e* beits dual. Define z
€ A(E) by

p
2= > e ® e+
i=1
It is easily seen that
1
=N A @e, AL Aey,

and hence ¥ # 0, since 2p = n.
On the other hand, Corollary 1 of Section 3 shows that

i(t) = (t, z>z”_l —(zoz) 272
But
p .
(t.2) = 2 (¥ epy;) = 0
=1
and
p . .
zoz = ”21 (¥, e,y pe? ® e,y = 0.
ij=

Hence 2/ € F,.

h
Next, note that, since t = 2 e* @ e;, we have
i=1

1 . .
=—3 e A Ae*i®@e; A...Ae,
q' q

where 1 = iy,..., iy = n. It follows that
MW = e PTIN  Ae*Ae* A L. Ae*? @
€2p+1A . Ae,,Aep+1A . Aezp,

since the only non-zero terms in the product are those for which
(i1, ..., iy—2p) 1s a permutation of (2p + 1,...,n).
Finally, then, /"~ % - 22 # 0 since 2p = n.

S. The orthogonal projections 7,. In this section we will construct
orthogonal projections
7,18, (E) = A, (E)
whose image is F),.

LEMMA. Let m = n — 2p + 1, where 2p = n. Let i(t), denote the
restriction of i(t) to A,(E). Put
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m
m

o (=Y .
™, = 2 p(") 0 i(l"),.
r=0 ( -’rr)
Then m, is the orthogonal projection of A,(E) onto F,
Proof. Suppose that u € A,(E). By (14) we have
(D), @) NG u) = [n = 2p — r) = (r = D" Hi("u,
which may be written as
IO = Wi + (n = 2p + 1+ r)p ™ i u
= (r + D) u + (m + e i,

or
r! (r + D! +1
mE IO )it u = m ot p(")i(e"" u
r!
S ———T ) VT
m =1 M i
= V41 T v,
where
AE— T
= m+r— 1)'“ e
It follows from the definition that vy = 0, v,+; = 0 and hence that
p
i(tym,(u) = m! 20 (=1 (vyeq + v)

=mllvg + (=1¥v,41] = 0
Since u € A,(E) is arbitrary, we conclude that
(16) i(r)om, = 0.

Therefore

)4 (_l)r )
=2 p(t) o i(t") o m,
r=0 (m+r)
m

(-1

0 40 —
=< p@)oi()om =m,

(")
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This proves that m, is a projection and, since p(r)* = i(1), it follows that

7y = 7, and hence that 7, is orthogonal.

Finally, if u € F,, then mu = u, from the definition of =, and,
conversely, if m,u = u, then
i(u = i()mu = 0,
from (16). Thus the image of m, is F),.
COROLLARY 1.
kerm, = Imp(),—1.

Proof. Since

S (= .
= b+ X T —ull) 0 i),
r=1 (m+r)
r
it follows that mu = 0 if and only if ¥ € Imp(z), .

COROLLARY 2.

7o =3 CO yo )
S (n - 2p+ 1+ r) HEIn=p
r

is the orthogonal projection of A,-p(E) whose image is G,—, and whose
kernel is Imi(t),—p+1.
Proof. From (5) it is easy to check that

Dom, =my_,0D,.

The fact that 7, p 1 an orthogonal projection then follows from (4). The
rest of the corollary follows from the fact that D maps F, isomorphically
(in fact, isometrically) onto G, -, (cf. Corollary 1, Section 4).

6. The direct sum decomposition of A(E). In this section we will show
that A(E) is the direct sum of spaces of the form u(t9)F,, p, ¢ € Z. Note
that by Corollary 2 of Section 4, the only such spaces which are different
from 0 are those for which 0 = ¢ = n — 2p.

LEMMma. If

p
u= 2 wr’ "y,
r=0

where u, € F,, r = 0, 1,...,p and 2p = n, then the u, are uniquely
determined by i(t9u, q = 0, 1,...,p.
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p
it = X (n pory q).“(”’_q_’)u,, qg=20,...,p.
r=0 q
The coefficient of u,_, in this equation is g and hence
the determinant of the system is
p
H(n—2p+2q)>0’
q=0 q
since 2p = n.
COROLLARY. If
14
> wt? ", =0, foru, € F,r=0,...,p,2p = n,
r=0
thenu, = 0, forr = 0,...,p.
We are now in a position to prove the
THEOREM.
n
AE) = @ A(E),
p=0
where
Ay(E) = Fy
A(E) = p(1)Fy © F,
A(E) = p(tP)Fo © w(t’ " HF) © ... ® F,
(2p =n)

Ay p(E) = p(f" PYFy ® p(t" P "HF| @ ... @ w(r" P)F,

A, ((E) = w(r"~"YFy ® (" HF,
A, (E) = w(t*)Fo.
Proof. The results of Section 5 show that for 2p = n,

A, (E) = Imm, © kerm, = F, © Imp(¢),—.
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The corollary of the above lemma, together with an induction on p show
that

Imp(1), -1 = WOF,—1 @ WHF,—» @ ... © u(t")F,

This proves the formulae when 2p = n. The remaining formulae follow
from these by virtue of Corollary 1 of the lemma in Section 4.

CoROLLARY 1. For 2p = n, we have

2 2
dimF, = dimG,_, = ([’j) - (p " 1) :
. n 2
Proof. dimA,(E) = »)

COROLLARY 2.
AWE) = i(!")G,
A(E) = i("" NG, ® i(!" DG,

A(E) = i(" PG, @ i(t" P NG,- ©...@i(" ¥)G,,
2p = n)
A, p(E) = i(")G, ® it " NG,-1©...©G,_,

An—l(E) = i(1)G, @ Gy—1
An(E‘) = Gn~
Proof. Apply D to the decomposition in the theorem and use Corollary 1

of the lemma of Section 4.

7. Concluding remarks.

1. The decomposition of Section 6 is, in fact, orthogonal. To see this,
assume that 2p = n and consider

(Bt gy WYty ) = WAty g 4y

n—2p+q+r —r
= ( 7 r 1 )<P‘(tq )up~q? up—r>

- 2p +q + q—r
= (}’l Pr 9 r)<upqul(tq )up—r>

=(),
if0=r<gq=p(ct (15)).
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The other orthogonalities follow from that of Ap(E), Ay (E), p # ¢, and
the fact that D is an isometry.

2. Now that we know thatu € A,(E) (2p = n) can be uniquely written
in terms of u, € F, (0 = g = p) the lemma of Section 6 provides an
algorithm for computing these u, in terms of u; in fact, the system

ity = (;)uo

i u = (; _ }),u(t)u() + (Z _ %)ul

i = (” o + q)u(t”_")uo ¥

+ (” 4 j; 9= ’)u(zp“/"r) ut ..

+ (n—2p+2q)u

iy = (” gl’)u(zp)uo + ...

— p — _, -2
+ (” £ ’)u(zp Y, + ...+ (” 0 P)u,,,

may be solved, successively, for uy, uy, ..., u,.

For example, if n = 4 and p = 2, we find

2 ) 1
= — t’ , =
“o nn — l)< U, n—2

e = 202wy 1)
and

- l 5 litu — %<12, udt] -t — m%}—)@, udr.

Il

U u —

3. The eigenvectors of D and inner products of elements of A(E) can be
computed in terms of the decomposition of Section 6.
For example, if 2p = n, and we write

p
u= > WP~ Nyuy,
q=0

where u, € F (¢ = 0,...,p), then
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)4
Du = 2 (=1 " 9,
q=0

by the lemma of Section 4.
Thus u € A,(E) is an eigenvector of D only if 2p = n. In this case, the
eigenspace of D corresponding to the eigenvalue +1 is

WP )Fy @ p(t? )R ® .
while that corresponding to —1 is
WP HF, @ ut? HF ...

If we write

p
v= 2 W, € A, (E),
q=0

where v, € F,(¢ = 0,...,p), then
vy = 3 (” - 2‘1) (g v,)
So\p—yq ¢ Yq/>
since

it = (" _qzq)u, u € F,0=2=n,
0=qg=n-—2p,

by (15).

Similarly, we conclude that, if n = 2p, then
S 2 — 2
(u, Dv) = qgo (—1)4( b — g )(uq, V-

4. The case u € A,(E) is of special interest because the curvature tensor
of a pseudo-Riemannian manifold, when regarded as a tensor of type (2,
2), has the symmetries of Ay(F). In this case i(¢)u corresponds to the Ricci
tensor, while (£, u) corresponds to the scalar of curvature.

The terms in the decomposition of Section 6 also have geometric
significance. According to the example of Remark 2, above, u,
corresponds to the scalar of curvature, u; corresponds to the trace-free
Ricci tensor and u; corresponds to the Weyl conformal curvature tensor.
In particular, if 4, = 0, the manifold is conformally flat (if » = 4) and if
u; = 0, then we have an Einstein manifold.

Decompositions of the above type (using the Bianchi symmetries as well
as those of Ay(E)) have been employed in [3] to obtain inequalities
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between the signature of a four-dimensional Einstein manifold and its
Euler Characteristic.

The specific decomposition of Remark 2 was used in [2] to show that
Pontrjagin classes of a manifold depend only on the Weyl tensor and
hence are conformal invariants.

It is hoped that the generality of the above results, with respect to both
the field I' and the inner product {,), will lead to further applications.
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