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COEFFICIENT ESTIMATES FOR A CLASS OF
STAR-LIKE FUNCTIONS

D. A. BRANNAN, J. CLUNIE, AND W. E. KIRWANT{

1. Introduction. In this note we continue the study, initiated in [1], of
the class S*(a) of functions

(1.1) flg) = z—l—22akz"
k=
that are analytic and univalent in the unit disc U and satisfy the condition
(1.2) a-—<argf()<a— 0O<a=s1).
2 f(2)

S*(1) is the frequently studied class of univalent star-like functions. For each
a, S*(a) is a subclass of the class K (@) of close-to-convex functions of order «
introduced by Pommerenke [4]. Properties of the class S*(«) proved useful
in studying the coefficient behaviour of bounded univalent functions that are
analytic and map U onto a convex domain [1]. In this note we investigate
the problem of determining

(1.3) A,(e) = max |a,|
JES* ()
but we are able to give only a partial solution.
In § 3 we introduce the related class =*(a) of functions

1 =, k
F(z) = 2 +kZ=j0Akz

that are analytic and univalent in the punctured disc and satisfy the condition

(1.4) (1 - —>7r < arg F;()) <1 + %)W O<a=l).

2*(1) is the class of univalent meromorphic star-like functions studied in
[3; 5]. For the class of functions Z*(a), we show that

2a
n-+1
with equality for a fixed integer # if and only if

o (1) -

F(z) 1 — e

|4, =
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It is convenient to denote by 2, (0 < a < 1) the class of functions

P@) =1 +glmz"

that are analytic in U and subordinate to the function ((1 4+ 2)/(1 — 3))=.
We note that P(z) € &, if and only if P(z) = [Q(2)]?, where Q(2) € £,.
For future reference we observe that (1.2) and (1.4) are equivalent to

w5) ZJ{((? P
and
(1.6) ﬁ;(—g—) = —[P()],

respectively, where P(z) belongs to £,.

2. We begin by determining 4,(a) in the case that # = 2 and n = 3.

THEOREM 2.1. Let

@) = z—l-gzakzk

belong to S*(a) (0 < @ £ 1). Then |as] £ 2a, with equality if and only if

#'e@  [1+ ez]“
fie) Ll —e

If 0 < a < %, then |as| £ o with equality if and only if

zf'(2) _ _1 + e |® N
fe& L1 - 522:! (lel = 1);

if 3 <a =1, then |as| £ 3a with equality if and only if
76 _[Liel gy,

(el = 1).

fiz) Ll —e
and if a = %, then |as| = %, with equality if and only if
zf'(z) [ (1 + ez> _ (1 + 6222>:I 12

where e = 1and 0 =\ £ 1.
Proof. If f(z) € S*(a), then by (1.5),

zf'(z) (z) S k|
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where P(z) € 2;. From (2.2) it follows that a; = ap; and

(23) 203 = OLI:pz + Pl ] .
By a well-known theorem due to Carathéodory [2], |pu] =2 and |p1] = 2 if
and only if
1+ e
P(Z) - 1 — ez ’

where |¢] = 1. This completes the proof of the first part of the theorem.
If 3 < a =1, then since [p;| < 2, (2.3) implies that |as;] = 3a? and again
equality holds if and only if

zf'(z) [1 + ezjl“
fiz) ~ Ll —ed’

If « = %, then by (2.3) |as| < % with equality if and only if |p.] = 2. It
follows from Carathéodory’s theorem that if |p,| = 2, then
1+ez+(1_>\)l—l—ez ’

€3

where ¢/ = 1 and 0 £ N = 1; consequently, zf'(2)/f(z) satisfies (2.1).
It remains to consider the case 0 < & < }. By (2.3) we have

P(z) = A

(2.4) 2Reas = a Re {pz _1 ; Sa P12} .
Since P(z) € &,, the Herglotz representation formula (see [7, p. 232]) states
that
2T —1it
1
PE) = | TEE a0,

where u(¢) is increasing on [0, 27], and u(27) — x(0) = 1. It follows that

27
Pn =2 J; e ™ du(t) n=12...).

Substituting in (2.4) we have

2T
(2.5) 2 Rea; = 2« f cos 2t du(t)
0

— 2a(1 — 3a) {[J:W costdu(t):r - [J:W Sintd'“(t):lz}

or or 2
=< 2a f cos 2t du(t) + 2a(1 — ?)oz)l:Jv sin ¢t du (t):l
0 0

= Za{l + 1 - 30:)[]?7r sintd;z(t):r -2 J;h sin2td,u(t)} .
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By Jensen's inequality [7, p. 61],

l:f:” [sin £ dﬂ(lf):r = J;ZW sin® t du(t),

and thus it follows from (2.5) that 2 Re a3 < 2a.
If 2 Re a3 = 2a, p(t) must satisfy

2

(2.6) f sin’ tdu(t) = 0
0

and
W2

2.7) J costdu(t) = 0.
0

(2.6) is possible only if u(¢) is constant on (0, ) and on (w, 27). For such a
r(®), (2.7) is possible only if the jump of u(¢) at ¢ = 7 equals the sum of the
jumps at ¢ = 0 and ¢ = 2x. It follows that Re a3 = « if and only if

() [11+z+11—z]“_ [1+22]°‘
fiz)  L21—2 " 21421  L1-21"
and therefore |as| = a if and only if
’ 1 2 |a
Zﬁ(iz)) - [1 * ZZ] (el = 1.

This completes the proof of the theorem.

The ‘“‘logical” choice for an extremal function for the problem of deter-
mining 4,(a) would be the function f,(2) defined by

2fa’ (2) <1 + z>°‘
(2.8) e S \i=3)
As seen in the previous theorem, if # = 3 and 0 < a < %, f.(2) is not an
extremal function for this problem. The next theorem shows however that
for each n, f,(2) is an extremal function provided « is sufficiently near 1.

THEOREM 2.2. Let f(2) = 2+ X p=2 a32* belong to S*(a), 0 < a =1, and
let n > 1 be a fixed integer. There exists a number B3, (0 < B, < 1) such that if
B < a =1, |au| = 4n(a) if and only if f(2) = &f.(ez), where fo(2) is defined
by (2.8) and |¢| = 1.

Proof. By (1.5),

Zf’(z) - @ - k
(2.9) @ [PE]) =1+ kZ;)l sz,
where P(g) € P,. If P(2) = 1 + X 51 2", then it follows from (2.9) that
(210) (233 =Z ‘I/(a;mlr--- ’mj)pml c oo Dmj
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(where ¥(a;my, ..., m;) is a polynomial of degree at most %k in «) is inde-
pendent of P(z); and the summation is taken over all j-tuples (my, ..., m,)
of positive integers which satisfy

m = ... = my and mi+ ...+ m;=Fk
Also from (2.9) we have
(2.11) (B — 1Day = aatr—1 + ... + agp_sa2 + az_1.
Using (2.10) and induction we deduce
(2.12) QG = ap(@) =2 ¢la; My, .o, M) bny - bn;

(where ¢(a; my, ..., m;) is a polynomial of degree at most » — 1 in «) is
independent of f(2); and the range of summation is as defined in (2.10) with
k=n—1 If « =1, then o, = p;. An induction argument using (2.11) and

(2.12) shows that ¢(l;my,...,m;) >0 for all m; =... =< m; with
my+ ...+ m; =n — 1. It follows that there is a constant 8,, 0 < 8, < 1,
such that each ¢(a;my, ..., m;) is positive in the interval (8,, 1]. Thus by
(2.12), a,(a) = Au(@) B < a = 1)ifandonlyif |p,| = 2for1 < j < n — 1;
ie.,
14 e .
P(z)———’—l_ez, le| = 1.

It follows that for this range of «, the only extremal functions for this problem
are functions of the form é&f,(ez), where |¢] = 1.

The previous theorem determines 4,(a) for a given 7 if « is near 1. We now
give a theorem which determines A4,(a) for a given # when « is near 0. This
theorem requires the following result.

TaeoreEM 2.3 (Rogosinski [6, p. 70]). Let f(z) = ¢ + X r—=1 ar2* be sub-
ordinate to F(2) = a + > g1 4:3* in U. If F(2) 1s univalent in U and F(U)
is convex, then |a,| = |A1|. If F(U) is not a half plane, then equality can hold
for a given n only if f(2) = F(ez*) (l¢] = 1).

If P(z) € #, (0 <a < 1), then P(z) is subordinate to ((1 + 2)/(1 — 2))=.
It follows from Theorem 2.3 that if
P@) =142 pd,
L=
then |p,| < 2a. Moreover, |p,| = 2« if and only if

€32

(el = 1).

We shall also need the following lemma.
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LeMMA. Let f(2) = 2+ X r=2 ax(e)z® be a function in S*(a) for which
an(a) = du(a). If

zf'(z) |14 Wal2) [
(2.13) @) [1 - Wa(z)] ’

where |W,(2)| < 1 and W,(0) = 0, then
lim W,(z) = 2"~

Proof. Let "
2.14) Pu(s) = B—f_’—%] 14 ; pa(@)e,

It follows from (2.13) and (2.14) that
(2.15) (b — Dax(a) = pr1(a) + pr—2(@)az(@) + ... + pr(@)ar-1(a).
By Theorem 2.3 and induction we deduce that
(B — 1)ay(a) = pr-1(a) + O(a?) (@ —0).
In particular,
(n — 1)a,(@) = Re py_a(e) + 0(a?) = 20 + O(a?) (@—0).
If g(z) is the function in S*(a) defined by

2g'(2) _ (1 + z"“)“
(2.16) g(z) = 1 — Zn—-l ’
then
20,
(2.17) g(z)=z—|—n_lz + ..

Since a,(a) = 4,(a) and Re p,—1(a) = 2«,
20 £ (n — 1)az(a) = Re pp_i(a) + O(@?) = 2o + O(a?).
It follows that
.1
}!1_1')1;)1 5& Re pn_1<¢x) = 1.

The function [P,(z)]Y% € Py If

[Pu@)]™ = 1+ 2 (),

then using the fact that |pi(e)] = 2a we obtain

Re go_1(a) = Re %{f"‘—) Yo (@—0).

Thus lim,o Re g,—1(e) = 1. &y, is a normal compact family of functions,
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and thus it follows from the theory of normal families and the comments
following Theorem 2.3 that

1 +zn—l:|1/2 o Ve [l__*" W&Z:,m
[1 —pr] s limlRE@IT = ln ] e ]

This completes the proof of the lemma.

THEOREM 2.4. For each integer n > 1, there exists a number v,, 0 < v, < 1,
such that if 0 < a < v, then A,(a) = 2a/(n — 1). Moreover, if

f(z) =2+ 22 gt
k=
is a function in S*(a) for which |a,| = 2a/(n — 1), then

o= lite]

where || = 1.

Proof. Let f(z) = 2+ > %2 ax(@)z* be a function in S*(a) for which
ay,(a) = A,(a). Using the notation of the lemma we have

7@ _ p oy o [u__wa@]“

(2.18) e =P = | T
and lim,o W,(2) = z*1. We show that there exists a number v,, 0 < v, < 1,
such that
(2.19) We(z) = g1
for 0 < @ < v,. In view of (2.18), (2.16), and (2.17), this will complete
the proof.

Let W,(z) = X 5x—1 wi(a)z*. If we can show that there exists a v, > 0 such
that
(2.20) W,_1(a) =1 0 < a< ),

then (2.19) will follow.
Suppose that (2.20) does not hold. Then there exists a set S which contains
arbitrarily small values of « > 0 such that

[wn-1(e)| = 1 = Na) (@ €5)

and 0 < \a) < 1. By the lemma, lim,_ M) = 0.
Since |W,(z)| < 1 in |z| < 1, Parseval’s identity implies that

le(OL)‘? + PP + ]w,,_l(a)|2 é 1.
Thus if a € .5,
(2.21) |wi(@)]? £ 2N () A=k=n-2).
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It follows from (2.18) that

(2.22) P.(z) =1+ 2a2: We(®)) + 2a(a — 1){2:)1 [W,,(z)]j} +...

= 14 2aWa(z) + 2°W.2(z) + ah(z),

where % (z) is a sum of powers of W,(z) of degree at least 3.
If @ € S, then (2.21) and (2.22) imply that

(2.23) pi(@) = 2awi(a) + O\ (@) + aO([Ma)]?)

for 1 £ & £ n — 1. Substituting (2.23) in (2.15), applying (2.21), and using
induction, we obtain

(n — 1)a,(@) = 20w,_1(a) + 20\ (@) + a0 ([N () ]3/2)
= 2¢[1 — NMa) + 2O\ (@) + O(INM@)P'%)]
< 2a

for sufficiently small « in .S. This is a contradiction since (2.17) implies that
(n — 1)4,(a) = 2a for 0 < a = 1. Thus no such set S can exist which implies
the existence of a number v, with the desired properties.

3. The coefficient problem for Z*(a). Let

Fiz) = 243> 44
2 k=0
belong to £*(1). It was shown in [3] that for » = 1, |4, = 2/(» + 1) with
equality if and only if

sF'(z) 1+ "t
Fiz) =~ 1 —e"™

where |e¢] = 1. Using this result, we prove the following theorem.

THEOREM 3.1. Let

1 o0
F(z) = ;—l—kZ:OAkzk

belong to Z*(@) (0 < a = 1). Then forn = 1,

2a
n+1

(3.1) |4.] £
with equality if and only if

2F'(z) (1 + ez"+1>°‘
F@) —

1— ")

where |¢| = 1.
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Proof. Since F(z) € Z*(a),
gF'(z)

(3.2) F) —P(z),

where P(z) € &,. Let G(z) be the function in Z*(1) defined by
G's) _ _ [Ltii__] _

63) T8~ _p| FEE| Ga=1,

If G(z) = 1/2 + X 5—0 Biz", then it follows from (3.2) and (3.3) that 4, = B;
for1 £k <#n—1and

(3.4) n+1)B, = (n+ 1)4, — 2d(1 — a).
Since G(z) € Z*(1), |(n + 1)B,| < 2, i.e,
(3.5) |(n + 14, — 2d(1 — a)| < 2.

arg d is arbitrary and thus if we choose
(3.6) argd = arg 4, + ,
(3.5) implies that
4+ D4 +20—a) <2  or  (n+ 1)|4,] £ 2.
This establishes (3.1). If equality holds; i.e., (n + 1)|4,] = 2a, then
(n+ D[B.| = (n + 1|4, + 2(1 —a) = 2.
It follows from the result for 2*(1) quoted above that

2G'(@) _ _ [Hdz"i]l‘“_ 1+
e A =il il g

€z
where |¢/ = 1 and arg e = 7= + arg B,. In view of (3.4) and (3.6),

(3.7)

(3.8) arge =7 + arg B, = argd (mod 27).
Substituting (3.8) in (3.7) we obtain
2F'(s) _ _ [1_+__]
F(z) — —Pk) = - 1— e

This completes the proof of the theorem.

REFERENCES

1. D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J.
London Math. Soc. (2) 1(1969), 431-443.

2. C. Carathéodory, Uber der Variabilititsbereich der Fouriershen Konstanten von positiven
harmonischen Functionen, Rend. Circ. Mat. Palermo 32 (1911), 193-217.

3. J. Clunie, On meromorphic schlict functions, J. London Math. Soc. 84 (1959), 215-216.

https://doi.org/10.4153/CJM-1970-055-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-055-8

STAR-LIKE FUNCTIONS 485

4. Ch. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962),
259-269.
5. ———— On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235.
. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48
(1943), 48-82,
7. W. Rudin, Real and complex analysis (McGraw-Hill, New York, 1966).

(=)

Syracuse University,
Syracuse, New York;
Imperial College,
London, England;
University of Maryland,
College Park, Maryland

https://doi.org/10.4153/CJM-1970-055-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-055-8

