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ABSTRACT. Deglaciated bedrock surfaces in limestone areas often exhibit extensive
patterning by solutional furrows and carbonate deposits that occur in close association with
undulations in the bed topography. These features clearly result from subglacial dissolution
and precipitation of calcite on the bed —induced, for instance, by melting and freezing in a
regelation water film — but little is known about the observed morphology. In particular, it
is intriguing that (i) the solutional furrows, whose formation requires explanation, are col-
lectively organized into arcuate patterns, with characteristic spacing, and (i1) a fluted or
“spiculed” surface texture is ubiquitous on the calcite deposits. Herein, we propose specific
mechanisms for such patterning based on a theory where chemical processes in the water
film are coupled to regelation physics. Solutional furrows reflect locally enhanced dissolu-
tion along stoss surfaces, where COq-rich bubbles advected in the ice from up-glacier come
into contact with the bed. The bubbles form as COy is exsolved from freezing film water at
the lee of bed bumps. The flutings on the deposit are inherently the manifestation of a spatial
instability at the interface where calcite precipitation occurs. Complex interactions underlie

some of the striking glacier-bed features shaped by subglacial chemical processes.

MATHEMATICAL SYMBOLS Qb G Far-field heat fluxes in bedrock/ice
Re Real part
a Amplitude of sinusoidal bed profile r Density ratio p;/pw, = 0.9
C Clausius—Clapeyron constant, 7.5 X 10 SKPa' T Variable in temperature problem
c (cs) Solute concentration (saturation or oversaturated t, ts Time, bed dissolution time-scale
value) U Basal ice sliding velocity
¢ Dimensionless solute concentration (= ¢/c;) (u,m,w)  Ice vector velocity in three dimensions
CHL Change in interfacial heat loss 1% (Unperturbed) freezing rate of regelation film
D Solute diffusivity in water, ~10 “m?s ' water (ms )
f Bed surface or ice~bed interface position X Dimensionless down-glacier distance variable
G Transfer function (= k)
h %lation film thickness (unperturbed value hy) (z,3,2) Coordinate in three dimensions
i —
K, K, Rate constants for calcite dissolution/precipitation @, o, Dimensionless dissolution-/precipitation-rate
k Wavenumber in the  direction (m ) parameters
ki, Thermal conductivity of bedrock (including B, By Exponents in dissolution-/precipitation-rate laws
CaCO;4 ppt), ~4Wm 'K 1 6 Diameter of gas bubble in ice
k; Ice thermal conductivity at 0°C, =21 Wm 'K ! € Small parameter )
L Latent heat of freezing for water, 8.3 x 10° J m Ui Linear ice viscosity, 3 x 10 Pa's (=1 bar a, from
M Molar concentration Nye (1969))
Pe Péclet number (= flow velocity x length-scale/ Nw Viscosity of water at 0°C, =1.8 x10 ° Pa's
diffusivity D) 6 Temperature relative to its unperturbed value at
Dw Regelation film water pressure interface (K)
q (q,91) Regelation film water flux in m”s ' (x component, K Thermal conductivity ratio ki /k;
Y component) A Wavelength (m)
Ab Bedrock bump separation (m)
Ac Critical (most unstable) wavelength (m)
A1...As  Model constants (shorthand: Aijr.. = AiAjAg...)

* Present address: Department of Earth, Atmospheric and

41... 143, ¥ Dimensionless model parameters

Planetary Sciences, Massachusetts Institute of Technol- I3 Composite wavenumber (m '), = VA2 + w?
ogy, 77 Massachusetts Avenue, Cambridge, Massachusetts pi pw  Ice density, 900 kg m ?; water density, 10° kgm
02139-4307, U.S.A. o (Complex) growth rate of bed surface perturbations
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Fig. 1. Decimetre-scale bumps of the deglaciated limestone bedrock s

i ¥

urface in front of Blackfoot Glacier, Montana, U.S.A., adorned

with carbonate deposits (light patches) and sets of solutional furrows (arcuate patterns, concave down-glacier ). Photograph taken

in the direction of former ice flow.

0] (Perturbed) freezing rate of regelation film water
(ms )

P Freezing rate perturbation (¢ — V') /e

w Wavenumber in the y direction (m )

We Wavenumber scale (such that &* = k/w,

W= w/we, & = &/we)

[COy]  Concentration of COy

f Two-dimensional Fourier transform of f
o() Order symbol

v Vector gradient operator (9/0x, 0/dy)

V2 Laplace operator 9% /0x% + 0%/ 0y* + 0/ 02*

1. INTRODUCTION

Freshly exposed bedrock in front of retreating glaciers often
exhibits features indicative of subglacial chemical alteration.
In regions composed of limestone, a prominent example is
the set of well-developed surface furrows and carbonate
deposits, occurring in close association with undulations in
the bed topography (Fig. 1). The appearance of these furrows
and deposits 1s most strikingly revealed in low-angle sunlight.

Following earlier work by Hallet (1976, 1979), such features
have generally been attributed to the subglacial diagenesis of
calcite. The active agent is water in the regelation film flow
that 1s sustained as basal ice moves past (small) obstacles in
the bed. On the stoss side of a bump, ice melting produces
chemically aggressive water, which dissolves the bed to form
furrows. Freezing of this water on the bump’s lee side elevates
its solute concentration to the point that CaCOj precipitates.
This description accounts for the observed pattern well, espe-
cially the gross locations of dissolution and precipitation.
However, the morphological characteristics of the assem-
blage remain intriguing, and merit explanation.

It is, for instance, common to find solutional furrows
organized into distinct sets of arcs, with characteristic spacing
and geometry. Moreover, the calcite deposits adopt a fluted
surface parallel to the former direction of ice flow, and in some
cases they even develop pin-shaped protrusions (“spicules”).
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The regularity and abundance of such forms are suggestive
of specific mechanisms that underlie their formation. Their
origins are considered in this paper. We address two particular
questions: Why do solutional furrows appear in the first place,
and why 1s the surface of the deposits fluted? Drawing on
results of recent laboratory experiments (Killawee and
others, 1998), we argue that solutional furrows are intimately
linked to the exsolution of gaseous COy and heterogeneous
inclusion of it into basal ice during the freezing of regelation
film water. We then propose an explanation for the fluted sur-
face of the deposits in terms of an interfacial instability. We
formulate quantitative models to describe these mechanisms.

In section 2 the relevant background material is reviewed,
and we begin by developing a simplified description of how
the bed surface evolves when dissolution and deposition are
coupled to regelation physics. The generation mechanisms
of furrows and flutes, respectively, are then treated 1n sec-
tions 3 and 4, where we also consider spicules as a special
case of the depositional instability. Apart from the intrinsic
fascination of these landforms, the current study raises the
possibility of inferring the conditions that favour their for-
mation, those which may be representative of the former
environment at the ice—bed interface. We consider related
issues and wider glaciological implications towards the end.

2. BACKGROUND

2.1. Surface morphology

Figure 2 illustrates in plan view a limestone specimen from
the foreground of Castleguard Glacier in the Canadian
Rockies. Its surface pattern is typical of those observed else-
where where calcareous bedrock has undergone substantial
chemical modification (e.g. Ford and others, 1970; Sharp and
others, 1990). The assemblage, consisting of furrows and
deposits adjacent to a bump, represents a basic unit that is
often repeated over large bedrock areas (Walder and Hallet,
1979; Hallet and Anderson, 1981) (Fig. I).
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Fig. 2. The limestone specimen of Hallet (1979) showing solutional furrows (A) orientated transversely to the former ice=flow
direction (which is from left to right ), and fluted calcite deposits (light areas, B) orientated parallel to it. AL transverse furrows;

A2, oblique furrows.

Solutional furrows

Solutional furrows are elongated sub-millimetre to milli-
metre-sized channels etched into the rock surface on the
up-glacier side of bedrock bumps (Fig. 2, region A). They
occur in sets with a millimetre-scale spacing and are
oriented transversely to the former ice-flow direction, curv-
ing round the sides of bumps to form an arcuate pattern,
generally concave down-glacier. This pattern apparently
reflects the two-dimensional water flow field during regela-
tion. The alignment and varying tortuosity of the solutional
furrows strongly suggest an origin from chemical dissolution
of the substrate, in contrast with abrasion.

Neighbouring furrows generally parallel one another,
but truncations and intersections are common. Often, dir-
ectly upstream of bumps, individual furrows are difficult to
identify and the surface appears “scalloped” (Fig. 2, region
Al). Where solutional furrows turn to point downstream,
they tend to straighten out into distinct grooves (Fig. 2,
region A2). In section 3, we highlight additional obser-
vations to support our hypothesis for their genesis.

Depositional flutes and spicules

On the lee side of bed obstacles, a light-coloured crusty
deposit is found that contrasts conspicuously with the sub-
strate below (Fig. 2, region B). It is made up predominantly
of crystalline calcite (CaCOs) precipitate and canbe up to a
few centimetres in thickness. Such deposit also outlines the
up-glacier side of some solutional furrows, and where exten-
sive, it covers the furrow pattern.

The calcite deposit is usually laminated. Its spatial dis-
tribution, and variations in structure, chemistry, impurity
content and isotopic composition have been reported by
many authors (Hanshaw and Hallet, 1978; Lemmens and
others, 1983; Souchez and Lemmens, 1985; Sharp and others,
1990; Frisia and Borsato, 1994; Hubbard and Hubbard,
1998). Based on such variations, Sharp and others (1990)
have identified two forms of the deposit: sparite (sparry car-
bonate deposit), which is relatively thin, macrocrystalline,
and occurs in patches of several square centimetres (Fig.

388

https://doi.org/10.3189/172756502781831214 Published online by Cambridge University Press

3a); and mucrite, which consists of microcrystals in clear
laminations, and which covers larger areas and is darker
than sparite (Fig. 3b). Flutes sub-parallel to the local ice-
flow direction are ubiquitous on the deposit (Ford and
others, 1970; Hallet, 1976, 1979; Peterson and Moresby, 1981).
They are found on both sparite and micrite, and have sur-
face morphology ranging from sub-millimetre scale ridges-
and-grooves and columnar spicules (Fig. 3a) to well-defined
flutes (Fig. 3b). Ice-flow direction is clearly important in
determining the orientation of the flutes, but abrasion by
fine particles cannot adequately explain their formation,
since they do not resemble striae. Evidence from electron
micrographs of the deposit cross-sections supports this,
showing internal laminae that undulate with the surface,
with widespread truncation being absent (Hallet, 1979;
Sharp and others, 1990).

Where the obstacle’s lee side is steep to vertical, conspic-
uous spicules may develop, resembling stalactites (Fig. 3c),
but instead of being vertical, they appear to parallel the
local ice-flow direction. Their growth seems to be fuelled
partly by bed seepage; and along inferred seepage lines
where they develop into rows, the spicule separation is
extremely regular (=l mm in Fig. 3c). The spatial organiza-
tion of both spicules and flutes, and their similar spacing,
suggest they are morphological expressions of the same
instability. We examine this idea in section 4.

2.2. Regelation over a soluble bed

Temperate glaciers can move past bed obstacles by a com-
bination of regelation and viscous ice deformation. The
bumps of interest to us are small and close enough in separa-
tion (roughly < 0.1 m) for regelation to be dominant, so we
neglect viscous ice flow in most of the discussion here.
Regelation occurs by pressure melting of basal ice on the
stoss side of obstacles and refreezing of water on their lee side.
The classical theory by Nye (1969) and Kamb (1970) details
the conductive heat transfer (from lee side to stoss side) and
stress concentrations (high pressure at stoss, low pressure at
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Fig. 3. Common examples of the surface morphology of calcite
deposits on bedrock: (a) spicules on a sparite deposit, Blackfoot
Glacier, Montana; (b) flutes on a micrite deposit, Grinnell
Glacier, Montana; (¢ ) stalactite-like spicules protruding from
a steep lee side (specimen from Castleguard Glacier, Canadian
Rockies ). The inferred direction of former ice flow is (a) right
to left; (b) top to bottom; (¢) approximately out-of-page.

lee) that enable its operation. For simplicity, here we consider
two-dimensional geometry, illustrated in Figure 4a. Melt-
water flows in a thin film from the stoss side to the lee side,
where it refreezes, releasing latent heat. This water will tend
to dissolve the bed initially because of its low solute concen-
tration, and in this process it becomes enriched in solute.

" In this paper, “saturation/saturated” refers to chemical con-
centration and not to the state of a two-phase liquid—gas
flow, such as that encountered in ground-water hydrology.

? We neglect second-order corrections in the small param-
eter ak.

https://doi.org/10.3189/172756502781831214 Published online by Cambridge University Press

To make this idea precise, let us refer to the dissolution of
calcite. If the concentration of Ca®" ions in the film is ¢(z),
and the film thickness and water flux per unit width are h
and ¢(z), respectively, a basic equation to describe the solute
concentration profile at steady state is

d ; d?
) _ Ko, — ) + th—i ,
X

fore<es, (1)

where z denotes distance down-glacier. The first term on the
righthand side has been found to be a reasonable first-order
model for the rate of calcite dissolution in laboratory experi-
ments (e.g. Brown and others, 1996) and karst landform
studies (Dreybrodt, 1990); usually § ~ 1. K is a rate constant
and ¢, denotes the saturation value of the solute concentra-
tion". The last term in Equation (1) describes solute diffusion
in water, for which a typical value of the diffusivity D is 10 *
m?s . The Nye—Kamb theory (Nye, 1969; Kamb, 1970) pre-
dicts the film thickness h to be several microns. Hallet (1979)
gave an independent estimate, h ~ 10 um, based on size
analysis of debris fragments within the carbonate deposit,
consistent with the theoretical value.

The behaviour of the solution to Equation (I) may be
examined by first neglecting the diffusion term. Such an
approximation remains valid until concentration gradients
become high. Where ¢ < ¢, the solute flux (magnitude of
g % c) increases in the flow direction, i.e. dissolution always
adds to the solute flux. Variation in ¢ may therefore be
deduced by dividing the solute flux by ¢ Along lee sides,
g(x) is a decreasing function due to freezing, so ¢ increases,
and particularly we anticipate ¢ becoming large where ¢
diminishes (e.g. ¢ =0 at the midpoint of the lee side in Figure
4a and b would suggest that ¢ becomes singular there). Of
course, this does not happen without limit because of diffu-
sive effects. But whether or not diffusion is neglected, Equa-
tion (1) breaks down at saturation, when ¢ = ¢,. Beyond this,
the dissolution model must be replaced by one that describes
precipitation. We see below that in the adjoining region, c is
somewhat above ¢, constituting finite oversaturation; in that
region, continued freezing ensures the precipitation of calcite.

It is instructive to use an exact result for ¢(x) obtained
from Nye’s (1969, 1973) theory in the solution of Equation
(1). We take B =1, and assume ice sliding at velocity U over
the bed profile in Figure 4b, consisting of a single sinusoid
z = asin kz (a denotes amplitude and k the wavenumber).
Thus, z = 0 denotes the midpoint of the stoss side (“stoss
midpoint”), and the distance between successive bumps is
A =27/k. As in the linearized Nye-Kamb theory, we take
ak < 1 such that the bump height is much less than its
length and bed slopes are small. If sliding is due entirely to
regelation, the melt rate is approximately’ equal to
U dz/dz, and since the water flux is given by integrating
melt rate over distance (together with a density correction
due to the phase change), we find

x

q(a:):ﬁ/Udzdx Sy

o) dz Pu
U
_ 9 sin kx .
Pw

This is depicted also in Figure 4b using a different vertical
axis for the water flux.
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Fig. 4. (a) Schematic diagram of the basal regelation process.
Dashed line indicates the cross-sectional view of Figure 7. (b)
Stnusoidal bed profile z(x) with amplitude a and wavenumber
k ( thus, wavelength A = 27/ k) and the associated film water
Slux q(x), where x denotes distance. (¢ ) Dimensionless plot of
film solute concentration ¢ (= c/cs) against distance X
(= kx) for three values of o (0.1, 1, 10), as given by the analytic
solution in Equation (4), based on v = 0, B = 1. Dashed lines
mark the saturation level ( the curves become inapplicable above
¢ = 1) and are equivalent to the composite model solutions in
(d) atthe limit ooy, — 00. (d) Dimensionless numerical solu-
tions ¢(X) of the composite dissolution/precipitation model for
v =00, o = =3, = 1and two values of o, (1, 10). The
case o =11in (¢) isincluded as dashed line for comparison. (¢ )
Dimensionless dissolution rates of the composite model for v =
001, oo, = B = B, = I and three values of o (0.1, 1, 10). (f)
Dimensionless precipitation rates of the composite model with

the same parameter values as in (e).

The unsaturated region (¢ < cs)
By using the result in Equation (2), Equation (1) may be
rewritten in the form

L £sin:zc =a(l —c/c)”? I/M
d(kz) (cs k) (A=c/e)+ d(kz)? " (3)

for ¢/es < 1,

in which we have defined a dimensionless dissolution rate,
a = K py/akpU. The parameter v = py hDk/pial is
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a dimensionless measure of diffusion. It is typically small
and is inversely proportional to the flow Péclet number, Pe
= g\/hD, which is large (X is the natural length scale). If
v = 0, only one boundary condition for the differential
equation is necessary: de/dxz = 0 at = 0, owing to
problem symmetry (and the initial solute flux is zero). Then,
for § =1, it is straightforward to solve Equation (3) by using
the method of integrating factor, and we obtain

o(X) o (tan X/2)"dX @
¢ sin X(tan X/2)*

as the approximate solution for the unsaturated region.

Here we use the dimensionless variable X (= kz) to repre-
sent distance. This concentration profile is qualitatively rep-
resentative of other cases where § & 1, and we show it in
Figure 4c for several o values. For comparison, taking a
nominal value for the rate constant K =25x10 ' ms '
(from Dreybrodt, 1990) would give a =~ L5 for sliding at
10ma ' over bed bumps 5mm in height, spaced 50 mm
apart. In this case, v is indeed small, $10 ? (and Pe is large)
for typical film thickness A ~ 10 um (Hallet, 1979). Note that
despite “fresh” water being created at the stoss midpoint, the
solute concentration is non-zero there, ¢(0) = acs/(1 + @),
because it 1s a depth-averaged value.

Combining with saturated region

For ¢ > c, g)rempltatlon may be modelled by writing
—K,(c — ¢)™ instead of the dissolution term in Equation
(1), where K, and 3, arc the corresponding rate constant
and exponent. On non-dimensionalizing we derive an equa-
tion similar to (3), except that the first term on its righthand
side is —ap(c/cs — 1)* (the parameter oy s the counter-
part of ). This equation, applicable for ¢ > ¢, has to be
solved together with Equation (3). A necessary condition is
that the solute fluxes in both the dissolution and precipita-
tion regions are equal at the point of saturation. This allows
the position of the saturation point to be determined as part
of the solution. Because both ¢ and gc are smooth across the
transition, at which ¢ = ¢, this leads to the concentration
gradient being continuous there.

We present a composite numerical solution in Figure 4d,
taking into account diffusion, with v = 0.01, and o, =1 or
10, B, =1, for the case o = 3 = 1. We have used an iterative
algorithm (Newton’s) and imposed boundary conditions
based on symmetry, as well as the condition of solute flux
continuity mentioned earlier. The asymptotic solution in
Equation (4) (shown in Fig. 4c, reproduced as a dashed line
in Fig. 4d) approximates well for ¢ < ¢, because v < 1 and
concentration gradients are not high. When ¢ > ¢, a limit-
ing behaviour is that the degree of oversaturation is mini-
mized if precipitation is fast enough to accommodate solute
flux changes due to freezing. This is illustrated by the differ-
ence between the solutions for a, = 1 and o, = 10. If
ap > 1, we have ¢/cs &~ 1. Locally, the precipitation rate
may then be taken as —c¢s X dg/dz, where dg/dx < 0.

The position where saturation is attained should depend
on how much dissolution has occurred already. In Figure 4¢
and f, we show the dimensionless dissolution and precipita-
tion rates for o= 0.1, 1, 10, when o, =8 =0, = L. As
expected, the saturation point, marking the switch from dis-
solution to precipitation, varies with a. Putting aside the
small effect of diffusion, this point lies down-glacier of the
bump crest (7/2 < X < 7) and never on stoss sides; this is
because on stoss sides, melt dilution, while ¢ is still increasing,
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offsets dissolution when c is sufficiently close to saturation.
Such a prediction agrees well with the field observed pattern,
in that stoss sides are normally free of precipitates. On the
other hand, lee-side calcite deposits on most specimens
extend back close to the bump crest, suggesting relatively
high values of o and dissolution rates.

The carbonate system

Equation (1) and its counterpart drastically simplify the dis-
solution/precipitation process, which involves various species
and a number of reactions. Calcite—water systems are usually
studied by means of the equilibrium chemical equation®

CaCO;3(s) + H" (aq) = Ca’'(aq) + HCO3 (aq). (5)

The protons may be derived from a number of sources,
notably dissociation of dissolved COy:

COs(aq) + H,0(1) = HCO;™ (aq) + H' (aq)
HCO; ™ (aq) = CO3% (aq) + H'(aq) . (6)

The reaction kinetics of pure calcite-water systems have been
investigated by Plummer and others (1978). For detailed mod-
elling, two other factors need to be considered: (i) the geom-
etry of the system (the regelation film), which determines the
distribution of chemical species as a result of transport and
reaction within it, and (i1) whether the system is “open” or
“closed” with respect to CO4y and water, which determines
the pCOy of the solution (Tranter and others, 1993). Through
its role in regulating the solution’s pH value via the reactions
in Equation (6), pCOq controls both the equilibrium concen-
trations (specifically, ¢;) and rate constants (K, K), so that
these may vary with distance along the film. On the stoss side
of a bump, GOy is continuously replenished by gas bubbles
within melting ice, approximating an open system, so we
may assume [COo]yater, stoss = [COglice and anticipate K
and ¢; depending directly on the COy content of the source
ice. For reaction in micron-thick films, such as in the current
case, Buhmann and Dreybrodt (1985) showed that K depends
also on the film thickness.

For our purpose, there is another motivation for consider-
ing pCOy variations, concerning the situation encountered
along lee surfaces. Because of freezing there, gaseous COs is
not derived from the ice, and the system may be treated as
closed if we move with the water flow. pCOj of a water packet
1s expected to decrease over a short distance downstream of the
bump crest, due to dissolution (if « is not very large). But
beyond the saturation point (see Fig. 4e and f), progressive
freezing will increase pCOy, because dissolved COy 1s rejected
by the freezing water as the reactions in Equation (6) are
reversed and calcite precipitation takes place. With continued
freezing, COq gas bubbles will nucleate in the film and they
may be incorporated into the regelation ice. Although gas bub-
bles associated with the regelation process are not always pres-
ent in basal ice, they have been observed before (Kamb and
LaChapelle, 1964). As we argue in section 3, their existence
can explain the formation of solutional furrows.

2.3. Model for bed evolution

The dissolution/precipitation rates such as those derived
from Figure 4e and f allow us to describe how the bed sur-

* We use standard notation for the phases: aq for aqueous,
1 for liquid, and s for solid.
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face changes with time. First, notice the implication of
Equation (2) that ¢(x) o< Uz(x) applies not only to a single
sinusoid, but to an arbitrarily shaped periodic bed with
small bed slopes, neglecting viscous deformation. This geo-
metrical property holds for the closed system envisaged
here — where there is no through-flow and all the film water
derives from regelation — as long as z(x) averages to zero
over one period (f(;\ z(z) dz = 0). In other words, one can
deduce the water flux directly from the bed profile (their
shapes would be identical) if we choose the vertical datum
at the level of the average bed height.

In this case, a compact model representing combined
regelation and bed evolution is given, dimensionlessly, by
the equations

a[(f - fm)é] o I/ﬁ
0X X2

f a1-9)7,
—ap(c— 1),

(following Equation (3)), and

(7)

for ¢ <1 (dissolution)
for ¢ > 1 (precipitation)

forc< 1

af —a(1-¢)",
a2 foré>1.

ot 2 ap(@—1)%,
cd

(8)

We have represented the bed by writing z(z,t) = af(X, t),
f being its shape, now function of time t. ¢(X, t) is the nor-
malized solute concentration ¢/ ¢, and fy, denotes the mean
of f over one period. The distance X is as defined before. In
Equation (8), ¢q and ¢}, are Ca concentrations within the cal-
cite deposit and the bed substrate, respectively; we are refer-
ring to the Ca that resides in carbonate minerals.

Knowing f at any time, Equation (7) may be solved for
¢; the bed profile then evolves according to Equation (8). fi,
appears in the model for the reason given earlier of repre-
senting water flux correctly (fi becomes non-zero in the
event of net aggradation or degradation, which results when
¢p 7# cq). In arriving at these dimensionless equations, we
have chosen a time-scale based on dissolution, t; = pycp/
piUkcs. Generally ¢, > ¢, so g is large, reflecting the fact
that bed evolution is a very slow process. For example, tak-
ing ¢, for a limestone with 30 wt%—Ca and ¢, for a 10°M
solution leads to ¢p/cy ~10%. Together with the typical
values U = 10m a ' and k = 27/0.05m ' used previously,
this gives a time-scale of 10 years.

The preceding model may seem rather elaborate, but we
have formulated it not so much for simulation purposes as to
illustrate two specific points. First, it brings out how the lin-
earity in Nye’s (1969) theory is lost in the coupling of water-
transport and chemical processes, even in the case of constant
model parameters and first-order kinetics (3, B, =1). As a
result of solute advection (the product f x ¢ in Equation (7))
and the switch-over at saturation, a sinusoidal bed surface
does not remain sinusoidal, and it is not possible to predict
bed changes by considering separate Fourier components.

This leads us to the second point. We shall argue in section
4 that depositional spicules may be the manifestation of a
spatial instability at the lee sides of bumps. It is tantalizing
to explain the solutional furrows in a similar fashion, by
demonstrating that small-wavelength bed perturbations on
stoss sides are unstable. So far, such an approach (not pre-
sented here) has yielded no instability. For this purpose,
Equations (7) and (8) constitute essentially a non-linear wave

equation, of the form 9f /9t + é(f, X).0f /0X = source term
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(+ diffusion), from which it may be inferred that (solutional)
bedforms propagate down-glacier, typically at velocity
(kts) ™' ~ Uc,/e, (< U). A furrow-forming mechanism
based on instability cannot be ruled out, however, because
our wave equation describes only two dimensions (an exten-
sion to three dimensions necessitates a calculation for the vec-
tor film water the bed, which is not
straightforward), and also we have not considered possible
feedbacks in dissolution kinetics. On the other hand, we

flux over

believe there is a much simpler explanation for the furrows,
as discussed next.

3. A HYPOTHESIS FOR SOLUTIONAL FURROW
FORMATION

The corrosive origin of solutional furrows is unequivocal, but
their morphology has not been explained. Apart from the
lack of an obvious instability, their location and orientation
suggest that the localized dissolution recorded by them is
unrelated to water flow in Nye channels or Rothlisberger
channels. Neither can they be explained by incorporating
chemical dissolution into the channel-forming instability
examined by Walder (1982). At stoss sides, channels at the
observed scale would close rapidly due to insufficient heat dis-
sipation. Further, channels incising into ice and transversely
aligned to the ice flow are advected down-glacier, and cannot
support prolonged dissolution at the same place on the bed.
Calcite deposits found on the up-glacier face of individual
solutional furrows often develop the flutes described in sec-
tion 2.1, and this supports Hallet’s (1979) argument that the
furrows form in intimate ice—bed contact.

We put forward a new interpretation here, hinging on the
fate of the carbon dioxide exsolved at the lee side of bumps.
We mentioned COy builds up in the water film during freez-
ing because it is rejected by growing ice, at the same time as
calcite precipitates. Experiments on the freezing of dilute
solutions containing calcium and bicarbonate ions, reported
recently by Killawee and others (1998), show that bubbles
that nucleate at the freezing front are incorporated into the
ice as gas inclusions (this is, provided the ice is on top of the
solution). Importantly, these inclusions were invariably
found to be rich in COg, with higher concentrations than
that in the surrounding ice. Based on these observations, we
envisage the following mechanism: once CGOg-rich bubbles
form and are incorporated into regelation ice on a lee side,
they are advected down-glacier, and when they reach the
stoss side of the next bump, they locally enhance dissolution
of the bed surface by maintaining high pCO, there, initi-
ating furrows (Fig. 5). Film flow has the secondary effect of
advecting chemically aggressive water along streamlines,
leading to streaks of enhanced dissolution; this is manifested
in the observed furrow pattern.

Several features, which are particularly evident on bedrock
in front of Blackfoot Glacier, Rocky Mountains, Montana,
support the proposed mechanism:

(i)  On stoss sides, the domain occupied by solutional furrows
most often terminates abruptly, rather than gradually,
before reaching the bump crest (Fig. 2). Remarkably, the
upper limit of calcite deposits lying immediately up-
glacier, on extension along the (inferred) ice-flow direc-
tion, seems to coincide with this elevation threshold
(dashed line in Fig. 5). This may be verified visually by
sighting down-glacier along the bed surface, and suggests
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gas
inclusion

regelation
ice flow film

CO,-rich water

bedrock ' ..

calcite deposit solutional furrows

Fig. 5. Cartoon showing how CO y-rich gas inclusions in the ice
are advected down-glacier, leading to localized bed corrosion
when they arrive at the next stoss surface (inset). Dashed line
marks the elevation threshold for the resulting solutional furrows.

alink between the deposits and the furrows. Although the
agreement is not perfect, the geometrical connection is
compelling. We attribute varying degrees of agreement
to viscous deformation, which would have some effect on
local ice flow at such length scale ($0.1m), even though
regelation may be the dominant sliding mechanism.

(i1) Small pits resembling pock-marks are found on stoss sides
alongside solutional furrows. They extend transversely
and may coalesce. We interpret them as furrows at an
carly stage of development, and attribute “scalloped” sur-
faces to their coalescence as a result of corrosion at neigh-
bouring sites by COo-rich bubbles. Small-scale or shallow
transverse channels that may be classified as “incipient”
solutional furrows have not been observed.

(1i1) The solutional furrow width is comparable to the diam-
eter of gas inclusions in the experiments of Killawee and
others (1998), which, regardless of the inclusion shape, is
of the order of 1 mm or less.

In summary, the empirical evidence is consistent with
solutional furrows reflecting recurrent impingement of iso-
lated (COy-rich) gas inclusions on stoss sides. Above a certain
elevation threshold, solutional furrows are rare and dissolu-
tion occurs more uniformly due to the lack of inclusions
advected from CaCOj precipitation zones up-glacier. This
mechanism accounts for the observed dissolution pits, furrow
tortuosity and intersection, and overlapping of deposits with
furrows. Trains of spherical and cylindrical bubbles have been
identified in the basal regelation ice of Blue Glacier, Washing-
ton, U.S.A., by Kamb and LaChapelle (1964, fig. 4), although
their chemical composition was not reported. Well-defined
pits in the solutional furrow morphology may be the result
of such bubble trains, originating from repeated nucleation
at preferred sites on the deposit (as described by Killawee
and others, 1998). As yet, our field observations do not indi-
cate that these sites are necessarily located at the tips of the
precipitate spicules. We point out in addition that Figure 5 is
only schematic. Further investigation is required to establish
what controls the spatial distribution of bubbles in the ice,
and whether or not a repeated delivery of CO, from bubble
trains is needed to generate the observed furrow depth.

The observed pattern of solutional furrows may be used to
test our hypothesis. Three factors control the course of COy
release from a gas inclusion that is brought in contact with the
bed: (i) regelation water flow advects dissolved COy; (ii) ice
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T

Fig. 6. (a) Shaded relief and contours of a two-dimensional
hypothetical bed topography with the form z x sin kx sinwy
and of low amplitude; light (dark) grey denotes high (low)
elevations. (b) Water-pressure field py, resulting from pure
regelation over the topography in (a); light (dark) grey denotes
high- (low-) pressure areas. Arrows represent the vector gradi-
ent —Vpy, and point in the local direction of regelation water

Slow. Regions Al and A2 are discussed in the text.

motion carries the inclusion some distance along the bed sur-
face if the bed slope is low, and then the COy source itself is
“mobile” and its trajectory may leave behind a dissolution
groove on the bed; (ii1) COy diffuses. In Figure 6, we plot
the pressure and water-flow fields (Fig. 6b) over a hypotheti-
cal bed consisting of a two-dimensional array of small bumps,
z = asin kz sin wy (Fig. 6a), where ak, aw < 1. This model is
only a crude representation of the bed topography encoun-
tered in reality, but is easy to analyze. The water-flow direc-
tion indicators have been calculated using Nye’s (1969)
vectorial formulation—via — Vpy, where py, is film water
pressure, o< cos kx sinwy—assuming only water transfer
associated with melting and refreezing (closed system). With
regard to ice motion, we bear in mind that it will diverge
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slightly around the bumps if viscous flow is taken into
account, but this effect will not be significant given the
(assumed) small separation between bumps, and ice
velocities will be close to (u,v) = (U, 0), or exactly so in the
case of pure regelation.

(a) Transverse furrows

Near the stoss midpoint, relatively high bed slope ensures
that inclusions melt out locally and thus the CO4 sources
should have low mobility. The water-flow field is then the
dominant factor, and we see the way water streamlines ema-
nate from the stoss midpoint and diverge ahead of the bump
(Fig. 6b, region Al) reflected in the furrow pattern of region
Al in Figure 2. However, the streamlines traverse the bump
crest whereas the observed furrows do not. This discrepancy
may be due to the fact that the streamlines are modified as
the furrows develop to have large amplitudes, not accounted
for by our current calculation (moreover, our model topog-
raphy is an idealization).

(b) Oblique furrows

Along the sides of bumps (Fig. 2, region A2), the furrows are
again well represented by the local water-flow direction
(Fig. 6b, region A2), sub-parallel to the ice flow. If] instead,
this 1s in reality a region of dividing water streamlines and
low water fluxes (such as towards the bottom half of box A2
in Fig. 6b), the bed slope is low, so the effect of ice motion will
dominate and cause the occurrence of groove-like furrows
parallel to it, on the arrival of inclusions. In either case, fur-
rows with the observed orientation are predicted.

(c) Peclet number

Localized CO, release will not cause the well-defined streaks
of dissolution as observed if lateral diffusion of dissolved CO,
within the film is fast compared to advection by water flow. The
relevant parameter to consider is a Péclet number, Pe
= ¢6/hD, the ratio of advective and diffusive effects, and dif-
fusion is negligible if Pe >> 1. § denotes a length scale, and we
use the notations defined previously, taking D ~ 10 “m?s .
In section 2.2 we put § = A, the bump separation. For the
current calculation, we are interested in how a COy-rich
packet of solution evolves in plan view over the bed surface,
after having been released over an area comparable to the
inclusion cross-section. Therefore, the appropriate choice for
¢ is the diameter of the inclusion (~0.l mm, from Killawee
and others (1998)). With the example given in section 2, where
U= 10m a' and a= 5mm, the typical water flux is
q=2x10°m?s ' from Equation (2). A top-end estimate of
h =100 um then leads to Pe & 2. This is a conservative result,
because Pe oc A~ and the film thickens to 100 zm only occa-
sionally, h ~1-10 um being common (Hallet, 1979). We there-
fore anticipate Pe ~ 10~10” (3> 1) in general, consistent with
the observed manifestation of furrows.

4. DEPOSITIONAL INSTABILITY

In this section we show that the coupled processes at the lee
side are spatially unstable. Consider a cut made there in the
bed-normal direction as indicated by the dashed line in Figure
4a. In the transverse plane containing the cut (Fig. 7), the ice
separates from the bed at the same time as regelative water
flows into the gap to freeze — the freezing rate is such that the
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Fig. 7. Definition diagram for our mathematical model ( section
4) applied to the region near the midpoint on a lee side. Box-
arrows indicate separation velocities of the ice and the bedrock
(including calcite precipitate) relative to the interface (near
z = 0) where freezing and precipitation occur.

regelation film thickness remains constant. We include calcite
precipitation in the following consideration, but the kinematic
balance between deposition and separation is unaltered.

Let us assume freezing at the planar ice—bed interface
occurs at rate V' (water volume per unit time per unit area),
equal to —dg/dz using the notations of section 2. The latent
heat released is conducted to the stoss sides through ice and
rock. The heat flow is therefore three-dimensional, but our
model focuses on what happens close to the centre of the lee
side, and this enables the use of a local approximation: when
length scales much smaller than the bump are considered,
the heat flux far from the interface may practically be taken
to occur in a direction normal to the interface (even though
the lines of heat flow ultimately curve up- and down-glacier).
This assumption greatly simplifies the boundary conditions
of the temperature calculation in section 4.1 below.

Referring to Figure 7, take = and y, respectively, to be
the down-glacier and transverse coordinates, and define z
to be the bed-normal coordinate relative to the moving inter-
face. At steady motion, the vertical ice velocity is V/r,
where 7 = p;/py. As calcite is actively precipitating from a
saturated film, the bed has a relative velocity —Veg Strictly,
¢s 1s the volume of precipitate that results from freezing a
unit volume of saturated film water, corrected for density
change, solute inclusion in the ice, and oversaturation. Typ-
ically ¢ <1, so downward motion of the bed is slow.

The question is whether or not the precipitate surface
remains stable when infinitesimal perturbations are imposed
on it. The perturbations will grow in an unstable manner if;
through positive feedback, they promote an increase in the
rate of freezing — thus, proportionally, of calcite precipita-
tion — at the crests of the bed surface, and a decrease at the
troughs. This picture is motivated by what happens in the
Stefan problem for a binary alloy, in which a freezing front
advances into a liquid melt, and where instability leads to
the formation of dendrites (Mullins and Sekerka, 1964).
Our mechanism turns out to be unique, however, as it
involves pressure and flow effects in the regelation film and
within the ice, in addition to freezing.

Variations in freezing rate along the interface originate
from a change in the heat loss from it, caused by perturba-
tions. These perturbations are inherent in the irregularity of
any real bed surface, but those that exist in the film pressure
and film thickness are also relevant and have to be consid-
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ered (sections 4.1 and 4.2). Variations in film pressure and
thickness drive ice flow out of, and water into, areas where
the freezing rate is enhanced; their magnitudes are tied to
the freezing rate through flow processes. On the other hand,
we mentioned that film pressure and thickness play a part in
controlling the freezing rate. Consequently, our deduction
below of how the bed surface evolves through freezing/pre-
cipitation involves the simultaneous solution of several
problems (section 4.3). As we shall see, the perturbative
effects of film pressure and thickness are respectively stabi-
lizing and destabilizing, and the outcome of their competi-
tion 1s that flutes develop at the observed length scale
(section 4.4). To examine linear stability of the system, vari-
ous ingredients are first derived.

4.1. The temperature problem

As assumed in the Nye—Kamb theory, the regelation film is
thin, so the temperature difference across it may be neglected.
We shall allow film thickness, h, to vary, however. We are con-
cerned with perturbation wavelengths that are large com-
pared to h (which is of the order of microns), because the
observed flute spacing (of the order of millimetres) is much
greater than this.

When the ice—bed interface is perturbed from its posi-
tion at z = 0 to, say, z = €f(x,y), where f has zero mean
and € < 1, the conductive heat losses into the ice and bed
are modified. Specifically, their sum will depart from the
average (V times latent heat of freezing, L), resulting in
non-uniform freezing and precipitation along the interface.
Variations in water pressure Py, in the film will contribute to
this effect through altering the melting point.

To establish the quantities involved, notice that within the
ice and bed the temperature 6 satisfies Laplace’s equation,

%9 9%0 00
0 + 0 + ek 0. (9)

Based on the local approximation introduced at the begin-
ning of this section, we prescribe heat losses far from the
interface in the z direction only. Hence, appropriate bound-
ary conditions for Equation (9) are (from Fourier’s law)

k&‘) o

A NP

iy, @ sz 00,

kb_gz —q, asz— —0o, (10)

in which we use subscripts ; and , to refer to ice and bed,
respectively, ki}, to denote the thermal conductivities (kj,
assumed equal for rock and precipitate), and g;}, to denote
the (constant) heat-loss values. Additionally, both materials
share the same interfacial temperature, equal to the pres-
sure-melting point. If § and py, are measured relative to
their unperturbed (and average) values, we can write

0(z,y,ef(x,y)) = —Cpu(z,9) (11)
at the boundary, where C'is the Clausius—Clapeyron constant.
Dyw 1s derived later by considering processes in the regelation
film.

When f = 0 (the unperturbed situation), § is a function
of z only and 1s linear in each material. This solution of Equa-
tion (9) 1s shown in Figure 8a. We have deliberately chosen

_ kVL kWL

ql_ki+k}) kit Ky
to ensure that the ice and bed temperatures are symmetrical
about z = 0, as in the classical basal sliding theory (see Nye,

and ¢, (12)
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1969). The temperature solution is 8(z) = —VL|z|/ (ki + k).
(Our far-field temperatures then match smoothly with the
large-scale three-dimensional temperature distribution at
the lee side, observed at the length scale of the bump,) In this
case, the interfacial heat losses are the same as the heat
fluxes within the ice and the bed, ¢ and ¢, (and
gi + @ = VL). But they are not equal to each other when
ki # kp, despite the temperature symmetry. As we shall
see, this is a necessary condition for the lateral instability.
We now calculate the effect of perturbing the interface to
first-order accuracy (in €). Anticipating that film-pressure
fluctuation is a first-order effect, let
Pw(%y) = 0+€pw1(x7y) +62pw2<$ay) (13)
+ ... (higher-order terms).
By defining T'(z,y, 2) = 0(x,y, 2) — qv2/kp, the problem
for bed temperature reduces to

VT =0,
b.c.’s: £—>0
T(z,y,ef(z,y))

as z — —00,

f(x» y) db
Ky,

(b.c)s are boundary conditions), and this motivates an

=¢| = Cpwi(z,y) - +0(*)  (14)

asymptotic expansion also for the temperature,

T(m,y,z) :0+€T1(.’E,y72)+62T2(.’L',y,Z) (15)
+ ... (higher-order terms).

Following Nye (1969), Fourier transform is employed to solve
the first-order problem. We do this in two dimensions and
use the notation T'; to denote the transform of 711, i.e.

Ti(k,w,z2) = / / Ti(z,y, z)e 5+ dg dy, (16)
—00 —0
taking k and w as wavenumbers for the z and y directions,
respectively. The solution is found to be

1 =Py — 7~

T = [ q]:f]e\/mz, (17)
b

and this implies

/Y A—
= =V +u?| -y, — . (18)
az 2=0 L kb

An identical method applied to the ice (where we define
T =0+ qz/k) leads to

T\ = [ CP1 + qk—f oV (19)
—% \/k2+w2[0ﬁwl+q];—f} . (20)
z=0 i

We retain these results in the transformed notation for use in
the stability analysis below.

The physical meaning of Equations (17-20) is illustrated
in Figure 8b and c for perturbations at a fixed value of k or
w. Each term within the square brackets indicates the sign
and magnitude of the temperature or temperature-gradient
response for given perturbations in film pressure (py1) and
interface position (f). Far from the interface, temperatures
are unperturbed (T} — 0 as z — £00) because the effects
of the “ups and downs” at the interface cancel out.

An elevation in py, depresses the melting point and
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Fig. 8. The vertical temperature profile 0(z) (right column)
at various horizontal positions calculated for the following
three situations of the ice—bed interface (left column): (a)
an unperturbed interface; (b) a sinusoidal perturbation in
regelation film pressure only; (c¢) a sinusoidal perturbation
in interface position only, with the regelation film thickness
and pressure unperturbed. The linear profiles in (a) are
shown as dashed lines in (b) and (c¢)_for comparison.

reduces the temperature lapse rate into both materials,
thereby reducing the heat loss and the rates of freezing and
precipitation at the interface locally (and vice versa) (see
Fig. 8b). The sign of this effect is independent of the magni-
tudes of k; and k.

On the other hand, where the interface has been lifted
(above z = 0), the temperature lapse rate into the ice is
increased and the lapse rate into the bed reduced — by the
same amount, since in Equations (18) and (20) g,/k, = ¢/ki
(see Fig. 8c). The temperature field is distorted in this way
because the (relatively) warm interface is now situated where
it was originally colder. Locally, the heat loss to one material
is enhanced while the heat loss to the other is reduced, and
the net effect depends on which material is more conductive:
where f < 0, we have enhanced net heat loss (more freezing
and precipitation) if ki, > ki, but reduced net heat loss (less
freezing and precipitation) if ki > k. The opposite result is
encountered where f > 0. To first-order accuracy in ¢, this
effect is absent if &, = k;.

4.2. Interfacial processes

If a perturbed interface forces a perturbation in the rate of
precipitation, modifying the interface over time, a feedback
may fuel an instability so that a fluted bed surface develops.
Apart from the effect of pressure, yet to be discussed, the
lower and upper boundaries of the film are subject to differ-
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ent processes, despite the film being thin. It is therefore
necessary to perturb film thickness h as well, and this
removes the constraint that the ice “sees” the same interface
as the bed, z = €f. Formally, we let h = hy + ehy (z,y) (+
higher-order terms), where hy denotes the uniform-state
film thickness. From now on, €f and ¢(f+hy) thus refer
respectively to perturbations of the lower (bed) and the
upper (ice) interface of the film. Accordingly, we replace f
by f+hy in results (19) and (20).

Calcite deposition
The total heat loss from the film 1s given by
o0 [ 00

—k
0z | e pomy) 0z

=< (21)
+O(e?) .

z=0

=q +q — €k

il
0z |,_, 0z

In conjunction with Equations (18) and (20), the freezing
rate of water (as a volume rate per unit area of the inter-
face), ¢, may be calculated from this explicitly, leading to
the expression, in transformed notation,

eVk? + w?

5V =&

L«h+hxmm+%6+ﬁﬂ—%7.

(22)
¢ — V is the freezing-rate perturbation* (a velocity differ-
ence), precisely what we need to evaluate spatial variation
in precipitation rate. Since the rate ratio of CaCOj precipi-
tation to film water freezing is ¢, as assumed earlier, an evo-
lution equation for the bed surfaceis d(ef) /0t = cs¢p — &V,
or equivalently

of ¢ ——

At (23)
where ¢ — V is taken from Equation (22). Notice now we
treat f (and other variables) as a function of time. If precipi-
tation occurs faster (slower) at the crests (troughs) of the
bed profile, the perturbations will grow. The goal is to
derive their growth rate by relating 9f /0t to f, so we need
additional relations for h; and Py, to close the model.

The freezing front
Our main assumption is that there is intimate ice—bed con-
tact during flute development on the deposit. More gener-
ally, the ice—water interface evolves in time also, and thus
there is in principle a separate evolution equation for
f =+ h1, but we assume it relaxes rapidly and is practically
at equilibrium given the very long time-scale of calcite pre-
cipitation (caused by ¢; < 1 1n Equation (23)). This allows
us to neglect the derivative €d(f + hy)/0t which otherwise
would appear on the lefthand side of Equation (25) below.
Consequently, our description here is identical to that of
Nye and Kamb. Regelation is assumed to be quasi-steady,
and non-uniform freezing (and hence, ice production) is
everywhere accommodated by the ice sliding motion, direc-
ted down-glacier approximately at velocity U, super-

* Only the Fourier transform of the difference ¢ — V is
necessary in the following analysis. Writing ¢ — V' (with
V' being constant) introduces a delta function of wave-
number which complicates our notation.
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imposed onto which there is ice deformation in response to
spatial pressure variations. If the normal ice velocity at the
interface is

Wy e(f 4 ) =2t ew(e.) +OE), (20

where w, denotes the perturbation caused by py1, then to
first order, the balance that is satisfied at the freezing front is

- vo ) 9)

—=—+Few, —
o
For obtaining wy,, Nye (1969) has already solved the Stokes
flow problem for ice of constant viscosity 7. Extending his
analysis to three dimensions yields the relation
pwl
2niVE? + Ww?
As one may expect, this indicates that ice is driven upwards

faster at high-pressure areas, and vice versa. Substitution of
Equation (26) into the Fourier transform of Equation (25)

(26)

wy =

leads to
. 7.7 ¢ -V ﬁwl
tkU(f + hy) + = . 27
Frin+fof= o e
Film water flow

The final ingredient comes from water mass conservation
because spatial variations in the freezing rate require a lat-
eral water transport in the film; more water has to flow into
regions where freezing is more intense. Specifically, Dy
obtained by solving Equation (27) will drive water flow,
but the resulting flux convergence will generally differ from
what is needed for the freezing. The deficit is compensated
by film-thickness changes, because h controls the water flux
for a given pressure gradient.

If the water viscosity is 7y, and laminar flow is assumed,
the water flux is given by

(28)

(q),q1) = L (3pw 3pw>

121 \ Oz Oy
(e.g. see Weertman, 1972), and the vector components here
satisfy the conservation equation

N 1y, (29)

or Oy
The factor 1 + ¢ refers to water + solute. (Again, a time
derivative Oh /Ot on the lefthand side of Equation (29) has
been neglected under the quasi-steady assumption.) Equa-
tion (28) is a Poiseuille flow approximation which breaks
down at perturbation wavelengths comparable to or smaller
than hy, but is adequate for our purpose.
To ascertain the effect of perturbations, Equations (28)
and (29) need to be linearized about their basic state. Near
the lee midpoint, this is defined by ¢; =0, and

B hi dpo(x) dgo(z)
12n, dz dz

q = qo(z) = =-V(l+g),

(30)

which describes water flow into the plane of Figure 7 in the
unperturbed situation. Expanding Equations (28) and (29)
and using Equation (30) leads to

1 + Cg h% 82pw1 82pwl
— V)=
€ (¢ ) 12n,, \ 0z + Oy? (31)
N 3V(L+c)hi  3q0 0
ho h() or
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at first-order accuracy. Since gy vanishes as we approach the
lee midpoint, we may neglect the last term in this equation,
in accordance with the local approximation in section 4.1.
In transform notation, Equation (31) then becomes

14 ¢ I 3V(1+ ¢
(p—V)=—--—-" V(A +a)
€ 127’“’ h()

(* + W) Py + h.

(32)

This provides the value of h; whereby a (perturbation)
water source from up- and down-glacier balances both the
lateral divergence of water flux and water loss to freezing.

4.3. Is there an instability?

The dispersion relation

The model for analyzing the stability of the interface is
based on Equation (23), supplemented by Equations (22),
(27) and (32). The processes being considered are coupled,
but we can use the last three equations to solve for by, Py
and (¢ — V) /e simultaneously, and then express the freez-

ing-rate perturbation (¢ — V)/e in terms of f alone. To

facilitate this procedure, let us define

k‘b an L 1277W
=== AN==, M=
r k; qi ’ ! Qi’ ? h% ’
3V (ki + ky)C 1
A3 = — M=——"— Ay = — 33
3 h(] ’ 4 L ’ ° 27]1’ ( )

K and Aj...A; being positive, dependent on model constants
only (& is a thermal conductivity ratio). After performing
the algebra, we obtain

.
€

<

=G(k,w) xrf, (34)

in which the transfer function is

Gk,w) = { (1 + e hass(1 — ) — iURE

“[(1 4 ¢5)Ai23a — Kifz]}/{ﬁ[(l + ¢)Mazs — €7 (35)
Azs
§

To keep this expression concise, we have used the shorthand
& = Vk?+ w? to denote the composite wavenumber, and
also Aji... to denote the product AjAjAy..., etc.

The evolution equation (23) now takes the form
Of /0t = csrGf. If we use the trial solution f o< e, the
complex growth rate, o, is given by the dispersion relation

o(k,w) = ¢rG(k,w) . (36)
Its real part indicates whether the perturbations are stable

(Re 0, Re G < 0) or unstable (Re 0, Re G > 0). The depen-
dence on k and w enables identification of the wavenumber

+r(1+ ) =[N3 — & +irUkEM[(1 + ¢5) Aag — €] } .

range over which instability is predicted. In particular, one
would expect the most unstable wavenumber (at which Re
o 13 most positive) to correspond to the observed depos-
itional flute separation, assuming that it is identical to the
spacing of the fastest-growing infinitesimal flutes.

® In practice, the latter limit is invalidated when w* > 27/
weho ~ 102 because the Poiseuille approximation breaks
down, as mentioned earlier.
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Lateral instability

To examine G, consider first the transverse direction, putting
k = 0 such that £ = |w| and G = G(w) only. G is then real.
The second term in the denominator of G, containing As, is
negligible compared to the first because 7; is large (below). It
follows that the denominator has a zero crossing near
lw| = v/ A1234, due to the term &[(1 + ¢;)Aj234 — &2] (remem-
ber ¢ < 1). Because the numerator is non-zero for k # 1, G is
singular at this wavenumber. This underlies the instability we
have been seeking.

In anticipation of this behaviour, our following discus-
sions are facilitated by non-dimensionalizing Equation
(35), letting k* = k/w., w* = w/w, (and thus & = &/w.),
where we define the wavenumber scale w,, to be

6(1+ 1) [frCh
We =V Aloza = ( 2 ) [ 7 (37)
0

Equation (35) then becomes

G= A;’;“ (14 e)(1— k) - z%k*g*u + e — k)|
Jlera-en4rtee) L m-) 69
13

+ ir&k*f*(l + ¢ — pgf*)} ,
3

in which the dimensionless parameters f;, g and pg are
given by
A L
S WP 2K+ k) Cw2
A : 31+ =k
o= Un = U040/, = [{E =2 )

weho

M1

These parameters measure the importance of viscous deform-
ation, sliding geometry and freezing rate, respectively. (g is
velocity-independent because V /U is given by the bed slope.)
G has the unit of a growth rate, sfl, via As.

Remembering that the growth rate of perturbations is pro-
portional to G, we estimate realistic values for the parameters
appearing in Equation (38). Calcareous bedrock and calcite
are typically more conductive than ice, ky ~ 4Wm ' K
compared to k= 21Wm 'K ' (e.g. Clark, 1966), so we take
k=2 With hg = 1 yum, 7; = 3 x10" Pa's and the other model
constants as listed, we obtain w, = 1.8 x10* mfl, and hence
p1 ~4x10 7 and pz ~ 500. The effect of 5 is considered later.
The fact that p1 and 1 /p3 < 1in Equation (38) implies that
oo —(k—1)/[w (1 + ¢ — w*?)] when k&* = 0 and w* = O(l),
confirming our earlier indication that a singular growth
rate occurs close to w* =1 (or w & w,). The corresponding
wavelength is 27/w. & 0.4 mm. Notice the denominator of
Equation (38) has no other zeros, and that ¢ oc —w* as
W — 0, 0 x w3 as w* — 00.” From now on, we refer to
the w-value at the singularity as the “critical wavenumber”.

Figure 9 illustrates the wavenumber-dependent factor of
Equation (38), u3G/Aspy (proportional to Re o, the real part
of o), for k* = 0. Re ¢ becomes large and positive as we
approach the critical wavenumber (at w* &~ 1) from above. Per-
turbations with this critical wavenumber will therefore be the
fastest-growing, responsible for the observed depositional
flutes. Our linear theory predicts that the flute spacing should
be of the order of a millimetre if by ~ 1 pm, and this agrees
well with observations. (Using hy = 10 um gives A = 40 mm,
which is still reasonable) While the growth rate does become
singular in this model, in reality it is limited by time evolution
of the freezing front and film water flow that occurs in a fast
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time-scale, hitherto assumed to be “instantaneous” under the
quasi-steady assumption. Interestingly, the instability vanishes
if g3 = 0 (corresponding to the rigid ice limit 7; — oo), but
persists as long as the ice has a finite viscosity.

Spicules vs pins

A singular growth rate in the wavenumber domain seems to
explain why depositional flutes should be well defined spa-
tially. Equation (38) reveals further properties consistent with
observations, regarding stability in two dimensions. For gen-
eral values of k* and w*, the imaginary part in both the
numerator and denominator of G is non-zero unless g = 0,
where pg (x U/V) is the dimensionless ratio of the sliding
velocity to the average freezing rate. This has two implications:

(1) When U # 0 (and thus pe # 0), the growth rate Re o
becomes singular only for perturbations with a purely
transverse orientation, for which k* = 0. As we deviate
from this orientation, the singularity is removed and the
amplitude of Re o 1s greatly reduced. In other words, the
instability is most intense in the transverse direction, but
becomes less so in directions that contain a component of
the basal sliding velocity U. We believe this is responsible
for the strong preferred alignment of flutes and spicules
down-glacier. Such directionality is anticipated whenever
2 1s non-negligible, which is typical for a low-amplitude
wavy bed. For instance, taking the earlier example where
a =5mm (bump height), A =50 mm (bump separation),
and using the corresponding maximum (lee) slope to
deduce U/V &~ \/2ma, leads to pg ~ 5.

(i1) po becomes small when U/V <« 1. A special case is
encountered where the lee side is vertical and the rela-
tive ice motion is normal to the interface (in the z direc-
tiononly), and U = py = 0. Then the instability is radial
symmetric and our model predicts the formation of
cylindrical or pin-shaped spicules, such as the ones in
Figure 3c. The preferred wavelength is identical to that
for the flutings because G(§¥)|,,— and G (w*)
the same form.

+—o have

4.4. Physical basis

The issue of stability rests on the phase relationship between
the bed surface perturbation f and the freezing-/precipita-
tion-rate perturbation that results from it, &< (¢ — V) /e. To
facilitate the discussion here, we denote (¢ — V') /e by ¢ If
1 o —f, the system is stable because 9f /0t oc —f (from
Equation (23)); if 1 o +f, the system is unstable because
Of 0t o< +f. How the phase relationship is determined
and varies with wavenumber is complex. To help interpret
Figure 9 we provide the following descriptive mechanism,
assuming as before that the bed is thermally more conduc-
tive than the ice (k > 1).

Bed perturbations f induce non-uniform freezing by
their tendency to increase/decrease the interfacial heat loss
relative to its average value at the troughs/crests (section
4.1). If no other perturbations exist, this mechanism is stabi-
lizing because calcite precipitates at a higher rate at the
troughs than at the crests; this happens at the long-wave-
length limit. However, non-uniform freezing (¢ # 0) is
accompanied by film-pressure and -thickness perturbations
(pw1, h1 #0), and these control the freezing rate also
(Equation (22)). As the wavelength is reduced, the effect of
the pressure and thickness perturbations becomes progres-

398

https://doi.org/10.3189/172756502781831214 Published online by Cambridge University Press

2000 T T T
0

b V@ ]

1000+
— -800
o] 0

* 0.006

<8 5001 o 1
—

L s L L "

] 0.2 0.4 0.6 08 1 1.2
o* =0/,

Fig. 9. Dispersion diagram calculated for perturbations with
a transverse ortentation (for which k* = 0), taking hy =
1 um, k = 2 and other model constants as described in the
text. Horizontal axis is the dimensionless wavenumber w*.
The wavenumber scale is w. = 18X 10" m ' The growth
rate of perturbations (Re o) is proportional to the vertical
axis. Inset shows details near w* = 0, and bubbles indicate
the asymplotic behaviour at large and small wavenumbers.

sively more significant, to the extent that there is in fact a
sign change, and transition to instability. The crux lies in
understanding the (fast) feedback whereby p,,; and h; that
accompany 1 also control ¢, and how this features in the
(much slower) feedback between the bed surface f and its

evolution 9 f/Ot.

The “fast” feedback

The transverse or pin instability with k or U = 0 is probably
simplest to explain. First, how are py1 and h; regulated? Since
sliding is absent, ice deformation has to accommodate for
regions of enhanced freezing by an upward motion, driven
by high pressure; thus, Equation (27) indicates p,; =
€/r)s, where \; is defined in Equation (33). Since the film-
pressure perturbation is then in phase with the freezing-rate
perturbation (P, o< +), it drives water away from regions
where water is removed at higher rates by freezing. In equi-
librium, both losses are balanced by means of a thickened
film, h; >0, where 1) > 0 (and vice versa), because film thick-
ening/thinning leads to greater/less water-flux convergence
from up- and down-glacier. This balance is described by
Equation (32), which, combined with what we have deduced
so far, has the form A3hy = 1 + EPy1 /A2 = (1 + & /rAgs)
(we neglect cg). Thus, except at very low wavenumbers, “stiff”
ice (1/\; being large) leads to significant pressure variations,
and this equation shows that film-thickness adjustments com-
pensate mostly for laterally driven flux deficits, with
hy &~ +E /1 Aoss.

We have established that the film 1s thicker and at higher
pressure where freezing is enhanced (and vice versa): the
perturbations h; and py1 are in phase with 1. Crucially,
their feedback effects on v are opposite, as is apparent from
Equation (22), rewritten here as

— _ El k—1 ?
p=¢( -+ -
AL A1
The reason high film pressures reduce heat loss via melting-
point depression has been discussed in relation to Figure 8b,

and this is described by the negative sign in front of the pres-
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sure term in Equation (40). Film thickening promotes high
freezing rate by increasing heat loss up into the ice (and vice
versa), and explains the positive sign in front of h;. The
interplay of these two processes at different spatial frequen-
cies controls the overall sign of the feedback.
To see the consequence, we write the feedback terms
~MPy1 + hi/ A explicitly as
£\ ¢
f( A+ )\123> e . (41)

If ¢ — 0, the feedback vanishes because non-uniform freez-

ing over long distances induces vanishing pressure fluctua-
tions, and Equation (40) implies ¢ o< —&(k — 1) f/A1. This
1s the stable longwave limit discussed before, at which the
precipitation feedback involves perturbations in the bed
surface only. At the length scales of interest, however, £ is
sufficiently large for the feedback terms to be much greater
than ) itself because, over short distances, (i) large film-pres-
sure variations are induced to drive ice flow, and (ii) large
film-thickness adjustments are required to compensate for
the large water flux being driven sideways. The pressure/
thickness feedback on controlling heat loss becomes com-
parable with that due to £. In this case, 1 adjusts (in a fast
time-scale relative to the time-scale of bed evolution) so that
the dominant balance in Equation (40) exists between those
terms appearing on its righthand side only. Whether
1 o< 4+f or 1) o< —f then depends on the overall sign of the
feedback, governed by (=4 + £2/Aj23) in Equation (41),
which 1s wavenumber-dependent.

Bed surface instability

At wavenumbers above (approximately) we = y/A1234 the
effect of film-thickness perturbations overrides that of pressure
melting and the feedback is positive (—=A; 4+ &2/A1a3 > 0).
Where freezing rates are elevated (3 > 0), the film thickening
that develops (to compensate for pressure-driven water flow)
tends to increase heat loss. But in order that the net heat-loss
perturbation be consistent with the sign and magnitude of v,
this region can only be situated at the crests, where f> 0
induces a heat-loss reduction. Denoting the change in heat
loss by “CHL”, we can summarize the heat-loss balance by

writing
[net CHL]=[CHL due to feedback]+[CHL dueto f >0].
(20) (>0) (<0) (42)

A similar argument shows why ¢ < 0 occurs where f < 0,
and thus 1) o< +f. The positive phase relationship between
1 and f is established in the fast time-scale and gives rise to
instability: precipitation rates are higher at the crests, lower
at the troughs. Dominance of the film-thickness effect is also
responsible for the shortwave-limit (£ — oo) behaviour
indicated in Figure 9.

When £ Sw,, pressure melting dominates the feedback
(now negative) and this is stabilizing. Where 1 > 0, the
(relatively) high film pressure that develops (to drive ice
flow upward) overrides the film-thickness effect, and the
overall feedback reduces heat loss. This can only happen at
the troughs where f <0 induces heat-loss enhancement. The
equivalent of Equation (42) is

[net CHL]=[CHL due to feedback]+[CHL due to f <0].

(20)

In this case, 1) < —f, and the system is stable.

(<0) (>0) (43)
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Even though the terms on the righthand side of Equation
(40) are dominant, a small correction arises from the left-
hand side. Transition to instability therefore occurs not at
we, but a value very close to it (given by one of the roots of
A5 = E2(=A1 + €2/ A123)), at which the feedback equalizes
the freezing-rate variation that causes it. In the neighbour-
hood of this critical wavenumber, the response in freezing
rate becomes extremely sensitive to bed surface perturba-
tion, leading to highly unstable growth above, and decay
(high stability) below, which is why the growth-rate singu-
larity appears in Figure 9.

In summary, our detailed model of the physics at the
precipitating interface indicates that a spatial instability
arises, and in particular we expect the interface to become
irregular in a way that is consistent with both the spacing
and orientation of the observed depositional flutes and spic-
ules. A possible extension of this is given next.

4.5. Scaling laws?

In the dispersion relation derived in section 4.3 (Equation
(38)), because 1 (o< hy) and gy /ps (o< hl) remain small as
long as hy < 20 um (the upper bound inferred by Hallet
(1979)), 1t 1s reasonable to take the critical wavenumber as
effectively given by w,. For film thickness within this bound,
therefore, we can write

2T wh? L
Ae = — = 0,/ 44
T we 3(1+ k) \ nyCk (44)

for the wavelength of the instability (or A. & 0.4h3, A, in mm,

ho in pm). As noted before, there is good order-of-magnitude

agreement of the ). predicted by this theory with observation.
(Classical basal sliding theory provides an independent

estimate of hy. Taking the case of pure regelation, we have

671w C (ki + k) Ay, 1°
ho = 7L

(Nye, 1973), in which X, denotes the separation between

(45)

bumps. Combining with the earlier result leads to
A = A)\i/g, where A~ 1072 mm'/3.  (46)

Both Equations (44) and (46) take the form of scaling laws,
and 1in this respect they motivate a search for field data on
flute spacing and the associated value of hy or A, A funda-
mental problem with testing the latter law, however, arises
from the difficulty of deciding which observed bump separa-
tion should be assigned to which particular group of flutings,
since, on a real glacier bed, bumps with different length scales
are often nested within one another (e.g. Fig. 1). Direct appli-
cation of the first law provides another way of testing our the-
ory, since hy may be constrained by analyzing the rock
fragment size found locally within the calcite deposit. Both
approaches are pursued in our ongoing research effort.

5. CONCLUSIONS

We have endeavoured to seek out the mechanisms responsible
for the extensive patterning found on deglaciated limestone
bedrock surfaces which comprises solutional furrows and fluted
carbonate deposits. That these features might have resulted from
subglacial regelation over bed undulations has long been
recognized, but up to now their intricate surface morphology
has received much less attention, not least the notion of using
it to infer past behaviour.
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In this paper, we provide the first quantitative analysis
that addresses this issue, based on a coupled theory of film
chemical processes and regelation physics. Apart from initi-
ating a mathematical framework that encapsulates the early
ideas of Hallet (1979) (section 2), we offer explanations for
(1) why solutional furrows are collectively organized into
arcuate patterns, with characteristic spacing, and why they
should appear at all (section 3), and (ii) why a fluted surface
texture is ubiquitous on the calcite deposits, and what deter-
mines the length scale of those flutes (section 4).

The understanding of (i) hinges on the role of COq
exsolution in freezing and calcite precipitation at lee sides
of bed bumps. We envisage that COo-rich inclusions carried
down-glacier by ice flow enhance bed surface corrosion on
arrival at the next stoss faces, leading to solutional furrows.
The surface flutings in (i1) are inherently the manifestation
of a spatial instability at the depositing interface at lee side.
We elucidate the coupled physical processes that give rise to
this instability. We also put forward scaling relations
between the observed flute spacing, regelation film thick-
ness and the separation between bumps (section 4.5). Tenta-
tively, we can combine one of the scaling relations with
general results from basal sliding theory (instead of using
Equation (45), which is a special case), in which the film
thickness is expected to depend on sliding velocity U. The
replacement of Equation (46) would then connect the
observed flute spacing to U, and this raises the possibility of
corroborating other estimates of former ice velocity.

Our modelling provides precise insight into the behaviour
of the water film that lubricates the bed of a temperate glacier,
and highlights the complex interactions leading to some of the
striking glacier-bed features shaped by subglacial chemical
processes. Given our analysis refers to the initial development
of these features and explores mainly linear interactions, the
problem of predicting finite-amplitude bed features awaits
further investigation. However, it raises some interesting
questions already. For instance, what is the effect of the
through-flow of subglacial water? Does COq recycling
between ice and regelation film water determine the spatial
distribution of these bed features under a glacier? What can
we infer from the laminations and isotopic compositions with-
in the deposits? And what do observed differences between
glaciers tell us? Given the rather complex coupling of mechan-
isms proposed here, it seems that an integrated approach with
strong guidance from more detailed observations and experi-
ments will be the key in future investigations.
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