Compositio Mathematica 132: 289-309, 2002. 289
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

Characterization of Certain Holomorphic Geodesic
Cycles on Quotients of Bounded Symmetric
Domains in terms of Tangent Subspaces

NGAIMING MOK*
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received: 21 September 2000; accepted in final form: 3 July 2001)

Abstract. Let Q be an irreducible bounded symmetric domain and I' € Aut(QQ) be a torsion-
free discrete group of automorphisms, X := Q/I". We study the problem of algebro-geometric
and differential-geometric characterizations of certain compact holomorphic geodesic cycles
S C X. We treat special cases of the problem, pertaining to a situation in which S is a compact
holomorphic curve, and to the case where Q is a classical domain dual to the hyperquadric.
In both cases we consider algebro-geometric characterizations in terms of tangent subspaces.
As a consequence we derive effective pinching theorems where certain complex submanifolds
S C X are proven to be totally geodesic whenever their scalar curvatures are pinched between
certain computed universal constants, independent of the volume of the submanifold S, giving
new examples of the gap phenomenon for the characterization of compact holomorphic geo-
desic cycles.
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Let Q be an irreducible bounded symmetric domain and I' C Aut(Q) be a discrete
group of automorphisms acting without fixed points. Consider the Hermitian locally
symmetric manifold X := Q/T". It is interesting, especially in the case when X is com-
pact or of finite volume, to characterize compact holomorphic geodesic cycles S C X.
Such characterizations can either be in algebro-geometric or differential-geometric
terms. In this article we study special cases of this problem, pertaining to a situation
in which S is a compact holomorphic curve, and to the case where Q is a classical
domain dual to the hyperquadric. In both cases we will be considering algebro-
geometric characterizations in terms of tangent subspaces. Such characterizations
imply differential-geometric effective pinching theorems where certain complex sub-
manifolds S C X are proven to be totally geodesic whenever their scalar curvatures
are pinched between certain computed universal constants, independent of the volume
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of the submanifold S. These pinching theorems are related to the gap phenomenon
discussed in Mok [M3] and Eyssidieux and Mok [EM], which in particular include
the characterization of certain totally-geodesic compact holomorphic curves on quo-
tients of the Siegel upper-half-plane.

Identify Q as a subdomain of its compact dual M, by Borel Embedding. Let G, be
the identity component of the automorphism group of Q and K C G, be the isotropy
subgroup at a point o € Q, so that Q = G,/K. Write G for the identity component of
the automorphism group of M and P C G for the isotropy subgroup at 0. Consider
the action of P on PT,(M). There are precisely r orbits Oy, 1 < k < r, such that the
topological closures Oy form an ascending chain of subvarieties of PT,(M), with
O, = PT,(M). We say that a nonzero vector 7 is of rank k if its projectivization
belongs to Oy. For the purpose of this article we will say that 5 or [n] is generic if
and only if # is of rank r. Given any 5 of rank k, k < r, the closure of the G-orbit
of its projectivization [5] defines a holomorphic bundle of projective subvarieties
Si(M) S PT)yy, called the k-th characteristic bundle, where Sy ,(M) = Oy. The restric-
tions Si(Q?) to Q are invariant under the action of G,. Their quotients under I' C G,
will be denoted by Sx(X). For the purpose of this article we will be concerned solely
with the case of k = r — 1. We call S,_;(X) the highest characteristic bundle. Thus,
n is generic if and only if [n] does not lie on the highest characteristic bundle S,_;(X).

For Q of rank r, with respect to the Bergman metric there are precisely r equiva-
lence classes of totally-geodesic holomorphic curves on Q under the action of G,. The
kth equivalence class is represented by a totally-geodesic holomorphic disk A; in Q
whose tangent space at each point is spanned by a vector of rank k. A totally-
geodesic holomorphic curve C C X will be said to be of type & if and only if C is uni-
formized by a holomorphic disk in Q equivalent to A; (said to be of type k) under
some holomorphic isometry of Q.

In [M3] and [EM] we considered compact complex submanifolds of quotients of
bounded symmetric domains which are almost totally geodesic in some precise sense
and asked whether such submanifolds are necessarily totally geodesic. For a (totally-
geodesic) bounded symmetric subdomain D C Q, we say that (Q, D) exhibits the gap
phenomenon if any almost geodesic compact complex submanifold S on some quo-
tient manifold X of Q modeled on D must necessarily be totally-geodesic. In the spe-
cial case when Q is the Siegel upper-half-plane H, of rank r, we proved an effective
pinching theorem which says in particular that an almost geodesic compact
holomorphic curve modeled on a totally-geodesic holomorphic disk of type r is
necessarily totally-geodesic. There the proof relies on interpreting the Siegel upper-
half-plane as the parameter space for variations of Hodge structures of weight 1.
Using variations of Hodge structures and studying Euler characteristics, Eyssidieux
[E1] introduced the notion of 0-hyperrigid and 1-hyperrigid subdomains and gave in
[E1, 2] algebro-geometric characterizations of certain totally-geodesic complex sub-
manifolds which in particular imply the gap phenomenon for (Q, D) for Q an irredu-
cible bounded symmetric domain and D C Q a I-hyperrigid subdomains. His results
in [E1] cover the cases of (H,, A,), (D!, A,), (D}, A,) and many cases of (Q, D) in
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which Q is irreducible and D is irreducible and of complex dimension > 1. Many new
examples of 1-hyperrigid domains D C Q were discovered in [E2].

Here we solve the problem of characterizing compact totally-geodesic holo-
morphic curves of type r = rank(Q) in a uniform way whenever the highest charac-
teristic bundle S,_(X) is of codimension 1 in PTy. We say in this case that Q is of
characteristic codimension 1. For the ensuing explanation assume that X is itself
compact. Let C C X be a nonsingular compact holomorphic curve and C be the
tautological lifting of C to PTy. The highest characteristic bundle Sy :=
S—1(X') € PTy is a complex-analytic subvariety of codimension 1. The intersection
number S - C gives an invariant on C. We show that this invariant is always nonne-
gative, and is zero if and only if C is a totally-geodesic holomorphic curve of type r.
This then leads to an algebro-geometric characterization of totally-geodesic compact
holomorphic curves C of type r as the only compact smooth holomorphic curves for
which all nonzero tangent vectors are generic (i.e., of rank r). In addition to (sub)-
series of classical domains, our result also applies to the 27-dimensional exceptional
domain D! pertaining to E;. The latter is particularly interesting since an excep-
tional bounded symmetric domain cannot parametrize a nontrivial homogeneous
holomorphic family of variations of Hodge structures of weight 1 [Sa]. We note also
that our algebro-geometric characterization is in a sense optimal. In fact, the analo-
gous statement fails on any other irreducible bounded symmetric domain of dimen-
sion >2.

In [M1, 2] we established a rigidity theorem for Hermitian metrics of seminegative
curvature on a projective manifold X uniformized by an irreducible bounded sym-
metric domain of rank >2. As a consequence, any nontrivial holomorphic map f
into a Hermitian manifold Z of seminegative curvature in the sense of Griffiths is
necessarily an isometric immersion, totally-geodesic with respect to the Hermitian
connection on Z. From the function-theoretic perspective the relevant consequence
is that fis a holomorphic immersion. One motivation to study intersection theory on
PTy is to study holomorphic maps for target complex manifolds Z satisfying much
weaker conditions of seminegativity. For instance, if Z is uniformized by a bounded
domain in some Stein manifold, then the Carathéodory metric on Z is a continuous
complex Finsler metric of seminegative curvature in the generalized sense. For the
special case when X is of characteristic codimension 1, we give an an application
of our result on totally-geodesic holomorphic curves to show that any nontrivial
holomorphic map f: X — Z must be generically finite.

Our results in the situation of compact holomorphic curves naturally lead to the
question of algebro-geometric characterization of certain holomorphic geodesic
cycles of higher dimensions. We prove a result of this nature for bounded symmetric
domains Q dual to the hyperquadric. Q and, hence, X is endowed with a canonical
quadric structure, i.e., a conformal class of nondegenerate holomorphic symmetric 2-
tensors. In this case, we characterize k-dimensional totally geodesic cycles dual to
hyperquadrics in terms of the nondegeneracy of the restriction of the quadric struc-
ture. The proof for k > 1 relies on the result of Kobayashi-Ochiai [KO] on
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the integrability of G-structures on compact Kédhler—Einstein manifolds modeled on
irreducible Hermitian symmetric manifolds of rank > 1, together with the Hermitian
metric rigidity theorem of Mok [M1]. The case of k = 1 is a special case of our results
of Section 2. Our results for Q dual to the hyperquadric lead also to the differential-
geometric characterization of certain holomorphic geodesic cycles under some
pinching conditions on their scalar curvatures. It leads to new examples of the gap
phenomenon beyond those in [M3], [EM] and [E1, 2].

1. Characteristic Bundles

(1.1) Let Q be an irreducible bounded symmetric domain. Let G, be the identity com-
ponent of the automorphism group of Q and K C G, be the isotropy subgroup at a
point 0 € Q, so that Q = G,/K. Q is a Hermitian symmetric space with respect to the
Bergman metric. K acts faithfully on the real tangent space T”}(Q). Let a be a max-
imal Abelian subspace of the real tangent space, whose dimension r is the rank of Q
as a Riemannian symmetric space. Then, T%(Q) = |, .x ka. We have an Ja = 0 for
the canonical complex structure J on Q. The complexification (a + Ja) g C decom-
poses into at @ a*, where a* C T,(Q), the holomorphic tangent space at o, so that
T,(Q) = Uieg ka't. Thus, any holomorphic tangent vector ¢ at o is equivalent under
the action of the isotropy group to some # € a*. By the Polydisk Theorem (cf. [W]),
there exists a totally-geodesic (holomorphic) polydisk D =2 A" passing through o,
D C Q, such that T,(D) = a®™. With respect to Euclidean coordinates on D = A",
we can write n = (1, ..., #,). For n # 0 we will say that  is of rank k, 1 <k <,
if and only if exactly k of the coefficients 5; are nonzero. The automorphisms of
D, including those which permute the individual disk factors, extend to global auto-
morphisms of Q belonging to G,. Thus, any € T,(Q) is equivalent under K to a vec-
tor n = (ny, ..., n,), such that each coefficient is real and n; = #n,--- =5, = 0. n is,
furthermore, uniquely determined by &. We call # the normal form of ¢ under K.
Consider now Q as a subdomain of its compact dual M, by Borel Embedding. Write
G for the identity component of the automorphism group of M and P C G for the iso-
tropy subgroup at 0. G D G, is a complexification of G,. Consider the action of P on
PT,(M). Let L be a Levi subgroup of P, which can be taken to be a complexification
of K. We write L := K©. We have P = K€ . M—, where M~ is the unipotent radical of
P. M~ is Abelian and acts trivially on 7,,(M) = T,(Q2). Let H, be the identity compo-
nent of the automorphism group of the polydisk D, H, C G,. Then, H, = SU(1, 1)".
Its complexification H inside G, H = SL(2, C)’, acts transitively on a polysphere
Y = [P such that (D; X), D C Z, is a dual pair of Hermitian symmetric spaces. Since
H contains C* x --- x C* (r times), any n = (1, ..., ,) in the normal form under K
must be equivalent under K© to a vector of the form y® = (1,...1;0,...0), with
exactly the first k& entries being equal to 1, where k is the rank of #. In particular,
two nonzero vectors of the same rank in T,(Q) = T,(M) are equivalent under K©
and, hence, under P. Moreover, using the action of (C*)", for k < r any nonzero vec-
tor of rank k is a limit of vectors of rank k + 1. We note furthermore, that nonzero
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vectors of different rank cannot be equivalent under P, i.e., under K. To see this,
denote by g the Lie algebra of G, etc. and write ¢ = m™ + f¢ + m~ for the Harish-
Chandra decomposition of g, where m* is identified with T,(M). For & € T,(M) let
0(¢) be the dimension of all { € m™ such that [£, {] = 0. Then, J(¢) is invariant under
the action of K€ on ¢. Writing J; for d(#®) one deduces readily from root space
decompositions that 6; > d, > --- > §, = 0, which shows that vectors of different
rank cannot be K C-invariant. (The relations on J; can be deduced from the fact that
a* is spanned by root vectors belonging to a maximal set of strongly orthogonal posi-
tive roots with respect to some Cartan subalgebra of g lying in fc.) We note that any
n € T,(X) of rank k is tangent to a rational curve C C X of degree k with respect to the
positive generator of Pic(M) = Z.

For a nonzero n € T,(Q2) of rank k we will also say that its projectivization

[n] € PT,(Q]) is of rank k. In this article we will say that u or [i] is generic if and only
if  is of rank r. For the action of P on PT,(M) it follows from the above that there
are precisely r orbits Oy, 1 < k < r, such that the topological closures O form an
ascending chain of subvarieties of P7,(M), with O, = PT,(M). Here O; = P[]
for any [n] € PT,(M) of rank k. Given any n of rank k, k < r, the closure of the
G-orbit of its projectivization [¢] defines a holomorphic bundle of projective subvarie-
ties Sp(M)CP Ty, called the kth characteristic bundle, where Sy ,(M) = Oy. The
restrictions Si(Q) to Q are invariant under the action of G,. Their quotients under
I' € G, will be denoted by Si(X). In this article we will be concerned solely with
the case of k =r — 1. We call §,_1(X) the highest characteristic bundle. It consists
precisely of projectivizations of nongeneric vectors 7.
(1.2) Write Sy for S, 1(M), etc. We say that M, Q and X are of characteristic codi-
mension ¢, whenever Sy C PT), is of codimension ¢g. We consider henceforth, the
case when ¢ = 1. Then, Sy, C PT), defines a divisor line bundle, to be denoted by
[Su]. Let n: PTy —> M be the canonical projection and L be the tautological line
bundle over PT),. We adopt the convention for the tautological line bundle so that
the restriction of L to PT,(M) is negative. The Picard group of PT), is a free Abelian
group of rank 2, generated by L and 7*(O(1)), where O(1) denotes the positive gen-
erator of Pic(M).

Let m be the degree Sys, as a subvariety of PT,(M). Then L ® [Sy] is a holo-
morphic line bundle which is trivial on every fiber of n: PT,, —> M. It follows that
L ®[Sy] = n*O) for some integer £. In other words, [Sy] = L™ ® n*O(¢). Let
now s be a nontrivial holomorphic section of L™ ® n*((£) whose zero set is pre-
cisely Sy, of multiplicity 1. s is equivalent to a holomorphic section ¢ € I'(M,
S"T% @ O)), ie., a twisted symmetric holomorphic covariant tensor. Let
p: G' — G be the universal cover of the simple Lie group G. The action of G on
[PT) lifts in an obvious way to the action of G'. Both $”'T%, and 7n*O({) are homo-
geneous vector bundles on M, so that there is a well-defined holomorphic action of
G’ on S"T7%, ® O(f), compatible with the action of G’ on PTy. As Syy C PT)yis a
G’-invariant cycle, for any y € G', y*¢ must be a nonzero multiple of . We write
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y*o = ¢y0. Thus, ¢: G’ —> C* is a homomorphism. Since G’ is simple we conclude
that ¢ is trivial, i.e., o is a G'-invariant section.

Recall that ¥ C M denotes a polysphere of maximal dimension, isomorphic to P},
r = rank(M), as given by the Polysphere Theorem. ¥ has the homological property
that each [P, factor represents the positive generator of H,(M, Z) = Z. Furthermore,
it is totally geodesic with respect to some canonical Kéhler metric g. defining a Her-
mitian symmetric structure on M. We write G, for the identity component of the iso-
metry group of (M, g.). Recall that #® = (1,...,1;0,...,0), with precisely the first
k entries equal to 1, with respect to coordinates given by £ = P}. Then n® is tangent
to a rational curve Cy of degree k in M totally geodesic with respect to g.. For k =r
we obtain a totally-geodesic rational curve C, such that the holomorphic tangent
space at each point is generated by a generic vector. This means that the tautological
lifting G, is disjoint from the highest characteristic bundle Sy,.

We now measure the holomorphic section s € I'(PTy, L™ ® n*O(£)) by the Her-
mitian metric induced by g., denoting the pointwise norms by ||s||.. The Hermitian
metric on the tautological line bundle L induced by g, will be denoted by &., while
the induced Hermitian metric on O(1) will be denoted by /.. Here the choice of g,
induces a Hermitian metric on the anticanonical line bundle K;j and, hence, on
O(1) by taking roots from the isomorphism K,; = O(a) for some positive integer a.
Then, ||s]|. is invariant under the isometry group G. of (M, g.). By the Poincaré—
Lelong equation we have

V=189 log|Isll, = —mei(L, &) + Ler(O(1), he) + [Sul, (%)

where [S),] denotes here the closed positive (1,1)-current defined by the reduced irre-
ducible subvariety Sy; C PT)y,.
Since C, NSy, =@, C, is the orbit under some compact subgroup H.C G,

H, = PSU(2), and ||s||. is invariant under G., hence constant on C,, we conclude
from the Poincaré—Lelong equation that

—mci (L, §r)|a + KC](TE*O(I), TC*hC)'C‘,. =0. (*/)

In particular, once m, the degree of Sy, in PT,(M), is known, ¢ is completely deter-
mined by restricting to a totally-geodesic holomorphic curve in (M, g.) of maximal
degree.

(1.3) We are now ready to formulate the characterization of compact totally-geodesic
holomorphic curves of maximal Gaussian curvature on quotients of bounded sym-
metric domains of characteristic codimension 1. Such bounded symmetric domains
abound. We state here without proof a complete listing of these domains which
follows by a case-by-case checking from the classification of irreducible bounded
symmetric domains.

PROPOSITION 1. Let Q be an irreducible bounded symmetric domain of rank r > 1.
Then Q is of characteristic codimension q(Q) = 1 if and only if it belongs to one of the
following classes:
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(1) Qof Type 1,,,,, withm=n > 1;

(2) Q of Type 11, with n even, n = 4,

(3) Qof type N, n = 2;

4) Qof Type IV,,,n = 3; or

(5) Q of Type VI (the 27-dimensional exceptional domain pertaining to E7).

Here Case (3) consists of bounded symmetric domains biholomorphic to the Siegel
upper-half-plane via the Cayley transform. Case (4) consists of domains dual to the
hyperquadric Q,,n > 3. A description of the corresponding hypersurface S, C
PT,(Q) will be given in the proof of Proposition 3 in (2.2).

2. Characterization of Totally-Geodesic Holomorphic Curves of Maximal
Gaussian Curvature in the Case of Characteristic Codimension 1

(2.1) Recall that Q is an irreducible bounded symmetric domain of rank r > 2 and of
characteristic codimension 1, embedded into its compact dual M, by Borel Embed-
ding. Let g, be a canonical metric on Q, and g, be a canonical metric on M, so that
((Q, g,); (M, g.)) constitutes a dual pair of Riemannian symmetric spaces. Thus, G, is
a noncompact real form of G, G, is a compact real form of G, and g,|7,(q) agrees with
gelr,(m)» SO that K acts as a group of holomorphic isometries both on Q and on the
compact dual M. The canonical metric g, on Q induces a canonical Hermitian metric
g, on Ll|g. For the holomorphic line bundle O(1), to avoid confusion we denote its
restriction to Q by E. Denoting by G/, = p~(G,) C G, etc., we have a natural action
of G/ on E, so that, denoting by /, the Hermitian metric on E induced by g,, G, acts
isometrically on (E, h,).

Recall that D c X, D= A’, is a totally-geodesic polydisk in (Q,g,). For the
totally-geodesic rational curve C, C £ C M of degree k, 1 < k < r, the open subset
A = Cr. NQ gives a totally-geodesic holomorphic disk in (Q, g,), said to be of type k.
For k = r we have the dual relation about Chern forms on the tautological lifting A,,,
as follows:

—mc (L, §0)|A, + L) (¥ E, n*ho)ur = 0.

The latter identity is related to the dual case of C, as follows. (A,, g,14,) is invariant
under a group of isometries H, C G,, H, = PSU(1, 1) and dual to H, = PSU(2). In
both identities the closed (1,1) forms are invariant under H, resp. H. so that it suf-
fices to check at the origin 0. Let 7. : C, — PT)y|¢, be the holomorphic section which
defines the tautological lifting, and denote its restriction to A, by t,. Then, tic;(L, g.)
is the Gauss curvature form of (C,, g.l¢,), while t}ci(L, g,) is the Gauss curvature
form of (A, g,15,)- At the origin o the two curvature forms are opposite to each
other, by duality. For the same reason the curvature form of (O(1), h.) on M and
(E, h,) on Q are opposite to each other. (The ath power gives the Hermitian anti-
canonical line bundles with opposite curvature forms at the origin.)
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For irreducible bounded symmetric domains of rank » > 2 and characteristic codi-
mension 1 as given in the listing in (1.3), Proposition 1, we prove the following
theorem on characterizing compact totally-geodesic holomorphic curves of type r.

THEOREM 1. Let Q be an irreducible bounded symmetric domain of rank r = 2 and
of characteristic codimension 1. Let T be a torsion-free discrete group of biholomorphic
automorphisms of Q, and write X == Q/T". Let C C X be a compact smooth holo-
morphic curve such that for any x € C, the holomorphic tangent space Ty(C) is spanned
by a generic tangent vector. Then, C is totally geodesic in X.

Proof. Replacing I' by some subgroup of finite index, we may assume without
loss of generality that the homogeneous holomorphic line bundle £ dual to O(1) on
M descends to a holomorphic line bundle on X. (This assumption is just for con-
venience in notations.) We will denote the Hermitian holomorphic line bundles
obtained by descent by the same notations (L, g,) resp. (E, h,) on PTy resp. X, etc.
Let C be the tautological lifting of C to PTy. From the assumption, for any x € C,
T,(C) = Cp for some generic tangent vector 7, so that CNSy =9. Thus, by the
Poincaré—Lelong equation we have

V=109 log Isll, = —mei(L, &) + Ler(n* E, wh,) + [Sx]. ()

Restricting to the compact holomorphic curve ¢ satisfying CNSy=4¢,and integrat-
ing over C, we have

[ —mer(L.g,) + €en(n E, 7 hy) = 0, B
C

which is the same as

/(‘ —mci(Te, 8olc) + Lei(E, hy) = 0. 3)

For convenience we normalize our choice of canonical metric g, (a constant multiple
of the Bergman metric) to be such that the Gaussian curvature of (A,, g,|A,) is iden-
tically —1. Denote by R the curvature tensor of (Q,g,). We note that for any
n € To(X) C T,(Q) of unit length,

1
n==01,---1,), Rnﬁnﬁ:_r2|’7k|4< —r-;:—l,
k

with equality if and only if || = - - = |,| = 1/4/r. This is precisely the case if and
only if # is tangent to some totally-geodesic holomorphic disk of type k.

We denote by w the Kéhler form of (Q, g,) and also the induced Kéhler form on
X. Any local holomorphic curve on (X, g,) is of strictly negative Gaussian curvature.
In the integral identity on C, we can write the first term as —mxcw, where k¢ denotes
the Gaussian curvature of (X,, g,), and the second term as —cw for some ¢ > 0. Thus

L—Mch = C/CC!). (4)
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The positive constant ¢ is uniquely determined by the fact that —mxa, = ¢;i.e.,c =m
under our normalization. By the Gauss equation for submanifolds, for any x € X, we
have xc(x) = Ryii — llo(x)] |> where € T(C) is of unit length, X denotes the second
fundamental form of C in X, || -|| denotes the norm induced by g,. As remarked,
Ryigi < — 1, so that k¢ < —1. Plugging in (4) we see immediately that

/—m;cca) = m/ w, Q)
c c

unless k¢ = —1, and the second fundamental form ¢ vanishes identically on C, i.e.,
unless C is a totally-geodesic holomorphic curve of type r. The proof of Theorem 1
is complete. OJ

Remarks. Theorem 1 for domains Q of types I, II and III is a special case of
Eyssidieux [El,Proposition 9.3.6], by a method involving variations of Hodge
structures and Gauss-Manin connections. Here the proof applies to all irreducible
domains Q of characteristic codimension 1 by a uniform intersection-theoretic
method.

The following proposition shows that Theorem 1 is in a sense optimal.

PROPOSITION 2. Let Q be an irreducible bounded symmetric domain of dimension
=2 other than those listed in Proposition 1. Then, there exists a torsion-free discrete
subgroup T of biholomorphic automorphisms of Q such that on the quotient manifold
X :=Q/T, there is a nongeodesic compact smooth holomorphic curve C C X whose
tangent spaces are spanned by generic vectors.

Proof. When Q is of rank 1, i.e., biholomorphic to the unit ball B" in C", any
nonzero tangent vector is of rank 1 and, hence, generic. Thus, for n > 2 and for any
choice of I', any nongeodesic compact smooth holomorphic curve C C X :=Q/I"
gives an example as desired. For Q of rank > 2 and of characteristic codimension
>2, from the listing as given in (1.3) Proposition 1, we have the following possible
cases:

(1) Qis of Type I, with m > n > 1;

(2) Qs of Type 1I,, with n odd, n = 5;
(3) Qs of Type V, pertaining to Ej.

In Case (1), in standard notations Q = Dim, and there exists a totally-geodesic com-
plex subdomain D c D! . such that D = A" x B" ! m —n+1 > 2, and such
that all nonzero vectors 'tangent to D are generic, i.c., of rank n. We may choose
the torsion-free discrete subgroup I' C Aut(Q) to be such that each y € ' fixes D
as a set, and that the restrictions y|, gives a discrete subgroup of the form
' xI'yx---xT,_y xT,, where each I';Cc Aut(A); 1<i<n—1; and T, C
Aut(B"~"*1) are torsion-free cocompact discrete subgroups. We are in fact free to
choose I';, 1 <i<n with the latter property. Choose now any I, and let

https://doi.org/10.1023/A:1016505024858 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016505024858

298 NGAIMING MOK

C, C BT, be a nongeodesic compact smooth holomorphic curve. Choose now
IN=---=TI, such that A/Ty=---=A/T,-1=C,. Then, D/T =C"'x
B'~"*1/T", contains a copy of C?, whose diagonal C is an example of a nongeodesic
smooth compact holomorphic curve whose tangent space at each point is generated
by a generic vector.

In general, for an irreduible bounded symmetric domain Q of rank r > 2, there
exists a (totally-geodesic) bounded symmetric subdomain D C Q such that D =
A"~' ® B, where s is the dimension of rank-1 boundary components of Q (cf. [W]).
By the same proof as in [M1, Chapter 6, Proposition 4, p.105-6], s is the same as the
codimension ¢ of §,_; , =S, in PT,(2). Thus the preceding argument yields exam-
ples of curves C c Q/I" with the desired properties whenever ¢ = s > 1. We note from

[W] that s = 3 for Case (2); Q = DY _ : while s = 5 for Case (3), Q = DV. O
2m+1

In the proof of Theorem 1, where [S] = L™ @ n*E*, the precise values of the posi-
tive integers m and ¢ were unimportant. There we derived the curvature inequality
ke < —1 on Gauss curvatures and showed that it is sharp if and only if C is totally
geodesic and of type r = rank(Q2). We have formulated the proof to show that the
inequality, which is local, and its sharpness follow by duality from the existence of
totally-geodesic (rational) curves of degree r on the compact dual M of Q. Nonethe-
less, it is interesting to note the following uniform description of [S], which involves
case-by-case checking.

PROPOSITION 3. Let Q be an irreducible bounded symmetric domain of rank r = 2
and of characteristic codimension 1. Let T be a torsion-free discrete group of biholo-
morphic automorphisms Q of X := Q/T. Assume furthermore, that the negative Her-
mitian holomorphic line bundle (E, h,) on Q, which is dual to (O(1), h.) on M, descends
to X (which is always the case at the expense of passing to a subgroup of finite index
of I'). Let S C PTy be the highest characteristic bundle on X. Denote by L the tau-
tological line bundle on PTy. Then, the divisor line bundle [S] on PTy is isomorphic to
the holomorphic line bundle L™ ® m*E”.

Proof. From the proof of Theorem 1 and in the notations used there it remains to
prove that S, C PT,(Q) is of degree m exactly equal to the rank r of Q, and that
¢ = 2. We use the complete listing of cases as given in Proposition 1. For Case (4),
S, C PT,(Q) corresponds to the zero locus of a nondegenerate symmetric bilinear
form on T,(Q). It is, hence, of degree 2 equal to the rank of Q = D!V, n > 3. For
Cases (1), (2) and (3), identifying T,(Q2) as a vector space of n-by-n matrices as usual
S, CPT,(Q) corresponds set-theoretically to the zero-locus of the determinant,
which gives an element of I'(P7,(Q2), L™"). For Case (1) consisting of Type-I
domains I, ,, the determinant vanishes simply at a generic point of S,, so that the
degree of S, is precisely n, which is the same as the rank r. The same is true for Case
(3) consisting of Type-III domains D!, n > 3, of rank n, with 7,(Q) identified with
the vector space of symmetric n-by-n matrices. In the remaining Case (2) consisting
of Type-II domains D!, n even, of rank n/2, with T,(Q) identified with the vector
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space of skew-symmetric n-by-n matrices, the determinant vanishes to the second
order at a generic point of S,. This can be seen by expressing the determinant of a
skew-symmetric n-by-n matrix, n even, as the square of the Pfaffian, which itself
vanishes simply at a generic point of S,. Thus, the reduced subvariety S, C PT,(Q)
is of degree n/2 = rank(Q).

For Case (5), where Q is the 27-dimensional exceptional bounded symmetric
domain DY!, of rank 3, by [Za, Theorem 4.8, p.90] the tangent space T,(Q) and its
(higher) characteristic vectors admit an algebraic description, as follows. Let I be
the Jordan algebra of Hermitian (3 x 3)-matrices over the Cayley numbers O, of
complex dimension 3(dim¢O + 1) =3(8 + 1) = 27. Then, T,(Q) can be identified
with  in such a way that the second characteristic variety S>, =S, C PT,(Q) is
precisely the cubic hypersurface corresponding to matrices 4 of rank <2, defined
by the cubic polynomial det(4) = 0. Thus, m = r = 3 in this case. This completes
the proof that m = r in all cases.

It remains to show that £ = 2. £ can be determined using the compact dual (M, g.)
by means of [(1.2), ()], which results from the Poincaré—Lelong equation. Recall in
the notations there

—mei(L, &)l g + Lei(n*O(1), n*he)l g = 0. ()
Integrating over C, we have
m(2g(C,) — 2) + £deg(C,) = 0. @)

Since C, C X is a rational curve of degree r and we have established m = r, it follows
from (1) that

—2r+4r=0; ie.,B £=2, 2
as desired. The proof of Proposition 3 is complete. O

(2.3) An immediate differential-geometric consequence of Theorem 1 is the following
optimal effective pinching theorem.

THEOREM 2. Let Q be an irreducible bounded symmetric domain of rank r = 2 and
of characteristic codimension 1. Let I be a torsion-free discrete group of biholomorphic
automorphisms of Q and write X := Q/T". Normalize the canonical Kdihler metric on Q
such that the Gaussian curvature of a totally-geodesic holomorphic disk of type r is
equal to —1. Let C C X be a compact smooth holomorphic curve such that for any
x € C, the Gaussian curvature K(x) satisfies the pinching condition

—<1 +L> < K(x) (< D).
r—1

Then, C is a totally-geodesic holomorphic curve of maximal Gaussian curvature.
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The proof of Theorem 2, which we omit, is obtained by a curvature computation
analogous to the proof of [EM, (2.2), Theorem 2, p. 91].

Remarks. Under our normalization the Gaussian curvature of a totally-geodesic
holomorphic disk Ay of type k is —(r/k). Since there exist torsion-free discrete sub-
groups I' C Aut(Q2) on which there are compact totally-geodesic holomorphic curves
of type r — 1, Theorem 2 is optimal. A simple example of such a I" can be obtained
as follows. Let D C Q be a totally-geodesic polydisk of maximal dimension, D = A",
We have an embedding i: PSU(1, 1) = Aut,(D) <> Aut,(Q). Let ', c PSU(1, 1) be
a torsion-free cocompact discrete subgroup and I' = i(I")) C Aut,(€Q2). Then, writing
C=A/T,, we have D/T" = (A/T,) = C" C X =Q/T and there exists on ", hence
on X, a compact totally-geodesic holomorphic curve of type k for any k, 1 < k < r.

3. Generic Finiteness of Holomorphic Mappings onto Compact Complex
Manifolds Carrying Continuous Complex Finsler Metrics of
Seminegative Curvature

(3.1) Let X be a projective manifold uniformized by an irreducible bounded symmet-
ric domain of rank > 2. In [M1, 2] we prove that up to normalizing constants, the
canonical Kédhler metric on X is the unique Hermitian metric of seminegative curva-
ture in the sense of Griffiths. From this metric rigidity theorem it follows that any
nontrivial holomorphic mapping f of X into a Hermitian manifold Z of seminegative
curvature in the sense of Griffiths is necessarily an isometric immersion totally-
geodesic with respect to the Hermitian connection on Z. One motivation to develop
intersection theory on PTy is to study holomorphic maps for target complex mani-
folds Z satisfying much weaker conditions of seminegativity. As a consequence of
Theorem 1 and [M1, 2], we establish the following result on holomorphic mappings
onto compact complex manifolds carrying continuous complex Finsler metrics of
seminegative curvature. Here a complex Finsler metric is equivalently a Hermitian
metric on the tautological line bundle of the projectivization PTy of the holo-
morphic tangent bundle Ty. For a Hermitian line bundle (L, #) where % is only
assumed to be continuous, we say that it is of seminegative curvature if and only
if for any local holomorphic basis e of L, A(e, €) is given by e? for some continuous
plurisubharmonic function ¢.

THEOREM 3. Let Q be an irreducible bounded symmetric domain of rank r = 2 and
of characteristic codimension 1. Let T be a torsion-free cocompact discrete group of
biholomorphic automorphisms of Q and write X := Q/T". Let Z be a complex manifold
carrying a continuous complex Finsler metric of seminegative curvature. Then, any
nonconstant holomorphic map f . X — Z is necessarily an immersion at a generic point.

We note that for a bounded domain D on a Stein manifold, the Carathéodory
metric is a continuous complex Finsler metric of seminegative curvature. As a con-
sequence of Theorem 3, we have
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COROLLARY 1. Let Q be an n-dimensional irreducible bounded symmetric domain
of rank r = 2 and of characteristic codimension 1. Let T be a torsion-free cocompact
discrete group of biholomorphic automorphisms of Q and write X == Q/T". Let Z be a
compact complex manifold of dimension m < n carrying a continuous complex Finsler
metric of seminegative curvature. Then, there exists no nontrivial holomorphic mapping
from X into Z.

For the proof of Theorem 3 we will need the proof of Hermitian metric rigidity
of Mok [M1, 2]. There are two modifications. First of all, the complex Finsler
metric we have is assumed only to be continuous and of seminegative curvature
in the sense of currents. Secondly, in place of integrating over the first character-
istic bundle as we did in both [M1, 2] we need to consider instead the highest char-
acteristic bundle. For the adaptation it is more convenient to make use of the later
proof in [M2], where we employed Moore’s Ergodicity Theorem. For easy refer-
ence we state

MOORE’S ERGODICITY THEOREM (cf. Zimmer [Z, Thm.(2.2.6), p.19]). Let
G be a simple Lie group and T be a lattice on G, i.e., U\ G is of finite volume in the left
invariant Haar measure. Suppose H C G is a closed subgroup. Consider the action of H
on T'\G by multiplication on the right. Then, H acts ergodically if and only if H is
noncompact.

For the proof of Theorem 3 we establish first of all the following rigidity result
which is valid for an irreducible bounded symmetric domain Q of rank >2 without
any assumption on the characteristic codimension.

PROPOSITION 3. Let Q be an irreducible bounded symmetric domain of rank r = 2.
Let T be a torsion-free cocompact discrete group of biholomorphic automorphisms of
Q, X :=Q/T. Let Z be a complex manifold which admits a continuous complex Finsler
metric of seminegative curvature. Let f- X — Z be a nonconstant holomorphic map-
ping. Then, for any x € X, and any nonzero tangent vector n € T (X) of rank <r,
we have df(n) # 0.

Proof. We adapt the proof of [M2, p.113ff]. Consider first of all the case when Q
is of rank 2. In this case the highest characteristic bundle S is the same as the
characteristic bundle used there. Denote by n: PTy — X the canonical projection.
Fix a canonical Kédhler metric g on X and write w for its Kéhler form. Write g for the
canonical Hermitian metric on the tautological line bundle L induced by g. The
closed (1,1)-form v=—c|(L,g)+n*w on PTy is strictly positive. Let p be
the complex dimension of S,, ¢ = n — 1 — p the codimension of S, in PT,(Q), i.e.,q is
the characteristic codimension of Q. For [o] € S,, let Ny C Tiy(PT(X)) be the
kernel of —¢i(L, )[] = 0 on T»(PT(X)). By [M1], N is of complex dimension ¢,
and Ny C Tiy(S), ie., Ny = Ker(—ci(L, g)[x]ls). Then, on the characteristic
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bundle S we have
f —er(Ly ) A (= (L, G Ay
S

- /S (—er(L. g A =0, 0

where for the continuous complex Finsler metric # of seminegative curvature,
—c1(L, h) is understood to be the closed positive (1, 1) current, which is —1 /27 times
the curvature current. Thus, —c;(L, &) has coefficients which are measures. The inte-
grand of the left-hand side of (1) is then a nonnegative measure, and Equation (1)
forces the identical vanishing

—ci(L,h) A erl(L,g)" % '=0 onS. )

Since the sum of two nonnegative log-plurisubharmonic functions remain log-pluri-
subharmonic, g + / is a continuous complex Finsler metric of seminegative curva-
ture, and (2) remains valid with / replaced by g + h. Write now g + h = ¢“g. Then,

A ~ V=1
c(L,g+h)=ci(L,g) —733%

and (2) gives the identity

V=100u A (—c1(L, $))" ' =0 on S, (3)

as currents. Since u is almost plurisubharmonic, du is integrable, and coefficients of
ddu are measures. By local smoothing and partition of unity there exists a sequence
(uy) of smooth functions such that u; converges to u uniformly, duy converges to du
in L' and 8duy converges to ddu as distributions of order 0 (i.e., their coefficients con-

verge as measures). Write on S
T = ~=1 due A (—cr(L, )47, @
T=~—=1unEc(L, )y 2"

Then dTj converges to d7 = 0 as distributions of order 0. Consider now

V=1d(w; Ty) = v—1dug A Ty + vV —1u; dTy. (5)

Integrating over S we conclude that

/ N=Tldug AT AV = / V=1 0w A duge A (er (L, )" 2 avi 0.
S S

(6)
Consider now the Hermitian bilinear form B on smooth (1, 0)-forms ¢ on S given by
B = [V ToAbACaL o ™)

S

B s positive semi-definite. Note that B(¢, y) can also be defined for ¢ of class L' and
Y smooth. From (6) we have B(dug, dux) — 0. Fix any smooth (1,0) form { on S.
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By the Cauchy-Schwarz inequality B(duy, W)> < B(duy, dur)B(p, ). By (6) B(duy,
du) — 0 as k — oo. It follows that B(duy, ) — 0 as k — oo. Since duy — ou as dis-
tributions we have B(du, ) = 0 for any smooth .

For each [«] € S, recall that N, C Tiy(S). Since —ci(L, g) = 0 and, hence, its
restriction —c¢(L, §)|s = 0 is closed, the assignment [«] — Re N, defines a smooth
integrable distribution on S of real rank 2¢ whose integral leaves are ¢-dimensional
complex submanifolds. The fact that B(du, /) = 0 for any smooth y means that du,
regarded as an L! section of Hom(7(X), C), vanishes almost everywhere on the sub-
bundle N. It follows that the continuous function u is constant on almost every local
leaf and, hence, on every leaf of N.

The leaves of N can be described as follows. For any [n] € PT,(Q) let
N, ={{eT,(Q) = R,zz =0} be the null-space of 5. For any [¢] € S, we have
dimegN, = q. Let A C Q be the unique minimal disk passing through o such that
T,(A) = Coa. Then, there exists a unique totally-geodesic bounded symmetric domain
Q, passing through o such that 7,(Q,) = N,. Moreover, Ca + N, is tangent to a
unique totally-geodesic (¢ + 1)-dimensional subdomain which can be identified with
A x Q,. Identify {0} x Q, with Q,. For every z € Q, write [a(z)] := PT.(A x {z})
€ 5.(Q). As z runs over Q,, this defines a lifting of Q, to a complex submanifold
F c 8(Q) which is precisely the leaf of the lifting of N to S(Q) passing through
[«]. Note that G, acts transitively on S. Let H C G, be the closed subgroup which
fixes Q, as a set. The leaf space of the foliation A/ on S can be identified as the homo-
geneous space G,/H.

Recall that the continuous function u is constant on every leaf of /' on S. Note
that S(Q) c PT(Q) is homogeneous under the action of G, = Aut,(Q). Write
S(Q) =G,/Kp, for Ky € K the isotropy subgroup of any [o] €S,. Then,
S =T'\G,/K}y. Lift u to a continuous function # on I'\ G,,. Then, # is invariant under
multiplication on the right by elements of H, which is noncompact. By Moore’s
Ergodicity Theorem, # is constant on I'\G,, hence u is constant on S. Let now 0
be a continuous complex Finsler metric on Z of seminegative curvature, and /z be
f*0. h is possibly degenerate but the preceding discussion still applies to
g+ h=e¢"g. Now u([a]) = 1 if and only if A([«]) = 0, i.e., df{x) = 0. Since u is con-
stant on S, df(a,) =0 for some [o,] € S implies df(z) =0 for any [¢] € S. As
Sy C PT(X) is linearly nondegenerate at every point x € X, we conclude that
df=0, ie., fis a constant mapping, contradicting the hypothesis. This proves
Proposition 3 for the case of rank 2.

We now adapt the proof to the case of rank r > 2. Let now S = S,_| be the highest
characteristic bundle. We use the same integral formula as (1), with ¢ denoting
the characteristic codimension of Q. For r > 2, S € PT,(X) is singular and the inte-
gration is performed over the smooth part Reg(S) of S. The formula (1) concerns
integrals of restrictions of smooth forms on P7(X), and Stokes” Theorem can be jus-
tified by passing to a desingularization p: S—>Sc PT(X) and pulling back smooth
differential forms on P7(X). For [y] € S, there is a unique totally-geodesic (r — 1)-
dimensional polydisk D C Q passing through o such that y € T,(D). Note that
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dimc®N, = ¢q. Then, T,(D)+ N, is tangent to a unique bounded symmetric sub-
domain which can be identified with D x Q, for some g-dimensional bounded sym-
metric subdomain Q, C Q such that 7,(Q,) = N,. For the distribution A on Reg(S)
given by N, = Ker(ei(L, 9)[y]ls), its leaves F are similarly described as before in
terms of Q,.

The same argument as in the case of rank 2 shows that for u defined by
g+ /*0 = ¢"g, u is constant on the G,-orbit of any [y] € Reg(S). We note however,
that for r > 2, Reg(S) is not homogeneous under the action of G,.

Suppose now df{(y) =0 for some [y] € S. Lift f: X — Z to f: Q — Z. The set
D= Ker[df~ 1N Reg(S(QY)) is complex-analytic. On the other hand, it corresponds to
the subset of Reg(S(Q)) on which the lifting & of u takes the value 1. The complex-
analytic subvariety D C Reg(S(Q)) is therefore, nonempty and G,-invariant. Its fiber
over each z € Q must therefore be invariant under the complexification K¢ of the
isotropy subgroup K, C G, at z. Since Kﬂ: acts transitively on Reg(S.(Q2)) we con-
clude that D = Reg(S5(Q)), so that again f and, hence, /: X — Z is a constant map-
ping, contradicting with the hypothesis. The proof of Proposition 3 is complete.  []

We are now ready to apply Proposition 3 to the special case of characteristic co-
dimension 1.

Proof of Theorem 3. Let now X = Q/I" where Q is of characteristic codimension 1
with T torsion-free and cocompact, and f: X — Z be a nonconstant holomorphic
mapping into a complex manifold Z equipped with a continuous complex Finsler
metric 6 of seminegative curvature (in the generalized sense). Suppose /: X — Z is of
maximal rank < dimgX. Then, for a generic point y of f{X) := Y, the fiber f~!(»)
is a smooth p-dimensional manifold for some p > 1, p =dimcX —dimcY. By
Proposition 3, df(y) # 0 for any nonzero tangent vector v, [y] € S. For x € X, let F*
be the fiber f~!(f(x)). For x € X generic, PT(F*) = P”~! must be disjoint from
Sy C PT,. Since S, € PT\(X) is a hypersurface, we must have p = 1, so that each
irreducible component F3 of F* must lift tautologically to ﬁz C PT(X) such that
ﬁ;f NS =§. By Theorem 1, F'§ C X is a compact totally-geodesic holomorphic curve
of type r. For such a compact holomorphic curve the normal bundle N fy x is strictly
negative. Varying x we obtain positive-dimensional holomorphic families of such
compact holomorphic curves. On the other hand, since Npyx is strictly negative,
F7 C Xis an exceptional curve, and must be the unique compact holomorphic curve
on some tubular neighborhood U of F} in X, a plain contradiction. This means that
f: X — Z must be of maximal rank = dim¢ X at some point, i.e., fis a holomorphic
immersion at a generic point, as desired. O

4. Characterization of Certain Totally-Geodesic Submanifolds of Bounded
Symmetric Domains Dual to the Hyperquadric in Terms of Quadric Structures

(4.1) For the bounded symmetric domains Q of Type IV,,, n > 3, dual to hyperquad-
rics, there is on Q an invariant quadric structure, i.e., an invariant holomorphic
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nondegenerate symmetric 2-tensor with twisted coefficients. Theorem 1 in the special
case of Type-IV domains says that compact totally-geodesic holomorphic curves of
maximal Gaussian curvature on quotients of Q are characterized by the nondegene-
racy of the restriction of the canonical quadric structure. This leads naturally to the
question of characterizing higher-dimensional totally-geodesic complex submani-
folds in terms of restrictions of the quadric structure. We answer this in the affirma-
tive, using for higher-dimensional submanifolds results from Hermitian metric
rigidity of [M1, 2] and from the characterization of compact Kéhler—Einstein mani-
folds with G-structures modeled on irreducible bounded symmetric domains of rank
> 2 by Kobayashi and Ochiai [KO]. We prove

THEOREM 4. Let Div, n = 3, be the irreducible bounded symmetric domain dual to
the hyperquadric Q,,n = 3. Let T" be a torsion-free discrete group of biholomorphic
automorphisms of DIV and write X :== DT. Let S C X be a compact complex sub-
manifold of any dimension d, 1 < d < n, such that for any x € C, the restriction of the
canonical quadric structure on DV is nondegenerate. Then, S is totally geodesic in X.

Proof. For the canonical quadric structure Q on X, and for any nonzero vector
ne Ty(X), xeX, Qn,n =0 if and only if [y] € Sy. Hence, for S C X of dimension
d=1, Qlg is nondegenerate if and only if SNS= ¢, so that S C X is a totally-
geodesic holomorphic curve of type 2, by Theorem 1. For d > 2 we will make use of
Kaéhler—Einstein metrics and quadric structures. Any complex submanifold S € X
has ample canonical bundle, so that there must exist a Kidhler—Einstein metric / of
negative Ricci curvature, by Aubin [A] and Yau [Y]. Consider first the case d > 3,
in which DYV is irreducible. By [KO], the quadric structure Qg on the Kéhler—
Einstein manifold (S, 4) must be integrable, so that S is uniformized by D!Y. Write
S = DT, for some torsion-free cocompact discrete subgroup I', C Aut(DY). By
the Hermitian metric rigidity theorem of Mok [M1, 2], the holomorphic embedding
S=DYT,< X = DIVYT must be totally-geodesic, i.e., S C X is a totally-geodesic
holomorphic cycle, as desired. OJ

Consider finally the case d = 2. Note that D is isomorphic to the bidisk. The
assumption that Q| is nondegenerate means that for any x € S, PT,(S) N Sy con-
sists of two distinct simple points. It follows that 7(S) = L; & L, is the direct sum
of two holomorphic line bundles L; and L,. Since the Hermitian holomorphic vector
bundle (7(S), &) is Hermitian—Einstein, the holomorphic direct sum L; & L, must
also be an isometric direct sum of Hermitian holomorphic line bundles such that
the direct summands L, L, C 7(S) are parallel holomorphic subbundles (cf. Siu
[Si, proof of Proposition (1.6), pp.19-20]). This gives a local de Rham decomposition
of S as a product of two Riemann surfaces of constant negative Gaussian curvature,
implying that S is uniformized by the bidisk A>. Thus, S = A?/T, for some torsion-
free cocompact discrete subgroup I', C Aut(A?).

It remains to show that the holomorphic embedding f: A*/T, < DIV/T = X,
A(A?/T,) = S, must be totally geodesic. Lift f: A*/T, — X to F: A* — D!V and
use Euclidean coordinates (z,w) for A> =A x A. Denote by g the canonical
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Kiéhler-Einstein metric on DIV, From integral formulas as in the proof of Proposi-
tion 3 we have Rf@ﬁ =0 for u, = de~(8/8z), 1, = dF,(9/dw) at a point p € A?, where
RS denote the curvature tensor of (S, glg). Write C:= F(A x {p,}) for any p; € A.
Then, n|c is a nowhere zero holomorphic section of (DY) over C. From
Riﬁnﬁ = 0 it follows that the holomorphic line subbundle L spanned by # is parallel
on C. To proceed we prove

LEMMA 1. Let C C DY be a (local) holomorphic curve such that T,(C) is spanned
by a characteristic vector at any p € C. Suppose there exists on C a parallel holo-
morphic line subbundle L spanned at each point p € C by a characteristic vector n,
normal to C. Then, C is an open subset of a minimal disk.

Proof. Parametrize C locally as the image of a holomorphic curve
fiA— DY, flo)=0,f"(2) = g,y € Ty»(C). Let V be the holomorphic vector bundle
on C such that T(C) C ¥ C T(D}")|¢ and such that V,/T,(C) = Ty, )(S,) for any
p € C, T)(C) = Cp,. Denote by S;, C T,(DYV) the set of all nonzero vectors whose
projectivization lie in S,. (We call S, the cone over S,.) Then T}, (S,) = V). V), is the
orthogonal complement of L, = Cy,. Since L is parallel, V'is a parallel holomorphic
subbundle of T(D!V)|¢. To show that C C DIV is totally geodesic it suffices to show
that V,u is proportional to u at every point p € C. For the computation we may take
p to be the origin o in D!V, in its standard Harish-Chandra realization as a bounded
symmetric domain in C". At 0 € D!V the Euclidean coordinates are normal geodesic
coordinates and we have V,&(0) = 9,£(0) for any smooth section ¢ of V' over C.
The fact that V' is parallel over C means that

0,&(0) € V,, for any choice of &. (*)

On the other hand, in terms of Harish-Chandra coordinates, the characteristic bun-
dle S(DIV) agrees with the constant bundle S, x DIV, the statement (*) amounts to
saying that, writing ¢ for the second fundamental form of S, as a submanifold of
the Euclidean space T,(D!V), we have

6, (f"(0), &) =0 forall &, €V, %)

Denote by & the projective second fundamental form of S, € P7,(D!V). Then, by the
finiteness of the Gauss map on (the homogeneous and nonlinear projective subma-
nifold) S, the kernel of the o7, j is trivial. Equivalently, this means that the kernel of
o,, agrees with Cp,. From («') it follows that f”(o) is proportional to p,. But
f"(0) = V,u(0), implying that C is tangent at o to a minimal disk to the second order.
As a consequence, C is totally geodesic and, hence, itself an open subset of a minimal
disk, as desired. O

We are now ready to complete the proof of Theorem 4.

Proof of Theorem 4 (Continued). For the remaining case where d = 2 we know
now that S = A?/T,, and the embedding /: S — X lifts to F: A> — D', such that

n >’
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the factors A x {p,} and similarly {p;} x A are embedded under F onto minimal disks
in DIV. Let now t be the second fundamental form of £ = F(A%) in D!V. Recall that
1y = dF,(8/02), n, = dF,(d/dw). From R,z; = 0 we have 7, = 0. Since F(A x {p>})
and F({p1} x A) are minimal disks, which are totally geodesic, we have t,,, 7, = 0.
Thus, the second fundamental form t =0, and Sc D,llV is a complex two-dimen-
sional totally-geodesic submanifold of rank 2, i.e., a totally-geodesic bidisk. As a
consequence, S = f{A%/T,) is totally geodesic, as desired. The proof of Theorem 4 is
complete. O

(4.2) The algebro-geometric characterization of certain totally-geodesic complex sub-
manifolds of X = DIV/T', n >3, as given in Theorem 4, leads to a differential-
geometric pinching theorem in analogy with Theorem 2 in (2.3). We have

THEOREM 5. Let Dﬁlv, n = 3, be the irreducible bounded symmetric domain dual to
the hyperquadric Q,, n = 3. Let I' be a torsion-free cocompact discrete group of
biholomorphic automorphisms of DIV and write X = DIV/T". Normalize the canonical
Kdhler metric on DY so that the Gaussian curvature of a totally-geodesic holomorphic
disk of type 2 = rank (DV)) is equal to —1. Let S C X be a compact complex sub-
manifold of any dimension d, 1 < d < n, such that for any x € C, the scalar curvature
K(x) satisfies the pinching condition

—d*+1) < K(x) (< —d?.
Then, S C X is totally geodesic.
Proof. In terms of the standard realization of D!V as a bounded domain, given by

(even forn =1,2)
i 2
Z 2
E " Zi }'
1

The curvature tensor of the normalized canonical Kéhler metric g, is given by
Ri77(0) = —(9;0ke + i — dixde) (D)

(cf. [M2, pp. 86ff]). Let & = 3 &' 8/8z; and p = 3 8/dz; be tangent vectors of type
(1,0) at 0 € D!V. Then
2 2
). )

=[] + D
i i,j i

Write Q for the symmetric complex bilinear form on 7,(D!V) given by Q(&,n) =
> &y, Up to a conformal factor Q is the canonical quadric structure at o. Write
(-, -) for the Hermitian inner product of (DY, g,) at o and | - || for the corresponding
norm. Then,

Rz = —IEN M7 = & mI” + 10 . 3)

o= {(21""’2”) eC':zI> <2 and [z]? <1+
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Write ®,7k5 = —(0;0ke + 0:¢0jx). Then, © agrees with the curvature tensor of the
n-dimensional complex hyperbolic space form of constant holomorphic sectional
curvature —2 with the metric tensor g; = d; at the point of reference. Writing

for a local d-dimensional complex submanifold S’ passing through o, by the Gauss
equation the scalar curvature K(o) satisfies

2

2

d
K(0) < —dd+1)+ ) _|Qer ¢) (5)
=1
where {e;} is any orthonormal basis of T7,(S’). The complex bilinear form
Q' = Qlr,s) can be diagonalized by a unitary matrix (cf. [M2, (2.3), Lemma 1,
p. 70]). Thus, we may assume Q' (3" &'e;, > 'e;) = S 24(¢"* where 2; are nonnega-

tive real numbers, 0 < 4; < 1. When ' corresponds to DY c DIV, 4;=-.. =
Jq = 1. 8 is totally geodesic and the scalar curvature K(o) = —d”. From (6) we have
in general
d
K(o) < —dd+ 1)+ ) 7] < —d*. (6)
i=1

If 2, = 0 for some k, 1 < k < d, we have K(0) < — (d*> + 1) since 0 < J; < 1 for all i,
1 <i<d. The assumption K(x) > —(d*> + 1) in Theorem 5 therefore, forces 4; # 0
for 1 <i<d,i.e., the restriction of the canonical quadric structure to S C X is every-
where nondegenerate. By Theorem 4, S C X is a totally-geodesic complex submani-
fold of scalar curvature —d2, i.e., of maximal scalar curvature, as desired. O

Remarks. Unlike Theorem 2, for d > 2 Theorem 5 is not known to be optimal.
We note however that for d < n/2, DV contains a totally-geodesic complex sub-
manifold £’ = BY, of rank 1. For suitably chosen I' C Aut(DYV) there exists a totally-
geodesic d-dimensional submanifold S uniformized by ¥’ such that the restriction of
the canonical quadric structure to S is totally degenerate. It is of scalar curvature
—(d? 4+ d) while any S in Theorems 4 and 5 is of scalar curvature —d?. For
1 < d < n/2 the optimal lower bound of K(x) may be —(d? + d), but our proof only
shows that under the assumption —(d?> 4+ d) < K everywhere on S, the restriction of
the canonical quadric structure to S is nowhere totally degenerate.

(4.3) For Q a bounded symmetric domain and D C Q a (totally geodesic) bounded
symmetric subdomain, in [EM] we say that (Q, D) exhibits the gap phenomenon
if any almost geodesic (in some precise sense) compact complex submanifold S on
some quotient manifold X of Q modeled on D must necessarily be totally geodesic.
The simplest example of the gap phenomenon is given by Q = Qg x --- x Qq, and
D c Q the diagonal, and the proof as given in [EM] resulted from the uniqueness
of Kéhler—Einstein metrics. Using variations of Hodge structures, Eyssidieux [El]
and [E2] proved the gap phenomenon for many examples of (Q2, D) in which D is
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irreducible and D C Q is a 1-hyperrigid subdomain in the sense of [E1]. Theorem 4
implies the gap phenomenon for the pair (D!V; DIV), in a more precise way as formu-
lated in Theorem 5. Theorem 4, including the case of d = 1, appears to go beyond the
method of variations of Hodge structures. For d > 1 it brings back the role of
Kéahler—Einstein metrics, as the proof relies essentially on the existence of Kédhler—
Einstein metrics on compact Kdhler manifolds with ample canonical line bundle.
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