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Multiple Mixing and Rank One Group Actions
Andrés del Junco and Reem Yassawi

Abstract. Suppose G is a countable, Abelian group with an element of infinite order and letX be a mixing rank
one action of G on a probability space. Suppose further that the Følner sequence {Fn} indexing the towers
of X satisfies a “bounded intersection property”: there is a constant p such that each {Fn} can intersect no
more than p disjoint translates of {Fn}. Then X is mixing of all orders. When G = Z, this extends the results
of Kalikow and Ryzhikov to a large class of “funny” rank one transformations. We follow Ryzhikov’s joining
technique in our proof: the main theorem follows from showing that any pairwise independent joining of k
copies ofX is necessarily product measure. This method generalizes Ryzhikov’s technique.

1 Introduction

In this paper we discuss the question of whether mixing implies multiple mixing for cer-
tain rank one group actions. Rohlin [9] first asked this question in the case of measure-
preserving transformations, that is when the group is Z. Kalikow [7] showed that rank one
mixing transformations were 3-mixing, and Host [3] proved that mixing transformations
with singular spectrum are mixing of all orders. Ryzhikov [10] shows that rank one mixing
transformations are mixing of all orders by showing that pairwise independent self-joinings
of the rank one system are necessarily product measure. Here we generalize Ryzhikov’s re-
sult to certain rank one group actions.

Throughout this paper G will denote a countable Abelian group. Let X = (X,B, µ,G)
and Y = (Y,F, ν,G) be finite measure-preserving G-actions. To each element g ∈ G there
corresponds a measure-preserving transformation Tg : X → X; however we will mostly use
g to denote both the element of the group, and the measure-preserving transformation it
represents. A sequence {Fn}∞n=1 of finite subsets of G is (left) Følner if ∀g ∈ G,

lim
n→∞

|gFn∆Fn|

|Fn|
= 0.

We will say that {Fn} satisfies the bounded intersection property if there exists a number p
such that whenever g1Fn, . . . , gkFn are disjoint translates of Fn with giFn ∩ Fn �= ∅ then
k ≤ p. We will call such a p an intersection bound for {Fn}. Examples of G’s which have
natural Følner sequences satisfying this condition are Zn, countable direct sums of finite
cyclic groups and direct sums of the these two cases.

The Følner sequence {Fn} satisfies the Tempel’man condition if Fn ⊂ Fn+1 for each n and
there exists K ∈ N such that |FnF−1

n | ≤ K|Fn| for all n ∈ N. We mention the Tempel’man
condition [12] only because it seems to be closely related to the bounded intersection prop-
erty, in that, in all the standard examples we know of, they stand or fall together. However
we do not know if it is possible to derive one from the other.
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X is a rank one group action if there exists a Følner sequence {Fn} and a sequence of
measurable partitions

Pn := {{Xn
g }g∈Fn ,X \ Xn}

of X, where Xn :=
⋃

g∈Fn
Xn

g , such that

1. µ(X \ Xn)→ 0,
2. hXn

g = Xn
hg whenever g ∈ Fn ∩ h−1Fn,

3. For each measurable set A, there exists a sequence {An} where An is a union of elements
of {Xn

g }g∈Fn and µ(A∆An)→ 0.

We will use fn to denote the common value of µ(Xn
g ). Property 3 says that the partitions

Pn converge to B and to denote this we write Pn →n ε. We will call {Fn} the Følner
sequence associated with the rank one group action X and write (X, {Fn}) for X when we
wish to specify {Fn}. We will say that (X, {Fn}) has the bounded intersection property if
{Fn} has the bounded intersection property. For a general scheme for constructing rank
one group actions, see [4]. If (X, {Fn}) is a rank one action, then without loss of generality
we can assume that the identity element e of G belongs to Fn for each n. When G = Z,
what we are calling a rank one action is in fact called a “funny rank one” action and is more
general than the classical notion, which requires that the Fn be intervals in Z. Ferenczi [2]
constructs a funny rank one transformation which is not loosely Bernoulli, and therefore
not of finite rank. His example in fact has the bounded intersection property with p = 4.

If {gn} ⊂ G we write gn → ∞, if whenever V ⊂ G is finite then there exists an N such
that gn ∈ G \V for n ≥ N . A group action X is (2)-mixing if

lim
n→∞

µ(A1 ∩ gnA2) = µ(A1)µ(A2)

∀A1,A2 ∈ B and for each sequence gn →∞. X is k-mixing if

lim
n→∞

µ(A1 ∩ g1
nA1 ∩ g2

nA2 ∩ · · · ∩ gk−1
n Ak) = µ(A1) · · ·µ(Ak)

where limn→∞ gi
n = ∞ for i = 1, 2, . . . , k − 1 and also limn→∞(gi

n)−1g j
n = ∞ whenever

i �= j. X is mixing of all orders if it is k-mixing for each k ≥ 2.
Our main theorem is

Theorem 1 Suppose G has an element of infinite order and X is a mixing rank one G-action
with the bounded intersection property. Then X is mixing of all orders.

This result applies, for example, when G is the direct sum of Zn with finitely or countably
many finite cyclic groups. We remark that it is possible to modify Ferenczi’s construction
to yield mixing funny rank one Z-actions with the bounded intersection property which
are not loosely Bernoulli. Thus even in the case G = Z our result applies in some situations
where Ryzhikov’s result for finite rank [11] does not.

To prove Theorem 1, we use the method of joinings, generalizing [10].
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The measure λ is a 2-joining of X and Y if (X ×Y,B⊗ F, λ,G) is a measure-preserving
group action with the additional condition that

λ(A× Y ) = µ(A)

and

λ(X × B) = ν(B)

for A,B ∈ B,F respectively. For a detailed account of joinings, see [6]. If {(XiBi , νi)}n
i=1

are n probability spaces and λ is a measure on (Πn
i=1Xi,

⊗n
i=1 Bi), then we define πi1,i2,...,ikλ

to be the projection of λ on (Πk
j=1Xi j ,

⊗k
j=1 Bi j ). λ is an n-joining of {(Xi ,Bi , νi,G)}n

i=1 if

(Πn
i=1Xi,

⊗n
i=1 Bi ,G, λ) is a measure-preserving system so that πkλ = νk for k = 1, . . . , n.

For n > 2 it is natural to impose stronger conditions on λ: In particular, if λ is an n-joining
of {Xi}n

i=1, then we can require that

πi1,i2,...,ikλ = Π
k
j=1νi j

whenever i1, i2, . . . , ik are k distinct elements of {1, 2, . . . , n}. In this case we write λ ∈
M(k, n) and say λ is k-fold independent. Note that M(k, n) ⊂ M(1, n)∀k ≥ 1, and that
M(1, n) (and M(k, n)) are subsets of M(Xn), the set of all probability measures on Xn. We
define a topology on M(1, n) where λ j → j λ if and only if λ j(A1×A2×· · ·×An)→ j λ(A).
This turns M(1, n) into a compact metric space if (X,B, µ) is regular, i.e., if X is a compact
metric space and B is the Borel σ-algebra. This topology in fact coincides with the weak-
star topology on M(1, n) as a subset of the Borel measures on the compact metric space Xn.

Theorem 1 follows from the following theorem:

Theorem 2 Suppose X is a G-action on a regular measure space satisfying the hypotheses of
Theorem 1. Then M(2, k) = {µk} for k > 2.

Note that regularity is required in the statement of Theorem 2, but not Theorem 1. The
proof of Theorem 1 clarifies this.

Proof of Theorem 1 The rank one hypothesis on X ensures that the measure algebra B̄

of µ-equivalence classes of sets is separable. Standard arguments then show that B̄ is iso-
morphic to the measure algebra of a regular space and the action of G on B̄ transfers to
an action on this regular measure algebra, which can then be realized as point action. This
shows that there is no harm in assuming that X itself is regular. (Like most dynamical no-
tions, the concepts of mixing and rank one are obviously invariant under isomorphism of
actions at the level of measure algebras. The concept of a joining however is not.)

We give the argument for k = 3, for simplicity. If X is not 3-mixing then there exist mea-
surable sets A, B, C , sequences {kn} and { jn} of group elements, both tending to infinity,
and ε > 0 such that k−1

n jn →n ∞ satisfying

|µ(A ∩ jnB ∩ knC)− µ(A)µ(B)µ(C)| ≥ ε
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for all n. Consider the joining∆kn, jn (E1 × E2 × E3) := µ(E1 ∩ jnE2 ∩ knE3). If∆∗ is a limit
point of the sequence {∆kn, jn} then ∆∗ �= µ3. On the other hand 2-fold mixing implies
that∆∗ ∈ M(2, 3). This contradicts Theorem 2.

In proving Theorem 2 we will restrict ourselves to the case k = 3. A similar argument
shows that M(k− 1, k) = {µk} for k > 2, so Theorem 2 follows by induction. Throughout
the remainder of the paper we will assume that the underlying measure space is regular and
convergence of measures will always mean weak-star convergence.

The second author thanks Jal Choksi and Ivo Klemes for several helpful discussions.
This work forms part of the second author’s PhD thesis.

2 Preliminaries

We have the following lemma for rank one mixing group actions:

Lemma 1 Let X be a rank one mixing G-action. Then

lim
n→∞

max
g �=e

µ(gXn
e ∩ Xn

e )

µ(Xn
e )

= 0.

Proof Suppose the lemma is false, i.e., there exist sequences {nk} ⊂ N and {gk} ⊂ G such
that gk �= e and

µ(gkXnk
e ∩ Xnk

e )

µ(Xnk
e )

→ c �= 0.

We note that gk →∞, because if the gk do not diverge, we can pass to a subsequence along
which gk is constantly g �= e. But since {Fnk} is Følner, for some k there exists f �= f ′, both
in Fnk such that f g = f ′. Therefore, µ(gXnk

e ∩Xnk
e ) = µ( f−1 f ′Xnk

e ∩Xnk
e ) = µ(Xnk

f ′∩Xnk
f ) =

0, a contradiction.
Choose a set A with 0 < µ(A) < c, and for each k choose a set Fnk (A) ⊂ Fnk so that the

sets

Ank =
⋃

f∈Fnk
(A)

Xnk
f

satisfy µ(A�Ank )→ 0.
We have

µ(gkA ∩ A)→
(
µ(A)
)2

and

|µ(gkA ∩ A)− µ(gkAnk ∩ Ank )| → 0,

so

µ(gkAnk ∩ Ank )→
(
µ(A)
)2
.
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But also

µ(gkAnk ∩ Ank ) ≥ |Fnk (A)|µ(gkXnk
e ∩ Xnk

e )

= µ(Xnk
e )|Fnk (A)|

µ(gXnk
e ∩ Xnk

e )

µ(Xnk
e )

= µ(Ank )
µ(gXnk

e ∩ Xnk
e )

µ(Xnk
e )

→ cµ(A),

a contradiction.

If A is a measurable subset of X and µ is a probability measure on X, we define the
measure µA, the measure µ conditioned on the set A, as

µA(F) =
µ(A ∩ F)

µ(A)
.

The next simple lemma is used repeatedly in [10].

Lemma 2 Let (X,B, ν,G) be an ergodic measure-preserving group action, and let In be a
sequence of measurable sets such that

(1) limn ν(In) = c �= 0,
(2) limn ν(gIn∆In) = 0 for each g ∈ G.

Then limn νIn = ν.

Proof

ν ≥ ν(In)νIn

so if λ is any limit point of the sequence {νIn}, then λ is G-invariant by (2), and ν ≥ cλ
by (1). By the ergodicity of ν, λ = ν. This proves the lemma.

We will also need a version of the Blum-Hanson Theorem for group actions [1]. If
φ ∈ L2(µ), and g ∈ G, then we write φ ◦ g to denote the function φ ◦ Tg .

Theorem 3 Let X be a mixing action of a countable Abelian group G. Suppose that {an}n∈N

is a sequence of non-negative valued functions an : G→ [0,∞) satisfying

(1)
∑

g∈Gan(g) = 1 ∀n ∈ N
(2) limn→∞ supg∈G an(g) = 0.

Then for any φ ∈ L2(µ),

‖ An(φ)− 〈φ, 1〉 ‖2→ 0

where An(φ) :=
∑

g∈Gan(g)φ ◦ g.
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Proof We may assume that φ ∈ L2(X) has 0 mean and unit norm. Since X is mixing, then
given ε > 0, we may choose a finite set Oε such that |〈φ ◦ g, φ〉| < ε/2 whenever g is in the
complement of Oε. Next choose N large enough such that

sup
g∈G

an(g) <
ε

2|Oε|

for all n > N . Then 〈
∑

g∈G an(g)φ◦g,
∑

g∈G an(g)φ◦g〉 can be split up into two summands,

∑
g∈G

an(g)
∑

{h:gh−1∈Oε}

an(h)〈φ ◦ (gh−1), φ〉

and

∑
g∈G

an(g)
∑

{h:gh−1∈G\Oε}

an(h)〈φ ◦ (gh−1), φ〉.

The first summand can be bounded by
∑

g∈G an(g)|Oε|
ε

2|Oε|
and the second by∑

g∈G an(g)
∑

h∈G an(h) ε2 , and using the fact that
∑

g∈G an(g) = 1, the result follows.

3 Proof of Theorem 2

In this section (X, {Fn}) is a rank one mixing G-action as in Theorem 2 and ν ∈ M(2, 3).
Our aim is to show that ν must be product measure µ3.

For (k, l,m) ∈ F3
n we denote Xn

k × Xn
l × Xn

m by Xn
k,l,m and call this object a cube. By an

orbit in G3 we mean any

G3
g0,g1

:= {(k, kg0, kg1) : k ∈ G},

that is, an orbit of the diagonal action of G on G3 by translation. By an n-orbit in X3
n we

mean

On
g0,g1

:=
⋃
{Xn

g : g ∈ G3
g0,g1
∩ F3

n} =
⋃
{Xn

(k,kg0 ,kg1) : k ∈ Fn ∩ Fng−1
0 ∩ Fng−1

1 }.

Thus X3
n is partitioned into n-orbits and each n-orbit is a union of cubes of equal ν-

measure. The length of an n-orbit is the number of cubes in it. By a strand of On
g0,g1

we
mean its intersection with the G-orbit of any (x, y, z) ∈ On

g0,g1
and by a slice of On

g0,g1
we

mean any measurable union of strands of On
g0,g1

. For (k, l,m) ∈ F3
n, O(Xn

k,l,m) will denote
the n-orbit containing the cube Xn

k,l,m.
Let us say an n-orbit is δ-long if its length is at least δ|Fn| and let On(δ) denote the union

of the δ-long n-orbits.

Lemma 3 If p is an intersection bound for {Fn} then

lim inf
n
ν
(
On(δ)

)
≥ 1− p2δ.
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Proof Fixing n, we will consider all finite subsets γ = {g1, . . . , gr} of G with the properties
that the {Fngi} are pairwise disjoint and all intersect Fn non-trivially, so |γ| ≤ p. We call
such a γ a configuration and let Γ denote the space of all configurations. Clearly Γ is finite.

For x ∈ X we let Rn(x) = {g ∈ G : gx ∈ Xn
e }, the set of “return times” to the base of

the n-th tower. By an n-block in x we mean any gFn with g ∈ Rn(x), and g is called the base
time of this n-block. The n-blocks in x are disjoint translates of Fn. For x ∈ Xn we denote
by Bn(x) the n-block in x containing e ∈ G, namely Bn(x) = k−1Fn if x ∈ Xn

k .
For (x, y) ∈ Xn×X we create a configuration γ(x, y) by letting g1, . . . , gr denote the base

times of the n-blocks in y which intersect Bn(x) and defining γ(x, y) = {g−1g1, . . . , g−1gr},
where g is the base time of Bn(x). For (x, y, z) ∈ Xn × X2 let

γ1(x, y, z) = γ(x, y) and γ2(x, y, z) = γ(x, z).

We view the map Q : (x, y, z) �→
(
γ1(x, y, z), γ2(x, y, z)

)
as a partition of Xn×X2 indexed by

Γ2, so we will write Q(γ1,γ2) = Q−1
(
(γ1, γ2)

)
. Thus we are partitioning Xn × X2 according

to the pattern, up to a shift, formed by Bn(x) and the n-blocks in y and z which intersect
Bn(x).

For (γ1, γ2) ∈ Γ2 let

S(γ1, γ2) =
⋃
{Fn ∩ g1Fn ∩ g2Fn : g1 ∈ γ1, g2 ∈ γ2}

and for k ∈ S(γ1, γ2) let

Q(γ1,γ2),k = {(x, y, z) ∈ Q(γ1,γ2) : x ∈ Xn
k}.

We will refer to the Q(γ1,γ2),k as the cells of Q(γ1,γ2). The cells of a given Q(γ1,γ2) all have the
same ν-measure as they are mapped to each other by the action of G. Moreover for g1 ∈ γ1,
g2 ∈ γ2

Q(γ1,γ2) ∩ On
g1,g2
=
⋃
{Q(γ1,γ2),k : k ∈ Fn ∩ g1

−1Fn ∩ g2
−1Fn}

is a slice of On
g1,g2

and Q(γ1,γ2)∩X3
n is a disjoint union of such slices. The conditional measure

νQ(γ1 ,γ2)

(
X3

n \ On(δ)
)

of the short orbit slices in Q(γ1,γ2) is the number of cells in Q(γ1,γ2)

belonging to short orbit slices divided by the total number of cells in Q(γ1,γ2). Thus

νQ(γ1 ,γ2)

(
X3

n \ On(δ)
)
≤
|γ1| |γ2|δ|Fn|

|Fn|
≤ p2δ.(1)

Since X3
n \ On(δ) is partitioned by the sets Q(γ1,γ2), we get

ν
(
X3

n \ On(δ)
)
≤ p2δ.

Since ν is a joining,

ν(X3
n) ≥ 1− 3µ(X \ Xn)→ 1 as n→∞,

so

ν(X3 \ X3
n)→ 0 as n→∞.
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Thus

lim sup
n→∞

ν
(
X3 \ On(δ)

)
= lim sup

n→∞

[
ν(X3 \ X3

n) + ν
(
X3

n \ On(δ)
)]

= lim sup
n→∞

[
ν
(
X3

n \ On(δ)
)]

≤ p2δ,

and so

lim inf
n→∞

ν
(
On(δ)

)
≥ 1− p2δ.

3.1 Lightness

Let X be rank one mixing with {F j} the associated Følner sequence. Recall that µ(X j
g ) = f j

for g ∈ F j . If ε > 0, we say that the cube X j
k,l,m is ε-light if

ν(X j
k,l,m) ≤ ε f 2

j .

We also define

L j
ε =
⋃
{X j

k,l,m : X j
k,l,mε− light}.

We will need to know that ν(L j
ε) is substantial for large j and small ε. To this end, define

Di(ν) := lim
ε→0

lim inf
j→∞

ν(L j
ε).

To prove that Di(ν) > 0, we will need the following lemma.

Lemma 4 Suppose G has an element of infinite order, and let {F j} be a Følner sequence in
G. If 0 < δ < 1/4, then there exist a sequence kn of group elements such that kn →∞ and for
all sufficiently large n,

1− 2δ ≤
|knFn ∩ Fn|

|Fn|
≤ 1− δ.

Proof Let l ∈ G be an element of infinite order. Given ε > 0, choose N so that for all
n ≥ N ,

|Fn ∩ lFn|

|Fn|
> 1− ε/2.

If n ≥ N and

ak :=
|Fn ∩ lkFn|

|Fn|
,

then a0 = 1 and |ak+1 − ak| < ε. Note also that ak �= 0 if and only if lk ∈ FnFn
−1, a finite

set. Thus k can be chosen large enough so that ak = 0. The lemma follows immediately.
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Lemma 5 If (X, {Fn}) is rank one mixing and ν ∈ M(2, 3) is ergodic, then Di(ν) > 0.

Proof We show this by contradiction. If Di(ν) = 0, then letting H j
ε stand for the union of

the ε-heavy cubes (ε-heavy cubes are cubes which are not ε-light), given η > 0, we can find
ε > 0 such that

lim
j→∞
ν(H j

ε ) > 1− η.

(We have dropped to a subsequence but without loss of generality we maintain the same
indexing.)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 1

✛

✲

S j

R j

Fix 0 < δ < 1/8. If

A j := F j ∩ k−1
j F j ,

(the set obtained in Lemma 4) and B j := F j \ A j , then
⋃

k∈B j
X j

k is always of nontrivial
µ-measure, greater than δµ(X j). Hence for each j we can find B∗j ⊂ F j such that

lim inf
j
µ

(
k j

(⋃
k∈B j

X j
k

)
∩
( ⋃

k∈B∗j

X j
k

))
≥ δ2

where µ(
⋃

k∈B∗j
X j

k ) ≥ δ. If we form the sets

R j :=
⋃

(k,l,m)∈A j×A j×B j

X j
k,l,m

and

S j :=
⋃

(k,l,m)∈k j A j×k j A j×B∗j

X j
k,l,m
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we have that

ν(R j) ≥ ν(X × X × π3R j)− ν
(
X × (X \ π2R j)× π3R j

)
− ν
(
(X \ π1R j)× X × π3R j

)

and using the fact that ν ∈ M(2, 3), we have

lim inf
j
ν(R j) ≥ δ − 2 · 2δ · 2δ = δ(1− 8δ) > 0.

Figure 1 illustrates the case when G = Z and F j = [0, h j). Similarly,

lim inf
j
ν(k jR j ∩ S j) = lim inf

j
ν
(
k jπ1R j × k jπ2R j × (k jπ3R j ∩ π3S j)

)

≥ lim
j
µ(X j)δ

2(1− 4δ) > 0.

Therefore if η is chosen small enough, then

lim inf
j→∞

ν
(
k j(R j ∩H j

ε ) ∩ (S j ∩H j
ε )
)
> 0.

If k, l ∈ A j , we define the sets

C j
k,l :=

⋃
m∈B j

X j
k,l,m,

and

C j
k j k,k j l

:=
⋃

m∈B∗j

X j
k j k,k j l,m

.

Note that

k j(C
j
k,l) ∩ S j ⊂ C j

k j k,k j l
.

Since ν ∈ M(2, 3), then ν(C j
k,l) ≤ f 2

j ; similarly for the lower columns C j
k,l. This means that

any such column has at most 1/ε heavy cubes, and that there are at most 1/ε2 intersections
of heavy cubes in the expression

ν
(
k j(C

j
k,l ∩ H j

ε ) ∩C j
k j k,k j l

∩H j
ε

)
.

Hence

ν
(
k j(R j ∩ H j

ε ) ∩ (S j ∩ H j
ε )
)
=
∑

k,l∈A j

ν
(
k j(C

j
k,l ∩H j

ε ) ∩C j
k j k,k j l

∩ H j
ε

)

≤
|A j |2

ε2
sup

k,l∈A j ,m∈B j ,p∈B∗j

ν(k jX
j
k,l,m ∩ X j

k j k,k j l,p
).
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We now use the fact that ν ∈ M(2, 3) to state that

ν(k jX
j
k,l,m ∩ X j

k j k,k j l,p
) = ν

(
X j

k j k
× X j

k j l
× (k jX

j
m ∩ X j

p)
)

≤ ν
(
X × X j

k j l
× (k jX

j
m ∩ X j

p)
)

= f jµ(k jX
j
m ∩ X j

p)

= f 2
j

µ(p−1k jmX j
e ∩ X j

e )

µ(X j
e )

.

Note that by choice of the sequence k j in Lemma 4, p−1k jm �= e whenever m ∈ B j and
p ∈ F j . Using Lemma 1, we can conclude that

ν
(
k j(R j ∩ H j

ε ) ∩ (S j ∩ H j
ε )
)
≤
|A j |2

ε2
f 2

j sup
m,p∈B j

µ(p−1k jmX j
e ∩ X j

e )

µ(X j
e )

→ j 0.

This gives the desired contradiction. We can now prove Theorem 2.

Proof of Theorem 2 Suppose G satisfies the conditions in the statement of Theorem 2 and
ν ∈ M(2, 3) is given so that (X3,B⊗B⊗B,G, ν) is ergodic (we will show that any ergodic
ν ∈ M(2, 3) has to be product measure. This implies, using the ergodic decomposition
theorem, that any pairwise independent ν is also product measure). Lemma 5 tells us that
Di(ν) > 0, and using Lemma 3, we choose δ so that lim infn ν

(
On(δ)

)
> 1− Di(ν)

2 . Define

O∗n (δ, ε) := On(δ) ∩ Ln
ε ,

that is O∗n (δ, ε) is the union of all ε-light cubes whose n-orbits are of length at least δ|Fn|.
Given any sequence {εn} ↓ 0, there exists a sequence jn such that

lim
n→∞

ν
(
O∗jn

(δ, εn)
)
= d > 0.

After all, given ε > 0, once jn is sufficiently large, we get

ν(L jn
ε ) >

3

4
Di(ν)

and

ν
(
O jn (δ, ε)

)
> 1−

Di(ν)

2
,

so

ν
(
O∗jn

(δ, ε)
)
>

Di(ν)

4
.
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We will assume that jn = n. Let

On(k, δ) :=
⋃

{(l,m):Xn
k,l,m⊂O∗n (δ,εn)}

O(Xn
(k,l,m));

On(k, δ) is the “slab” of the n-orbits of εn-light δ-long cubes at k ∈ Fn. Note that although
the notation for the k-th slab makes no mention of εn (in an attempt to stop the notation
from burgeoning any more), it is implicitly contained in the definition. Since

lim
n→∞

ν
(
O∗n (δ, εn)

)
> 0

and

ν
(
O∗n (δ, εn)

)
=
∑
k∈Fn

ν
(
O∗n (δ, εn) ∩ (Xn

k × Xn × Xn)
)
≤

1

δ|Fn|

∑
k∈Fn

ν
(
On(k, δ)

)
,

we can find some sequence {kn} such that

lim inf
n→∞

ν
(
On(kn, δ)

)
> 0.

For ease of notation we can assume that kn = e for each n ∈ N. Henceforth we will only be
interested in On(e, δ). Similarly define the “fibre” over (e, l) ∈ F2

n as

On(e, l, δ) :=
⋃

{m:Xn
(e,l,m)∈O∗n (δ,εn)}

O(Xn
(e,l,m))

splitting up On(e, δ) =
⋃

l∈Fn
On(e, l, δ) as a disjoint union.

Furthermore, we can find d∗ > 0 so that, setting

Dn = {l ∈ Fn : ν
(
On(e, l, δ)

)
≥ d∗|Fn|

−1},

when n is sufficiently large,

ν
(⋃

l∈Dn

On(e, l, δ)
)
≥ d∗.

For otherwise, for all d∗ > 0 and arbitrarily large n we would get

ν
(
On(e, δ)

)
≤ ν
(⋃

l∈Dn

On(e, l, δ)
)

+ ν
( ⋃

l∈Fn\Dn

On(e, l, δ)
)

< d∗ + d∗,

contradicting the fact that

lim inf
n→∞

ν
(
On(e, δ)

)
> 0.
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Thus letting O∗n(e, δ) denote
⋃

l∈Dn
On(e, l, δ), we have

lim inf
n→∞

ν
(
O∗n (e, δ)

)
> 0.

In parallel with this notation, we shall split up νn(δ) := νO∗n (e,δ) into a convex combina-
tion of probability measures: letting νn

l,m := νO(Xn
(e,l,m)), we define

νn
l (δ) :=

∑
{m:Xn

(e,l,m)∈O∗n (δ,εn)}

bn
l,mν

n
l,m

where bn
l,m :=

ν(O(Xn
e,l,m))

ν(On(e,l,δ)) . Note that νn
l (δ) = νOn(e,l,δ) and by lightness

bn
l,m ≤

εn|Fn|−1

d∗|Fn|−1
=
εn
d∗
→n 0

for all such l, m. Similarly, we have

νn(δ) := νO∗n (e,δ) =
∑
{l∈Dn}

an
l ν

n
l (δ)

where an
l := ν(On(e,l,δ))

ν(O∗n (e,δ)) .

Next, we define sums of restrictions of µ3, beginning with the measures

τ n
e,l,m := µ3

O(Xn
(e,l,m))

but then averaging using the same weights bn
l,m and an

l defined using ν:

τ n
l :=

∑
{m:Xn

(e,l,m)∈O∗n (δ,εn)}

bn
l,mτ

n
e,l,m

and

τ n :=
∑
{l∈Dn}

an
l τ

n
l .

Since lim infn→∞ ν
(
O∗n (e, δ)

)
> 0 and {O∗n (e, δ)} is approximately invariant ({O∗n (e, δ)}

is the union of δ-long n-orbits, which are approximately invariant), then by Lemma 2,
limn→∞ ν

n(δ) = ν. Note that τ n
e,l,m(A) = νn

e,l,m(A) whenever A is a union of cubes in X3
n. It

follows that τ n(A) = νn(δ)(A) for all such A, and since X is rank one, that

τ n →n ν.

If m ∈ Fn, let

Õ(Xn
(e,l,m)) :=

⋃
{g∈Fn∩Fnl−1}

gXn
(e,l,m) =

⋃
{g∈Fn∩Fnl−1}

Xn
g × Xn

gl × gXn
m
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— Õ(Xn
(e,l,m)) is a longer orbit than O(Xn

(e,l,m)) —and define

θn
e,l,m := µ3

Õ(Xn
(e,l,m))
.

Note that θn
(e,l,m) ◦ (i × i ×m−1) = θn

(e,l,e) and

µ3
(
Õ(Xn

(e,l,m))
)

µ3
(
O(Xn

(e,l,m))
) ≤ |Fn|

δ|Fn|
=

1

δ
;

hence f n
l,m :=

dτ n
(e,l,m)

dθn
(e,l,m)
≤ 1/δ. We have

τ n(A× B×C) =
∑

l

an
l

∑
m

bn
l,m

(∫
χA×B×C (x, y, z) dτ n

e,l,m(x, y, z)

)

=
∑

l

an
l

∑
m

bn
l,m

(∫
χA×B×C (x, y, z) f n

l,m(x, y, z) dθn
e,l,m(x, y, z)

)

≤
1

δ

∑
l

an
l

∑
m

bn
l,m

(∫
χA×B×C (x, y, z) dθn

e,l,m(x, y, z)

)

=
1

δ

∑
l

an
l

∑
m

bn
l,m

∫
χA×B(x, y)

(
χC (z)− µ(C)

)
dθn

e,l,m(x, y, z)

+
1

δ

∑
l

an
l

∑
m

bn
l,m

∫
µ(C)χA×B(x, y) dθn

e,l,m(x, y, z)

≤
1

δ

∑
l

an
l

∣∣∣∣
∑

m

bn
l,m

∫
χA×B(x, y)

(
χC (z)− µ(C)

)
dθn

e,l,m(x, y, z)

∣∣∣∣

+
1

δ

∑
l

an
l

∑
m

bn
l,m

∫
µ(C)χA×B(x, y) dθn

e,l,m(x, y, z).

Now the second term 1
δ

∑
l an

l

∑
m bn

l,m

∫
µ(C)χA×B(x, y) dθn

e,l,m(x, y, z) is just
1
δ
µ(C)

∑
l an

l

∑
m bn

l,mθ
n
e,l,m(A × B × X) →n

1
δ
µ(C)µ2(A × B). To see this, note that the

probability measures

θn(A× B) :=
∑

l

an
l

∑
m

bn
l,mθ

n
e,l,m(A× B× X)

=
∑

l

an
l µ

2
(
⋃

g∈Fn∩Fnl−1 Xn
ge,gl)

(A× B)

=
∑

l

an
l

|Fn ∩ Fnl−1| f 2
n

µ2

(
A× B ∩

( ⋃
g∈Fn∩Fnl−1

Xn
ge,gl

))

https://doi.org/10.4153/CJM-2000-015-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-015-0


346 Andrés del Junco and Reem Yassawi

and

an
l

|Fn ∩ Fnl−1| f 2
n

≤
an

l

δ|Fn| f 2
n

≤
|Fn| f 2

n

ν
(
O∗n (e, δ)

)
δ|Fn| f 2

n

≤ K

for all n, l. Thus a weak star limit of the measures θn has to be absolutely continuous with
respect to µ2, as well as being invariant. By ergodicity of µ2, the limit in fact is µ2.

As for the first term, we have

1

δ

∑
l

an
l

∣∣∣∣
∑

m

bn
l,m

∫
χA×B(x, y)

(
χC (z)− µ(C)

)
dθn

e,l,m(x, y, z)

∣∣∣∣

=
1

δ

∑
l

an
l

∣∣∣∣
∑

m

bn
l,m

∫
χA×B(x, y)

(
χC (m−1z)− µ(C)

)
dθn

e,l,e(x, y, z)

∣∣∣∣

≤
1

δ

∑
l

an
l

∫ ∣∣∣∑
m

bn
l,m

(
χmC (z)− µ(C)

)
χA×B(x, y)

∣∣∣ dθn
e,l,e(x, y, z)

≤
1

δ

∑
l

an
l

∫ ∣∣∣∑
m

bn
l,m

(
χmC (z)− µ(C)

)∣∣∣ dπ3θ
n
e,l,e(x, y, z)

≤
1

δ2

∑
l

an
l

∫ ∣∣∣∑
m

bn
l,mχmC (z)− µ(C)

∣∣∣ dµ

≤
1

δ2

∑
l

an
l

∥∥∥∑
m

bn
l,mχmC − µ(C)

∥∥∥
2,µ
.

Note that by the proof of the Blum-Hanson theorem, the convergence of

∥∥∥∑
m

bn
l,mχmC − µ(C)

∥∥∥
2,µ

depends only on C and

bn := max
m

bl,m ≤
εn
d∗

and this bound is independent of l ∈ Fn. Hence

∑
l

an
l

∥∥∥∑
m

bn
l,mχmC − µ(C)

∥∥∥
2,µ
→n 0.

Thus we have shown that ν ≤ 1
δ
µ3. By ergodicity, ν = µ3. This completes the proof.

References
[1] J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences. Bull. Amer. Math. Soc.

66(1960), 308–311.

https://doi.org/10.4153/CJM-2000-015-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-015-0


Multiple Mixing 347
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