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Solution branches for mappings
in cones, and applications

E.N. Dancer

We prove the existence of global solution branches for positive
mappings. This improves an earlier result of the author. We
also prove a related result for mappings in wedges. We then use
these two results to prove the existence of solutions for
boundary-value problems for systems of ordinary differential

equations.

In this paper, we improve some of the results in the author's previous
paper [3] and apply these results to boundary-value problems for systems of
ordinary differential equations. In []0], Turner obtained related results
for systems of partial differential equations. His methods, when applied
to systems of ordinary differential equations, produce results somewhat

weaker than ours.

In §1, we strengthen the main result (Theorem 2) in [3].- (A result
similar to, but slightly weaker than, Theorem 2 in [3] was also obtained in
{10].) The proof here is quite different from those in [3] and [10]. In
82, we prove a similar result for mappings in wedges and, in §3, we apply
the results of §1 and §2 to boundary-value problems for systems of ordinary

differential equations.

1. Mappings in cones

Our notation will follow that in [3]. It is assumed that the reader
is familiar with [3]. Let K be a cone in E with EK = E and suppose
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that r, £ >0 (where r and t may be « ). We let [a, »] denote
{xr € R : x 2 al with the usual topology. This will simplify the state-
ments of some of our theorems. Define Kp ={x €K : |lxl| <r} . Assume

that

(i) 4 : I_{r x [0, t] » K is completely continuous,

(ii) 4(0, A\) =0 for X € [0, t], and

(iii) there exist completely continuous positive mappings B(0)
and D from E into itself such that r(B(0)) <1 and
ll4{x, A)~B(0)xz-ADx| is o(lzll} as |z|| *0 f(and == € K )
uniformly in X on compact subsets of [0, t] .

Define B()X) : E > E by B(Mx = B(0)x + \Dx and let

C’K(B( )] = {X € [0, ] : there exists an x € X
with J|lzfl =1 and x = B(A)x} .

Since I - B(0) is invertible, Theorem V.1.8 in [6] implies that CK(B( ))

is discrete. We shall use the notation in [7] for the-degree of a mapping

defined on a closed convex subset of a Banach space.
LEMMA 1. If X =20 and r(B(A) <1, then 1,(B(X), X)) =1

while, if X € [0, °°]\CK(B( )) and r(B()\)) > 1, then iK[B()\), Kl) =0 .

Proof. Since r(B(})) = rK(B()\)) (ef. the remarks in §1 of [3]),
this follows from Lemma 1 in [3] and Lemma 2 in [7].

Define t(B( )} to be sup{r € [0, =] : r(B(})) < l.} . When there is
no possibility of confusion, we shall write T instead of t(B( )) . If

, ¢, (B()) clr, =]

T <>
K

LEMMA 2. If o=Xx<t, »(BO)) <1. If t<w, r(B(0) =1,
T €C (B()) and r(BON)) >1 for A>T,

Proof. If r(B(T)) is less than 1 , then, by Lemma 1 and the

homotopy invariance of the degree, iK(B(A), Kl) = iK(B(T), Kl) =1 for A

near T . Lemma 1 then implies that r(B(A)) <1 for A near T . Since
this contradicts the definition of T , »(B(1)) 21 . By a similar

homotopy argument, T € CK(B( ))
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By Lemmas 1 and 2 in [3], r(B(A)) = r(B(v)) if A =v 20 . Since
A€ CK[B( )) it r(B(})) =1 and since CK(B( )) is discrete, the

remaining assertions of the lemma follow.
It can be shown that r(B(1)) =1 if 7 < . Define
D (4) = {(z, A) €K x [0, t] : z = A(z, ), = # 0} v

{0, M) = A e (B()) nlo, t]} .

By similar arguments to those in [3], DK(A) intersects any closed bounded
subset of R; x [0, t] in a compact set.
THEOREM 1. If t < t , then one of the following possibilities holds
for the component T of DK(A) containing (0, 1) :
() T intersects (K\{0}) x {0} ;
(22) sup{llxll : (x, A\) €T} =r; or
(2i2) sup{r : (x, X\) €T} =¢ .
Moreover, if there exist a linear operator V on E an o € (0, t) and a
y € K\N{0} such that Vy =2y and Alz, o) 2Vx =0 if =z € 2; s then (i)
or (ii) holds for the component of {(z, A) € D (4) = X < a} containing
(0, 1) .

Proof. It obviously suffices to prove the result when r, £ < o .,

Thus DK(A) is compact. Consider the first assertion. Because the proof

is similar to that of Theorem 1 in [5] (which is based on Theorem 1.16 in
[9]), we shall only outline it. Suppose that the result is false. Then
T E.Kr x (0, t) . By repeating the argument in the proof of Lemma 1.2 in

[9], we find that there exists an open set U in K, x (0, £} such that
T'cU and 3N DK(A) =@ . (Here oU denotes the boundary in

R} x [0, t] .) By an earlier remark, CK(B( )) is a finite set

{Ai 1= 1, ..., n} (where Al =T ). It follows from Lemma 1 that, if
0 <egc< ;;z |Ai-xj| and 6 is sufficiently small, then
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T (Al Ae), k) - (Al , A -€), Kg) =

The proof of the first assertion can now be completed by using a similar

homotopy argument to that in [5].
Now consider the second assertion. Define 4 : R; x [0, t] » K vy

Z(x, A) = A(x, A\) if A =co and Z(x, A) = Alx, a) + (A-a)Dx if X = a .
It obviously suffices to prove the result when A4 is replaced by Z . For

n a positive integer, define Zn : i} x [o, t] > K vy

An(x, A) = A(x, A) + n_lﬂxuzy . Note that Zn and A have the same
linearization at zero. Since Z(x, A) =2 Vx if x € i; and A € [a, t] ,

a similar argument to that in the proof of the second assertion of Theorem

1 in [3] shows that X <a if (xz, A) € DK(Zn) and x # 0 . Hence the

component of DK(Zn) containing (0, T) is contained in R; x [0, a] .

The proof can now be completed by a similar argument to that at the end of

the proof of Theorem 2 in [3].

The proof of the second assertion shows that T <o . Lemmas 1 and 2
in [3] imply that T <« if »(D) > 0 . However, it is easy to construct

examples in which »(D) =0 but T < » .,

For simplicity, we have not proved our result under the weakest
assumptions., With a little more care in the proof, it can be shown that
the result remains true if, instead of assuming the mapping X =+ B(A} is
affine, we assume that B(A) = B(v) if A =v 20 . Note that, in this

case, CK(B( )) need not be discrete. Moreover, as in [3], we need only

assume that B(A) is completely continuous on X . Thus we can give an

alternative proof of the main result in [3].

2. Bifurcation in wedges

In this section, we improve the results for mappings in Borisovié [Z].

Assume that K is a cone in a real Banach space FE with Ek =F , and F

is a real Banach space. Let G=E®F ,and W =K®F . We shall write

elements of G as (x, y) (oras 2z ), (x,y, A} or (z, A) will
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denote an element of G x R , |l || will denote the usual product norm on

G end W, = {z €W : )z <r}. Supose r, t >0 . Assume that
(1) 4 : W; x [0, t] > W is completely continuous,

(ii) A(o, A) =0 for A € [0, t] , and

(iii) there exist completely continuous mappings T. : E > E

l b4
]b :E~+E, P:E~>F and Q : F+F such that
T (KK, TK)ck, r(f) <1 and l4(z, )-BQ)(2I

is o(flz]]) as |zl >0 (and z € W ) uniformly in A on

compact subsets of [0, ] .
Here B(A) is defined by B(A)(x, y) = (Tla:+)\T2x, NPx+AQy) . If A=zo0 ,

then B(A)(W) € W . Our assumed form for B(A) may seem restrictive but
an argument in [Z] shows that our other assumptions ensure that the first

component of B(A)(0, y) is zero for all y in F .
Let

cy(B(X)) = {1 € [0, =] : there exists & z € W such that [zl =1
and B(\)z = z} ,

and let S denote the set of non-negative characteristic values of @ .

It is easy to see that CW(B( )) = CK(T1+AT2) uS . Let 0 <y, <v,<..

denote the distinct positive characteristic values of & "of odd

(algebraic) multiplicity. Define a function n, on CW(B( )) by

(1) my(v) =0 if v > T(r+AT) or if v < T(T,+AT,) and v

is a characteristic value of & of even multiplicity;
: i
(ii) nW(Yi) =2(-1)" if vy, < T(T1+AT2) ; and

(iii) nW(T(Tl+AT2)) = (-1)9* , where Y5 is the largest positive

characteristic value of € of odd multiplicity with
. < + .
YJ T(Tl ATZ)

(Take J to be zero if no such Yj exists.)
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LEMMA 3. Suppose that v € CW(B( )) and € >0 such that
[v-e, v+el nC (B )) = (v} . Then
i, (Blvre), W) - i (Blv-¢), W) = n (V)

Proof. Suppose that X € [0, °°]\C'W(B( )) . By a similar argument to

that in T21,

1BV, W) = 1, (T 0T, k) xi,(0, F)
0 if A< T(T1+AT2)
-1)® ir > (T, +)T,)

Here B is the sum of the multiplicities of the elements of S n [0, A)
The last equality follows from Theorem 2.4.6 in [7] and our Lemma 1. Lemma
3 follows from this equality and the definition of ny

Define

D(4) = {(z, A) €W, x [0, t] : z=4(z, N), 2 ¢# 0} u

——

v {(0, ) = x €cy(B()) nfo, 21} .

THEOREM 2. If H 4is a component of DW(A) , then
(i) H intersects (W\{(0)}) x {0}, or

(1) sup{ngII : (x, A) €Hl=r, or

(i22) sup{A : (z, A) € H} =t , or
(iv) |} nW(X) = 0 , where the swmation is over {A : (0, A) € H} .

In particular, if T(T1+AT2) < t, (i), (i1) or (ii1) holds for the
component containing (0, T(T#M1,)) . Moreover, if there exist a linear

operator V on E , an o € (0,t) anda y € W such that -y § W,
Vy -~y €W, VIW)cCW and Alz, a) - Vz € W for ieﬁr,then(i) or

(i) holds for the component of {(z, \) € DW(A) : A = a} containing

(0, t(z,nz,))

Proof. The proof of the first assertion is si;nila.r to the proof of

https://doi.org/10.1017/50004972700043707 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043707

Mappings in cones 137

the first assertion of Theorem 1 except that Lemma 3 is used instead of

Lemma 1 and iW(A, WG) is used instead of iK(A, KG) . The second
assertion follows from the first and the definition of ny - The proof of

the third assertion is similar to the proof of the second assertion of

Theorem 1.

With more care in the proof, it could be shown that, if the
assumptions of the last assertion of Theorem 2 hold, then (i), (ii) or (iv)

holds for each component of {(z, A) € DW(A) : A< a}

The most useful parts of Theorem 2 are those which involve the
component containing @l, T[T1+AT2)) . However, the statements involving
the components which intersect {@1, Yi) : Yi < T} do give more

information about the solutions than one can obtain from Theorem 1.16 in
£9]. wWith more care in the proof, one could prove rather more general
versions of Theorem 2. However, the above result suffices for most

applications. It is also possible to prove an analogue of Theorem 3 in

(3.

Note that the set X @ F is a wedge in the sense of [3]. 1In [3], we
mentioned rather less precise results for general wedges. These are proved

by using degree arguments similar to those used here.

3. Applications to systems of differential equations

In this section, we use Theorems 1 and 2 to obtain some new results
for boundary-value problems for systems of ordinary differential equations.

Let C[0, 1] denote the space of continuous real-valued functions on
[0, 1] ana Cl[O, 1] the space of real-valued continuously differentiable

functions on [0, 1] . Assume that, for < =1, 2 , p; € Cl[O, 1] ,
qa; € C[o, 1] and pi(t) >0 for t €[0, 1] . Define Li by
—_ ] '
Lyy(t) = -(p,(B)y'(6))" + q (t)y(¢)

N

Finally, assume that f; : R" = R are continuously differentiable for

i=1,2, f%(o, 0,0,0)=0 for i =1, 2, and the partial derivatives
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Djf%(o, 0,0,0)=0 for 2 =1,2 and 4 =3, 4 . We wish to find twice

continuously differentiable solutions of the boundary-value problem

Lyx(t) - by(e) = Af) (=(8), y(2), ='(2), y'(¢)) ,

(1)

Ly(t) - dz(t) = M, (x(2), y(2), ='(2), y'(8)) ,

2(0) = z(1) = y(0) = y(1) =0 .

We first consider the application of Theorem 1 to this problem. Let
T denote the solutions (x, y, A) of (1) for which x(¢) =20 and
y(t) 20 for ¢t €[0, 1), A =20 and (x, y) # (0, 0) . Define
BK =T v ({(0, O)}XC) , wﬁere C 1is the set of non-negative eigenvalues of

the linear problem

Lz(t) - by(t) = A(allx(t)+a12y(t)) ,

Lyy(t) - dx(t) = A(azlx(t)+a22y(t)) ,
2(0) = (1) = y(0) = y(1) = 0 . Here aij denotes Djfi(o’ 0, 0, 0) for
1, d =1, 2 If € 1is non-empty, it has a least element M-

THEOREM 3. Suppose that all the eigenvalues of L, and L, are

positive, b =20, d=z=0, bd is sufficiently small,
£,0,2,,0,2)20 if 2,20 and z, €R, f,(z,, 0, z 0) =0 if

3
z, 20 and x3€R, aijzo for i,43=1,2, and all>0 or
Ohy > 0. Then C 1is non-empty and there exists a comnected subset .S of
bK such that (0, 0, ul) €S5S and S 1is unbounded in

ctio, 11 x ¢*[o, 1] xR .

Proof. We apply Theorem 1. Let E = cl[o, 1] x Cl[O, 1] and let X
be the cone {(x, y) € E : x, y are non-negative on [0, 1]} . If
c¢ >0 , define BO(A) : E~E by

-1
BC(A) (z, y) = [(Ll+eI) [by+cx+)\allx+)\012y] ,

-1
(z,%eI) [dz+ey+)\aglx+>\a22y]] .
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Since all the eigenvalues of Li + ¢l are positive (for < =1, 2 ),

(Li+CI)_l maps non-negative functions to non-negative functions. Thus, if
Az0, B(NKCSK. Note that C,(B,( )] (and thus (B ()} ) is

independent of ¢ . Lemma 1 and the homotopy invariance of the degree
imply that, if »(B,(0)) <1, then r(B,(0)) <1 forall ez0 . If

(@, y) = AB (0)(z, y) , then « = XbdL'L 'z . Thus, if bd is
sufficiently small, any positive characteristic value of BO(O) is greater

i < i <> >
that 1 , that is, P(BO(O)) 1 . Since oy 0 or o, >0 , Lemma 2

in [3] shows that the mapping D, @efined by
-1

+el )

1+ o, T 2y] [L +el)” l[a z+a,y]

Dol ) = ((L

has positive spectral radius. (A similar argument is used in 84 of [7101].)
By a remark after Theorem 1, it follows that T(Bc( )) < o,

Now f) (7, 5y 250 1) = =g (o), 5 =5, 1) + £ (55 5y, 0, 7))

1
where gl(ac » Ty Ty xh) = '(o D3fl(xl, T, t2,, xh)dt . Similarly,

fe(x » Tya Ty, xh] = xhgz(xl, Ty, T3 xh) + fz[xl, T, T, 0) . Choose n

a positive integer with =n > T(B ( )) and then choose e > 0 such that

0
both cx, + bz, + )\fl(xl, z55 0, xh) and oz, + dx, + )\fz(xl, Tys Ty 0)

are non-negative if A, x., £, are non-negative,

1’ "2
< < i '
T +a, |x3l + ]:z:h| Sn and XA =7 . Our assumptions on f, and f,

ensure that this can be done.

{z € ®lo, 1) z(1) = o} » clo, 1] vy

Define Li ,'u,v,X :

- ] 1
Li,u,v,A(z) = Liz - Agi(u, v, u', v')z

and A : E>E by
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A(N)(u, v) = [( +cI]'1[cu+bv+>\fl(u, v, 0, v")],

Ll,u,v,X

(z cI)_l[du+cv+Afé(u, v, u', 0)]] .

+
2,U, VA
If (x, y, A) € DK(A) , then (z, y, A) € bK . It is easy to check that

this mapping satisfies the assumptions of Theorem 1 with r = ¢ =#n and

linear term Bc( } . The conditions on the linear term are verified in the

preceding paragraph. The remaining conditions are verified by similar
arguments to those in [70]. The results in the previous paragraph also
show that (€ 1is non-empty. Thus, we find that, for each 7 >0 , the

component S of bk containing (0, 0, ul) intersects
{(xz, y, A) €ExR: HxH1+HyH1 =n or *=n} . (Our assumptions ensure

that there are no non-trivial solutions with A =0 .) Since 7 can be

arbitrarily large, this completes the proof.

With more care, one could prove more general results. A similar

3 3 > = = i >
result still holds if a12a21 0 and all a22 0 orif aled 0 or

aZlb >0 . In the latter cases, we could relax the positivity assumptions

on the fi and still prove that ul is a bifurcation point.

The second assertion of Theorem 1 can be used to obtain additional
results. For example, it implies that, if there exists an @& > 0 such

that fi(xl, Ty T3, xh) z oz, for &, %

= €R i
1 5 0 and x3, xh and if

all the assumptions of Theorem 3 are satisfied, then the component of
~ A
{(x, Yy, A) € DK : A< [ar[Ll ]] } containing (0, 0, ul) is unbounded.

Moreover, in this case, we could weaken the assumption on fé to

fe(xl’ 0, @3, 0} = —onr.(L;l}dxl for 2 20 and =z, €R .

We now consider the applications of the results of 82 to (1). In this
case, we place stronger assumptions on one of the equations and weaker ones
on the other. Define 7' +to be the set of solutions (x, y, A) of (1)
for which A =0 , x is non-negative and (x, y) # (0, 0) and let
D, =T"u ({0, 0)}xC) .

THEOREM 4. Suppose that all the eigenvalues of L., are positive,

1
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L, is imvertible, b =0 , fl(o, 5, 0, xh) >0 for =z €R and

2 2> 7k

all >0 . Then there exists a connected subset S of bw such that

X

-1
-1 . .
(O, o, [allr(Ll ]] ] €S and S is wunbounded in

c'o, 11 x ¢*o, 11 xR .

Proof. It suffices to show that, for each 7 > 0 , the component of

~ -1
{(x, y, 1) € D, : ”x”1+”y”l =n, A =n} containing (O, 0, [allr(LIl]J ]
n Let

contains a point (x, y, A) with Hx”l + Hy”l =n or A=n.

G = Cl[O, 1] % Cl[O, 1], W= {(x, y) € G: x is non-negative} . Choose
¢ >0 such that oz + Afl(xl, z,, 0, xh) 20 if z and A are non-

negative, A =7 and =z + |x2| + |xh| <n . Define A(X) : G+ G by

u,v

s

AN (u, v) = ((Ll, ,A+cI]_l[cu+Afi(u, v, 0, v")],

(Lg]_l[du+kfé(u, v, u', 0)]] .

The proof of Theorem k4 is completed by applying Theorem 2 to 4 . Similar
arguments to those in the proof of Theorem 3 ensure that A verifies the

assumptions of Theorem 2.

The condition that L2 is invertible can be removed by an

approximation argument. Moreover, we could apply the third assertion of
i i > x,x , X, x| =

Theorem 2 if there exists an o > 0 such that fi( 17 T 3o h) ox,

€R

if xl zZ0, x2, x3, xh

Our assumptions in Theorems 3 and U4 are much stronger than is really

necessary. For example, f., fé could be allowed to depend on ¢ and A
vhile D), Py» dys 9,» b, d could be allowed to depend on t, x, x', ¥y, y¥'

and A . Our methods could also be applied to systems of =»n equations and
to systems of differential equations of higher order. 1In [10], Turner
considers systems of elliptic partial differential equations. OQur methods
could be used to considerably strengthen his results. It is possible to
obtain variants of our results by considering slightly different cones and

wedges, for example, the cone X = {(x, y} € E : x, -y are non-negative} .
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Finally, the results in [4] could be used to show that, in Theorems 3 and

4, "connected set" can be replaced by "unbounded arc" if fi and fé are

real analytic (where "unbounded arc' is defined in [4]).
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