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Abstract

Justification theory is a general framework for the definition of semantics of rule-based lan-
guages that has a high explanatory potential. Nested justification systems, first introduced by
Denecker et al., allow for the composition of justification systems. This notion of nesting thus
enables the modular definition of semantics of rule-based languages, and increases the represen-
tational capacities of justification theory. As we show in this paper, the original characterization
of semantics for nested justification systems leads to the loss of information relevant for expla-
nations. In view of this problem, we provide an alternative characterization of their semantics
and show that it is equivalent to the original one. Furthermore, we show how nested justification
systems allow representing fixpoint definitions.

KEYWORDS: justification, modular, knowledge representation

1 Introduction

Justification theory (Denecker et al. 2015) is a general framework for the definition of

semantics of rule-based languages that allows to design languages with high explanatory

potential, as the justification-based semantics give an immediate explanation of the truth-

value of a fact. In more detail, a justification is a tree of facts, where children of a
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given node occur in the body of a rule with this parent node as head. So-called branch

evaluations specify how to evaluate justifications.

Justification theory is not just useful for defining new logics, but also for unifying ex-

isting ones: it captures many different KR-languages, including logic programming and

abstract argumentation, and their various semantics. By establishing a precise corre-

spondence between semantics of different logics, justification theory sheds light on the

common semantic mechanisms underlying these different logics.

Denecker et al. (2015) also introduced nested justification systems, which allow jus-

tification systems to be composed by nesting them. Essentially, a nested justification

system can be seen as a tree of justification systems, where the subsystems provide sub-

definitions for their parent systems. Such nested systems have several benefits. Firstly,

they allow for the modular definition of (the semantics of) rule-based languages. For

instance, the problem of defining a suitable semantics for logic programs with aggregates

is notoriously difficult (witnessed, e.g. by the lack of consensus on semantics for logic

programs with aggregates Pelov et al. 2007; Faber et al. 2011; Gelfond and Zhang 2019;

Alviano et al. 2021; Vanbesien et al. 2021). Nested justifications allow to separate distinct

concerns in logic programs with aggregates: on the one hand, we can define what is a

justification for an aggregate expression and when it is “acceptable” (branch evaluation

for aggregate expressions). On the other hand, we can define a branch evaluation (e.g.

stable or well-founded) for rules. By nesting the justification system for aggregate expres-

sions inside the justification system for programmes, we then obtain a semantics for logic

programs with aggregates without any additional effort required. Thus, the modular se-

mantics of nested justification systems allow for the definition of complex KR-languages

using a “divide and conquer”-methodology. Secondly, as different branch evaluations can

be used in different sub-systems, nested justification systems allow for the well-behaved

combination of different semantics. This can be useful when modelling the combination

of knowledge from different agents that use a different semantics to interpret their re-

spective knowledge bases. Finally, nested justification systems allow to capture a richer

class of logics than non-nested systems (e.g. fixpoint definitions, as we will show in this

paper), and nesting thus increases the unifying power of justification theory.

Denecker et al. (2015) defined the semantics of nested justification systems by means

of an operation called compression, which turns an entire justification of the subsystem

into a set of facts to be pasted into the supersystem. However, properties of this charac-

terisation of their semantics were never studied. Furthermore, as we argue in this paper,

the compression-based characterisation of these semantics lead to the loss of explana-

tory potential, as information essential for explanations, such as the original rules, is

lost. Therefore, in this work, we give an alternative characterisation of the semantics of

nested justification systems in terms of a so-called merging operator. Merging retains the

original rules in the evaluation of a nested justification system, and therefore brings the

explanatory potential of justification theory to nested systems.

The contributions of this paper are as follows. (1) An expanded exposition and semantic

study of nested justification systems and the compression-based characterisation of their

semantics. (2) The introduction of the merging-based characterisation of their semantics.

(3) A proof of equivalence between compression and merging. (4) An application of nested

justification systems to the representation of fixpoint definitions (Hou et al. 2010).
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The merging-based characterisation brings the explanatory potential of standard jus-

tification theory to nested justification systems. This is promising not just for nested

fixpoint definitions, which we study in the current paper, but also for other applications

of nesting, such as the modular definition of new language constructs. Furthermore, due

to the general nature of justification theory, as well as of our characterisations and results,

our results also apply to any future branch evaluations.

Outline of the paper: The rest of this paper is structured as follows: necessary pre-

liminaries on justification theory are given in Section 2. In Section 3, nested justification

systems are defined. The first characterisation of semantics for nested justification sys-

tems, compression-based characterisation, is recalled and studied in Section 4. In Sec-

tion 5, the merging-based characterisation is introduced. These two characterisations are

shown equivalent in Section 6. Nested justification systems are shown to capture fixpoint

definitions in Section 7. The paper is concluded in view of related work in Section 8.

2 Preliminaries

We use the formalization of justification theory of Marynissen et al. (2020). We first give

and explain all necessary definitions, and afterwards illustrate them with an example.

In the rest of this paper, let F be a set, referred to as a fact space, such that L =

{t, f ,u} ⊆ F , where t, f and u have the respective meaning true, false, and unknown.

The elements of F are called facts. The set L behaves as the three-valued logic with

truth order f ≤t u ≤t t. We assume that F is equipped with an involution ∼ : F → F
(i.e. a bijection that is its own inverse) such that ∼t = f , ∼u = u, and ∼x �= x for all

x �= u. For any fact x, ∼x is called the complement of x. An example of a fact space is

the set of literals over a propositional vocabulary Σ extended with L where ∼ maps a

literal to its negation. For any set A we define ∼A to be the set of elements of the form

∼a for a ∈ A. We distinguish two types of facts: defined and open facts. The former is

accompanied by a set of rules that determine their truth value. The truth value of the

latter is not governed by the rule system but comes from an external source or is fixed

(as is the case for logical facts), and only occur in bodies of rules.

Definition 2.1

A justification frame JF is a tuple 〈F ,Fd, R〉 such that

• Fd is a subset of F \ L closed under ∼, that is, ∼Fd = Fd; facts in Fd are called

defined ;1

• R ⊆ Fd × 2F ;
• for each x ∈ Fd, (x, ∅) /∈ R and there is an element (x,A) ∈ R for ∅ �= A ⊆ F .

The set of open facts is denoted as Fo := F \ Fd. An element (x,A) ∈ R is called a rule

with head x and body (or case) A. The set of cases of x in JF is denoted as JF(x). Rules
(x,A) ∈ R are denoted as x← A and if A = {y1, . . . , yn}, we often write x← y1, . . . , yn.

In justification theory, defined facts are evaluated by constructing justifications for

them. Justifications are directed graphs, where the set truth of the (labels of the) children

1 Thus, no logical fact is defined, or, equivalently, the logical facts are opens.
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of a node forms a reason (or argument, or cause, depending on the context) for the truth

of the (label of the) node itself. Such reasons are not necessarily convincing: for example

if they are based on a parameter that is not true, or might lead to cyclic argumentation.

Therefore, branches in justification trees are evaluated using branch evaluations.

Definition 2.2

Let JF = 〈F ,Fd, R〉 be a justification frame. A justification J in JF is a (possibly

infinite) directed labelled graph (N,Fd, E, �), where N are the nodes, E the vertices,

and � : N → Fd is a labelling function, such that (1) the underlying undirected graph

is a forest, that is, is acyclic; and (2) for every internal node n ∈ N it holds that

�(n)← {�(m) | (n,m) ∈ E} ∈ R.

We write J(x) for the set of justifications that have a node labelled x. A justification is

locally complete if it has no leaves with label in Fd. We call x ∈ Fd a root of a justification

J if there is a node n labelled x such that every node is reachable from n in J .

Remark 2.3

In some works, justifications are formalized as graphs and the justifications as defined

here are then called tree-like justifications (Marynissen et al. 2020). Since we restrict

attention to the latter, we shall just use the term justification.

Definition 2.4

Let JF be a justification frame. A JF-branch is either an infinite sequence in Fd or a

finite non-empty sequence in Fd followed by an element in Fo. For a justification J in

JF , a J-branch starting in x ∈ Fd is a path in J starting in x that is either infinite or

ends in a leaf of J . We write BJ(x) to denote the set of J-branches starting in x.

Not all J-branches are JF-branches since they can end in nodes with a defined fact as

label. However, if J is locally complete, any J-branch is also a JF-branch.
We denote a branch b as b : x0 → x1 → · · · and define ∼b as ∼x0 → ∼x1 → · · · .

Definition 2.5

A branch evaluation B is a mapping that maps any JF-branch to an element in F for

all justification frames JF . A justification frame JF together with a branch evaluation

B form a justification system JS, which is presented as a quadruple 〈F ,Fd, R,B〉.
A branch evaluation is parametric if every branch is mapped to an open fact. A justifi-

cation system 〈F ,Fd, R,B〉 is parametric if B is parametric.

The supported (completion) branch evaluation Bsp maps x0 → x1 → · · · to x1. The

Kripke-Kleene branch evaluation BKK maps finite branches to their last element and

infinite branches to u. Let JF be a justification frame. A sign function on JF is a

map sgn : Fd → {−,+} such that sgn(x) �= sgn(∼x) for all x ∈ Fd. We denote F− :=

sgn−1({−}) and F+ := sgn−1({+}). From now on, we fix a sign function on JF . We

say that an infinite branch has a positive (respectively negative) tail if from some point

onwards all elements are in F+ (respectively F−). The well-founded branch evaluation

Bwf maps finite branches to their last element. It maps infinite branches to t if they have

a negative tail, to f if they have a positive tail and to u otherwise. The co-well-founded

branch evaluation Bcwf maps finite branches to their last element, infinite branches with a

positive tail to t, infinite branches with a negative tail to f , and all other infinite branches
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to u. The stable (answer set) branch evaluation Bst maps a branch x0 → x1 → · · · to the

first element with a different sign than x0 if it exists; otherwise b is mapped to Bwf(b).

The final ingredient of the semantics of justification systems are interpretations, which

are abstractions of possible states of affairs, formalized as an assignment of a truth value

to each fact. A (three-valued) interpretation of F is a function I : F → L such that

I(∼x) = ∼I(x) and I(l) = l for all l ∈ L. The set of interpretations of F is denoted

by IF . We will call an interpretation two-valued if I(x) �= u for all x �= u. Given

an interpretation I and a justification system JS, we can now evaluate the quality of

justifications: the value assigned to a justification will be the least (in the truth order)

value of its branches. The rationale behind this definition is that for a justification to

be “good”, all of the arguments it contains should be good as well. On top of this

definition, we will define a notion of supported value of a fact, which is the value of its

best justification. Indeed, in general we will not be interested in the existence of bad

arguments why a fact holds, but only in the existence of its best arguments.

Let JS = 〈F ,Fd, R,B〉 be a justification system, I an interpretation of F , and J a

locally complete justification in JS. Let x ∈ Fd be a label of a node in J . The value of

x ∈ Fd by J under I is defined as val(J, x, I) = minb∈BJ (x) I(B(b)), where the minimum

is taken with respect to ≤t. The supported value of x ∈ F in JS under I is defined as

SV(x, I) = max
J∈J(x)

val(J, x, I) for x ∈ Fd SV(x, I) = I(x) for x ∈ Fo.

Definition 2.6

Let JS = 〈F ,Fd, R,B〉 be a justification system. An F-interpretation I is a JS-model

if for all x ∈ Fd, SVJS(x, I) = I(x). If JS consists of JF and B, then a JS-model can

be referred to as a B-model of JF .

Definition 2.7

Two justification systems JS1 and JS2 are equivalent if SVJS1 = SVJS2 .

Example 2.8

Consider the justification system 〈F ,Fd, R〉 with Fd = {p,∼p, q,∼q}, F = Fd∪{r,∼r}∪
L and R = {p← ∼q, r; q ← q;∼p← q;∼p← ∼r;∼q ← ∼q}.

We have the following JF-branches (we denote branches compactly in a graph-like

fashion, that is a loop like b3 denotes the infinite branch q → q → . . .):

b1 :

p

∼q r

: b2 b3 :

q

b4 :

∼p

∼r
b5 :

∼p

q

b6 :

∼q

These branches are evaluated as follows:

i 1 2 3 4 5 6

Bsp(bi) ∼q r q ∼r q ∼q
Bwf(bi) t r f ∼r f t
Bcwf(bi) f r t ∼r t f

i 1 2 3 4 5 6

BKK(bi) u r u ∼r u u
Bst(bi) ∼q r f ∼r q t
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Let I be the interpretation with I(r) = I(p) = I(∼q) = t, J the justification for p

made up of b1 and b2, and JF = 〈F ,Fd, R,Bwf〉. We see that, for example, val(J, p, I) =
minb∈BJ (p) I(Bwf(b)) = t, and thus that SV(p, I) = I(p). In fact, it can be verified that

this holds for every literal, that is, I is a JF-model. In I (still, under the well-founded

semantics), J serves as an explanation as to why p is true: because ∼q and r are true.

Simultaneously, J also explains why the facts r and ∼q are true. In the case of r, this is

simply because it is an open fact (with value true). For ∼q, this explanation looks self-

supporting: the reason why ∼q holds is because ∼q holds. For negative facts, stable and

well-founded semantics accept such cyclic branches: the reason is that this cycle actually

represents the fact that the positive fact (q) can only be justified by cyclic justifications,

and well-founded and stable semantics reject cyclic justifications for positive facts.

3 Nested justification systems

As outlined in the introduction, nested justifications, originally introduced by Denecker

et al. (2015), allow for the modular definition of semantics, the representation of richer

classes of logics and the combination of different semantics in different modules. In this

section, we introduce nested justification systems formally.

A nested justification system is essentially a tree structure of justification systems,

meaning, that some systems are local to certain others, that is some facts occurring as

an open fact in one component system are defined in another component system.

Definition 3.1

Let F be a fact space. A nested justification system on F is a tuple

〈F ,Fd,Fdl, R,B,{JS1, . . . ,JSk}〉 such that:

1. 〈F ,Fdl, R,B〉 is a justification system;

2. for each i, JSi is a nested justification system 〈F i,F i
d,F i

dl, R
i,Bi, . . .〉;

3. Fd is partitioned into
{Fdl,F1

d , . . . ,Fk
d

}
;

4. F = ∪ki=1Fk;

5. F i
o ⊆ Fo ∪ Fdl (where F i

o = F i \ F i
d as usual)

A nested justification system is called parametric if B is parametric and all of its sub-

systems are parametric. We call a nested justification system compressible if for each i,

JSi is parametric.

Given JS = 〈F ,Fd,Fdl, R,B,{JS1, . . . ,JSk}, we call (for i = 1, . . . , k) JS the parent

system of JSi and JSi a child system of JS. Ancestor and descendant systems are defined

analogously by transitively closing the parent, respectively, child relation. This defines a

tree of nested justification systems, where the leaves have Fdl = Fd and k = 0, and thus

correspond directly to an unnested justification system.

The factspace F consists of all the facts used in (some component system of) JS. The
facts in Fdl are those that are defined locally in the justification system, that is, in the

rules R. The facts in Fd are those that are either defined locally, or in some component

system of JS. Every defined fact is either defined locally in the top system (Fdl), or in

one of the subsystems (F i
d). Each child system JSi can use as opens only the opens of

the root and the facts defined locally in the root. This has the consequence that facts

defined in JSi do not appear as opens in JSj if i �= j.
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Lemma 3.2

Let JS =
〈F ,Fd,Fdl, R,B,{JS1, . . . ,JSk}〉 be a nested justification system. If i �= j,

then F i
d ∩ F j = ∅.

Example 3.3

Let JS =
〈F ,Fd,Fdl, R,B,{JS1}〉 be a nested system with F = {p, q, r,∼p,∼q,∼r}∪L,

Fdl = {r,∼r}, B = BKK, and

R =
{

r ← p, q; ∼r ← ∼p; ∼r ← ∼q }
.

The inner system JS1 is equal to the unnested system with F1
dl = {p,∼p, q,∼q}, B1 =

Bwf , and

R1 =
{

p← ∼q, r; ∼p← q; ∼p← ∼r; q ← q; ∼q ← ∼q }
.

We summarize this nested justification system graphically as follows:

BKK :

⎧⎨
⎩

r ← p, q; ∼r ← ∼p; ∼r ← ∼q
Bwf

{
p← ∼q, r; ∼p← q; ∼p← ∼r; q ← q; ∼q ← ∼q }

⎫⎬
⎭ .

This example also illustrates how different branch evaluations (e.g. BKK and Bcwf) can

be combined in nested justification systems.

One notoriously difficult problem is the integration of aggregates in non-monotonic

semantics of logic programming (Pelov et al. 2007; Faber et al. 2011; Gelfond and Zhang

2019; Alviano et al. 2021; Vanbesien et al. 2021). While we do not develop the full theory

here, we conjecture that nested justification systems can shed light on the relations

between different semantics. As a first step towards this goal, we will show on a single

example how different semantics for aggregates can be obtained by plugging in a different

nested system defining the aggregate atoms in question. The outer system will always

simply be evaluated under the stable semantics.

Example 3.4

We consider a representation of an aggregate atLeastTwo expressing that at least two

atoms among p, q and s are true.

JSFLP = Bst :
{

p← t; q ← t; s← p, atLeastTwo;

BKK :
{

atLeastTwo← p, q; atLeastTwo← s, q; atLeastTwo← p, s
}

}

JSGZ = Bst :

⎧⎪⎨
⎪⎩

p← t; q ← t; s← p, atLeastTwo;

BKK :

{
atLeastTwo← p, q,∼s; atLeastTwo← s, q,∼p;
atLeastTwo← p, s,∼q; atLeastTwo← p, q, s

}
⎫⎪⎬
⎪⎭

For brevity and for emphasizing the relation with logic programming, we have here only

written down the rules for positive facts. The rules for negative facts can be obtained

automatically by means of a technique called complementation; more details can be

found in Appendix A of the full version of this article (Marynissen et al. 2022). These

systems differ only in their inner justification system, that is, in which justifications for

the atom atLeastTwo they accept. The inner system is evaluated here (in both cases)

under Kripke-Kleene semantics; however, since it is a non-recursive system, all major
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branch evaluations we discussed coincide. These two justification systems are inspired by

the logic program

p. q. s← p, #{p, q, s} ≥ 2.

which has one (two-valued) stable model, namely {p, q, s}, according to the FLP seman-

tics (Faber et al. 2011) but no (two-valued) stable models according to the GZ semantics

(Gelfond and Zhang 2019). We will show later that this is indeed what the semantics for

nested justifications for the first respectively the second system.

In the following two sections, two different characterisations of the semantics for nested

justification systems are given. In a nutshell, these characterisations both describe how

to convert a nested justification system in a non-nested justification system. The first

characterisation, called the compression-based characterisation, keeps the branch evalu-

ation of the top system, but manipulates the rules to “squeeze in” all information about

subsystems (their branch evaluation as well as their rules), while the second, merging-

based characterisation, keeps the rules of the original system intact, but creates a new

branch evaluation based on all branch evaluations present in the system.

4 Compression-based characterisation of semantics for nested systems

The semantics for nested justification systems was originally introduced by Denecker

et al. (2015). The basic idea is to compress a nested justification system in a regular

justification system, starting from the leaves of the nesting tree and iteratively moving

up. In a compressible nested system, the branch evaluations of subsystems are para-

metric and hence we know (by Proposition 3 of Marynissen et al. 2021) that, if the

interpretation of the open facts is fixed, there is a unique model in which the value of

a fact depends solely on the values of the opens. Therefore, the model can be repre-

sented by a set of rules for which the body contains only open facts. This representation

is formed by transforming each justification into a single rule, by an operation called

flattening.

Definition 4.1

Let JS = 〈F ,Fd, R,B〉 be a justification system. The flattening Flat(JS) is the justifi-

cation system 〈F ,Fd, R
f ,B〉, where

Rf = {x← A | x ∈ Fd, J ∈ Jx, A = {B(b) | b ∈ BJ(x)}} .
Intuitively, Flat(JS) is obtained by constructing a rule x ← A for every justification J

for x, where A is obtained by simply taking the facts to which the branches in J starting

in x are mapped by the branch evaluation B.
Example 4.2 (Example 3.3 ctd.)

In view of Example 2.8, the flattening of the inner justification system JS1 has the

following rules:

(R1)f =
{

p← t, r; ∼p← f ; ∼p← ∼r; q ← f ; ∼q ← t
}

In more detail, p← t, r is obtained from the justification made up of b1 and b2, and the

fact that BKK(b1) = t and BKK(b2) = r.
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This is called flattening because every locally complete justification is reduced to a

single rule. If B is parametric, justifications in this new system have only branches of

length two. If these simple branches are mapped to their last element, then the flattening

is equivalent to the original system. For parametric systems, flattening thus preserves

the meaning of the original system:

Proposition 4.3

If JS1 and JS2 are parametric justification systems mapping a branch x→ y to y, then:

1. JS1 is equivalent to Flat(JS1).
2. JS1 and JS2 are equivalent if and only if Flat(JS1) and Flat(JS2) are equivalent.

Notice that it immediately follows that if the preconditions of the above proposition

are satisfied, then the JS1 and Flat(JS1)-models coincide. As a consequence, flattening

preserves the properties of the justification at hand. We should note, however, that the

structure of the justification is lost: justifications in Flat(JS) are condensed down. We

will come back to this later.

Flattening provides us with a way to evaluate inner definitions. The second operation

needed for compression is unfolding, which allows to eliminate inner symbols from the

outside definitions, by replacing facts at a lower level by a (flattened) case for that fact.

Definition 4.4

Let R be a set of rules, and R� a set of rules for the facts X (the elements of X are the

heads of the rules in R�). Take a rule x ← A in R. Let f be any function with domain

A ∩ X such that for all y ∈ A ∩ X, y ← f(y) is a rule in R� (the function f chooses a

rule for each y ∈ A ∩X). The unfolding of x← A with respect to f is the rule

Unff (x← A) = x← (A \X) ∪
⋃

y∈A∩X
f(y).

Let Fx←A be the set of such functions f . Then the unfolding of x ← A with respect to

R� is the set

UnfR�
(x← A) = {Unff (x← A) | f ∈ Fx←A} .

The unfolding of R with respect to R� is

Unfold(X,R�) (R) =
⋃

x←A∈R
UnfR�

(x← A) .

In a nutshell, Unfold(X,R�) (R) is obtained by replacing, in each x ← y1, . . . , yn ∈ R,

each fact yi defined in R� by the body facts A of a rule yi ← A defining yi.

Example 4.5 (Examples 3.3 & 4.2 ctd.)

With all systems as defined previously, we see that

Unfold(Fdl,Flat(R1)) (R) =
{

r ← t, r, f ; ∼r ← ∼r; ∼r ← f ; ∼r ← t
} ∪R1.

On the basis of the unfolding of a set of rules we can define the unfolding of a justifi-

cation system, obtained by unfolding the rules of the parent system with respect to the

rules of the children systems, and keeping the rules for the lower-level facts (Rs):
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Definition 4.6

Let JS =
〈F ,Fd,Fdl, R,B,{JS1, . . . ,JSk}〉 be a two-level nested compressible justifi-

cation system. The unfolding of JS is

Unfold (JS) = 〈F ,Fd, R
s ∪Unfold(Fd\Fdl,Rs) (R) ,B〉,

where Rs = ∪ki=1R
i.

The unfold-operation reduces the depth of the nesting tree and thus serves as a basis for

the compression of a nested justification system (notice that since the subsystems JSi
will have a smaller depth than JS, Compress(JS) is well-defined).
Definition 4.7 (Denecker et al. 2015)

Let JS =
〈F ,Fd,Fdl, R,B,{JS1, . . . ,JSk}〉 be a compressible nested justification sys-

tem. The compression Compress(JS) is defined inductively to be the justification system

Unfold
(〈F ,Fd,Fdl, R,B,{Flat(Compress(JS1)), . . . ,Flat(Compress(JSk))}〉) .

Remark 4.8

Intuitively, the compression works as follows, described here for a two-level system JS
with only one subsystem JS1 = 〈F1,F1

d , R
1,B1〉. First of all, JS1 is flattened. We know

from Proposition 4.3 that this preserves the meaning of the system, and in fact, it no

longer matters which branch evaluation is used, provided that it maps branches of length

2 onto their last element. In other words, the original system and branch evaluation are

consolidated into the flattened frame. The next step is to replace each occurrence (in

JS) of each fact defined in JS1 by all possible cases for it in the flattened system. If B1
is parametric, each such case in the flattened system contains only fact that are either

locally defined or open in JS. The result can then be evaluated without any knowledge

of the branch evaluation or rules of JS1. While technically, the compressed system also

contains a copy of R1, they are only there for recovering the value of facts in F1
d ; they

play no role for determining the value of facts in JS. In case B1 is not parametric, this

construction no longer works: the cases in the flattening can then contain facts that are

locally defined in JF1. For this reason, compression was only defined for parametric

branch evaluations by Denecker et al. (2015). We here slightly relax this condition, by

allowing (in a compressible system) the outer branch evaluation to be non-parametric.

Example 4.9 (Example 4.5 ctd.)

We have already calculated Unfold(F1
dl,R

2)
(
R1

)
in Example 4.5. Since Unfold(Fdl,R1) (R)

contains only rule bodies with open facts, we see that Flat(Unfold(Fdl,R1) (R)) =

Unfold(Fdl,R1) (R). We therefore obtain:

Compress(JS) = 〈F ,Fd,Unfold(Fdl,R1) (R),BKK〉
and thus end up with an unnested justification system. It can be verified that the unique

Compress(JS)-model is I with I(∼r) = I(p) = I(q) = f .

Example 4.10

We return to the nested justification system of Example 3.4. It can be verified that

Compress(JSFLP ) is equal to (the complementation of)
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Bst :
{

p← t; q ← t; s← p, s s← p, q, s; s← p, q;

atLeastTwo← p, q; atLeastTwo← s, q; atLeastTwo← p, s;

}

The interpretation I with I(s) = I(p) = I(q) = t is the only two-valued

Compress(JSFLP ). This interpretation indeed corresponds to the only stable model un-

der the FLP semantics (mentioned above).

On the other hand, there are no two-valued Compress(JSGZ )-models. This can be seen

by observing that Compress(JSGZ ) equals (the complementation of):

Bst :
⎧⎨
⎩

p← t; q ← t; s← p, q,∼s; s← p, s,∼q; s← p, q, s,∼p; s← p, q, s;

atLeastTwo← p, q,∼s; atLeastTwo← s, q,∼p;
atLeastTwo← p, s,∼q; atLeastTwo← p, q, s

⎫⎬
⎭

Suppose I were a Compress(JSGZ )-model, then clearly I(p) = I(q) = t. If I(s) = t,

then SV(s, I) = f (because each justification of s has a branch s → ∼x → . . . (with x

either p, q, or s). On the other hand, if I(s) = f , then SV(s, I) = t, and it can be verified

that the justification that selects the rule s ← p, q,¬s supports s in this case. Hence,

such an I can indeed not exist.

In this section, the semantics of nested justifications in terms of compressions, originally

proposed by Denecker et al. (2015) was described and studied. This characterisation of

semantics of nested justification systems is the first one given in the literature. However,

it does have a significant downside: the explanatory potential of justification systems

is partially lost, since rules in lower levels of the justification system are compressed

to their evaluation. For example, the definition of r in Example 3.3 is compressed to

{r ← t, r, f}, and thus the explanatory potential of justification theory is completely lost.

Indeed, intuitively, we have a justification in the original nested justification system that

looks like the justification on the left of the figure below, and is obtained by constructing

a justification on the basis of all (relevant) rules in JS:
r

q p

∼q

r

t f

However, under the compression-based semantics, we obtain the justification on the right,

where most information on the justification of r has been lost. Thus, from the point

of view of explainable reasoning, it is preferable to be able to somehow evaluate the

justification on the left while retaining semantic equivalence with the compression-based

semantics. This is exactly what will be done in the next section.

5 Merging-based characterisation of semantics for nested systems

To avoid the loss of information with explanatory potential suffered by the compression-

based characterisation, the merging-based characterisation of semantics is now proposed.
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The basic idea of the merging-based characterisation is to consolidate all component

systems of the nested justification system in a justification system 〈F ,Fd, R
∗,B∗〉, where

all rules of all component justification systems are simply gathered in R∗. This also means

that justification branches are now constructed on the basis of all rules occurring some-

where in the nested justification system, and not simply on the basis of one component

justification system. The information about the nesting structure of the original system is

not discarded, but taken into account in the merge branch evaluation B∗. In more detail,

for infinite branches b in R∗, one looks for the highest component justification system

JS ′ in the nested justification system s.t. b contains infinitely many elements of locally

defined facts of JS ′, and then applies the original branch evaluation B′ of the compo-

nent system in question to the JS ′-branch b′ that corresponds to b. This formalizes the

intuition that priority is given to the outermost semantics.

Definition 5.1

The merge Merge(JS) of JS is the justification system 〈F ,Fd, R
∗,B∗〉, where:

• R∗ is the union of all the rules in JS.
• the merge branch evaluation B∗w.r.t. JS is defined as follows:

1. if b is finite, then B∗(b) is equal to the last element of b.

2. if b is infinite, then let JS ′ be the unique2 system equal to either JS or one

of its descendant systems such that:

(a) b has infinitely many occurrences of facts defined locally in JS ′.3
(b) No ancestor system of JS ′ has property (a), that is for all ancestor systems

of JS, b has only finitely many occurrences of facts defined locally in that

system.

Let b′ be the branch obtained from b by removing all facts not defined

locally in JS ′. Then B∗(b) = B′(b′), where B′ is the branch evaluation

of JS ′.
The conditions in Definition 3.1 guarantee that branches in Merge(JS) are sequences

of facts x0 → x1 → . . . s.t. xi is defined locally in a descendant or ancestor of xi+1. This

guarantees that the system JS ′ indeed exists and is unique: if a branch has infinitely

many occurrences of facts defined (locally) in two systems, then it must also go infinitely

often through a common ancestor.

Example 5.2 (Example 3.3 ctd.)

Consider again JS as in Example 3.3. We have, among others, the justification for

r in Merge(JS) on the left side of the following picture4; on the right side, the in-

dividual branches have been unravelled and the corresponding “primed” branches are

drawn:

2 Existence and uniqueness of this system are argued below the definition.
3 In more formal detail, there is some a ∈ F ′

d s.t. b contains infinitely many occurrences of a.
4 The justification is visualized here as a graph; the actual justification is the tree-unravelling of this
graph which will for instance have infinitely many nodes labelled r. For instance, the edge from p to
r symbolises the fact that every node labelled p has a child node labelled r.
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r

q p

∼q

b2: r q q . . .

b3: r p ∼q ∼q . . .

b1: r p r p . . .

b′1: b′2: b′3:
r q ∼q

Notice that all literals in b1 occur infinitely many times in b1. Since r is defined locally

in JS, that is it occurs in Fdl, we have to look at JS to evaluate b1 with B�. On the

right side, the branch b′1 = r → r → . . . obtained from b1 by removing all facts defined

outside of JS is given. We now obtain B�(b1) by evaluating b′1 according to b1, that is,

B�(b1) = BKK(b
′
1) = u.

For b2 and b3, we see that the highest justification system in which q respectively

∼q are defined is JS1. We therefore obtain the branches b′2 = q → q → . . . and

b′3 = ∼q → ∼q → . . .. Since JS1 uses the well-founded branch evaluation Bwf , we

obtain B�(b2) = Bwf(b
′
2) = f and B�(b3) = Bwf(b

′
3) = t. Here, we can thus see the dif-

ferent branch evaluations of the component systems at work: for example, branches with

infinite occurrences of positive literals are treated differently in view of the component

justification system in which these literals are defined, and the branch evaluations used in

these justification systems. In more detail, b1 is evaluated to u since it is defined locally

in JS, which uses the Kripke-Kleene evaluation, whereas b3 is evaluated to f since it

is defined in JS2, which uses the well-founded evaluation. Altogether, we see that for

I(r) = t, I(q) = I(p) = f , it holds that SV(r, I) = t. In fact, it can be checked that I
is the unique Compress(JS)-model, which is no coincidence as we will see next.

6 Equivalence of compression- and merging-based characterisations

Even though the compression-based and merging-based characterisation of semantics are

based on quite different mechanisms, they give rise to the same evaluations for nested

justification systems, that is, they are equivalent. Showing this is rather involved, and

due to spatial limitations, the details are given in Appendix D of the full version of this

article (Marynissen et al. 2022) and illustrated schematically in Figure 1. The crucial idea

for the proof of equivalence is the definition of two operations, shrinking and expanding,

that allow converting justifications in Compress(JS) to justifications in Merge(JS) and
vice versa. On the basis of these operations, it is then shown that the supported value

for defined facts are the same under Merge(JS) and Compress(JS) (for all defined facts

x and interpretations I):
SVt

Compress(JS)(x, I) = SVt
Merge(JS)(x, I)

To guarantee that shrink and expand behave as expected, two minor assumptions are

necessary, namely (1) that finite branches are mapped to their last element (Marynissen

et al. (2021, Propositions 1 and 2) have shown how to modify branch evaluations to satisfy

this condition) and (2) that all parametric branch evaluations map infinite branches to
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r

q p

∼q

r

f t

p

r∼q

q

r ← p, q r ← r, t, f

Expand

Shrink

Compress

Fig. 1. Schematic illustration (based on Example 3.3) of the shrinking-operation, which
converts a justification in Merge(JS) into a justification in Compress(JS) (also illustrated

schematically), and the expanding-operation, which converts a justification in Compress(JS)
(taking into account the relevant justifications in JS) into a justification in Merge(JS).

logical facts (in fact, unless additional structure on the fact space is assumed, this will

always be satisfied). We obtain the following theorem.

Theorem 6.1

Let a compressible nested justification system JS in which every branch evaluation

maps finite branches to their last element, and infinite branches to logical facts. Then

Compress(JS) and Merge(JS) are equivalent.

It immediately follows that for a justification system that satisfies all of the preconditions

of Theorem 6.1, the Compress(JS)-models coincide with the Merge(JS)-models.

Remark 6.2

As mentioned in Remark 4.8, compression was only defined for so-called compressible

branch evaluations to allow evaluating the different involved systems separately. For

merging, this restriction does not play a role: here all branch evaluations are taken into

account simultaneously, in the definition of B∗. As such, we have not just given a novel

characterization of the semantics of nested systems, but also significantly expanded its

scope, by allowing non-parametric systems, such as stable or supported, to be nested.

7 FO(FD): Application to fixpoint definitions

FO(FD) (Hou et al. 2010) is a logic that integrates fixpoint definitions based on

rules with first-order logic. Essentially, a least fixpoint definition (respectively great-

est fixpoint definition) is defined inductively as an expression of the form D =

�R,Δ1, . . . ,Δm,∇1, . . . ,∇n� (respectively �R,Δ1, . . . ,Δm,∇1, . . . ,∇n�), where R is a

set of rules and each Δi is a least fixpoint definition and each ∇j is a greatest fixpoint

definition, s.t. every symbol is defined in at most one of R, Δ1, . . ., Δm, ∇1, . . ., ∇n.

Additionally, defined symbols are only allowed to occur positively in rule bodies. The se-

mantics of FO(FD), explained in full detail in Appendix E of the full version of this article

(Marynissen et al. 2022), is given in terms of (two-valued) interpretations, and is defined

iteratively, by means of an immediate consequence operator ΓD(I). Consistent with the

idea of capturing a definition, a unique model according to these semantics is guaranteed

to exist. The nested nature of fixpoint definitions comes into play when requirements of
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different levels conflict with each-other. In that case, intuitively, the highest level (the

outermost definition) will be given priority.

As an example, restricted to the propositional case, consider:

D =

⌊
p← q ∨ r; q ← p; u← s⌈
r ← p; s← t ∨ q; t← s

⌉ ⌋

This fixpoint definition consists of two levels. The uppermost or global level is a least

fixpoint definition of p, q and u, whereas the lower or inner level contains a greatest

fixpoint definition of the atoms r, s and t. Intuitively, the semantics will ensure that the

model of this definition corresponds to a greatest fixpoint of the immediate consequence

operator based on the inner system, and a least fixpoint of the immediate consequence

operator based on the outer system, together with the respective interpretation for the

inner system. For example, the interpretation that assigns t to s, t and u, and f to p, q

and r to f is a model of this fixpoint definition. We see that the cycle between p← q ∨ r
and r ← p gives rise to a conflict between the two levels: the greatest fixpoint nature of

the lowest level would require us to make p and r true, whereas the least fixpoint nature

of the highest level would require us to make p and r false. Since priority is given to the

highest level, p and r are false in the defined interpretation.

Nested justifications were partially inspired by FO(FD), and is therefore not surprising

that FO(FD) can be captured using nested justifications. This way of assigning priority

to higher levels in case of conflicting demands also shows up in the merging-based char-

acterisation, where the highest component system is used to evaluate infinite branches.

For the propositional case, the translation is rather straightforward. Given a fixpoint

definition D, JSD is defined as 〈F ,Fd,Fdl, R,B, {JSΔ1
, . . . ,JSΔm

,JS∇1
, . . . ,JS∇n

}〉,
where B = Bwf if D is a least fixpoint definition and B = Bcwf if D is a greatest fixpoint

definition. We can thus represent the nested justification system JSD as:

Bwf :

{
p← q ∨ r; q ← p; u← s

Bcwf :
{

r ← p; s← t; s← q; t← s
} }

This translation is adequate, in the sense that a unique Bwf -model (respectively Bcwf -

model) that leaves no atoms u is guaranteed to exist and corresponds to the least (re-

spectively greatest) fixpoint of the fixpoint definition. Notice that we replaced s← t ∨ q

by s ← t and s ← q. For more complex formulae, more work is required. For the full

first-order case, the idea is essentially the same, but an intermediary system is included

between JSD and JSΔ1
, . . . ,JSΔm

,JS∇1
, . . . ,JS∇n

to ensure that first-order formulae

are treated adequately. This translation, as well as the correspondence results, are de-

tailed in Appendix E of the full version of this article (Marynissen et al. 2022).

8 Conclusion, in view of related work

In this paper, we gave two characterisations of the semantics of nested justification sys-

tems, showed that these characterisations are equivalent and demonstrated how nested

justifications can capture nested fixpoint definitions. The potential applications of nested

justification systems are extensive, as they allow for the modular, and therefore straight-

forward, design of rule-based languages. A prime example is the definition of semantics

for aggregates. Nested justification systems allow to separate the definition of semantics
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aggregates from that of a logic program, by adding rules defining the aggregates at the

lowest level of a justification system (cf. Example 3.4). In future work, we will investigate

exact translations from semantics for logic programs with aggregates (e.g. Pelov et al.

2007; Faber et al. 2011; Gelfond and Zhang 2019; Alviano et al. 2021; Vanbesien et al.

2021 in nested justification systems, bringing justification theory’s explanatory potential

to such semantics.

Some aspects of nested justifications, in particular the fact that different modules using

different semantics can be combined, are reminiscent of multi-context systems (in short,

MCSs) (Brewka et al. 2018). There are, however, significant differences between the two

formalisms. On the one hand, MCSs allow for a broader range of knowledge bases to be

used as modules. For example, defaults or autoepistemic belief bases can be used in MCSs,

but cannot be modelled straightforwardly in justification theory. On the other hand,

nested justification systems allow for more sophisticated interactions and structures.

Indeed, a multi-context system can be seen as a set of contexts {C1, . . . , Cn} and a set of

bridge rules R allow the flow of information between contexts. That is it corresponds, at

least structurally, to a nested justification system JS = 〈F ,Fd,Fdl, R, {JS1, . . . ,JSn}〉
where every JSi (for i = 1, . . . , n) is a non-nested justification system. It remains an open

question whether a sub-class of MCSs based on rule-based contexts can be translated into

nested justification systems.

In this paper, we gave a new view on nested justification systems that retains justifica-

tion quality and showed (under mild restrictions) the two views are equivalent for tree-like

justifications. Whether this holds for graph-like justifications is an open question.

Another question that shows up in several papers on justification theory (Denecker

1993; Marynissen et al. 2018; Marynissen et al. 2020) is the consistency question: is

it always so that SV(∼x, I) = ∼ SV(x, I)? The same question is relevant for nested

systems. In a companion paper (Marynissen and Bogaerts to appear), we show that in

the tree-like system, all branch evaluations (and hence also the merge evaluation) are

consistent. And because of our equivalence, we have that compression is also consistent.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068422000266.
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