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effect since it is fastest in this region. If we repeat our old argument against using pressure melting
alone, then the only obstacle size which can be used in this region is the largest, namely, that
given by the intersection of the two curves.

If the sliding is controlled by obstacles which lie in the region to the right of the intersection of
the two curves in Fig. 2, then the speed of sliding is controlled by the stress concentration mechan-
ism since it is fastest in this region. Again repeating our argument against using this mechanism
alone, the speed of sliding must be controlled by the smallest protuberances in this region. The
size of these protuberances is again given by the intersection of the curves in Fig. 2. The obstacles
of this size then control the rate of sliding.

On setting equations (3) and (4) equal to each other and solving for L, the following equation
is obtained for the sliding velocity
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The high power over the term L'/L is rather unfortunate since only estimates can be made of this
term. A value of L’/L equal to 4 in equation (5) would give a sliding rate of one meter per year
which is almost within the range estimated by Nye?2 for a number of glaciers (4 to 79 m./year).

It clearly would be helpful if a frequency distribution of protuberance sizes and separations
could be found on several exposed glacier beds so that the sliding model proposed here may be
better tested. Laboratory tests could be easily carried out to test this theory.

The author wishes to thank Dr. Peter Haasen for first arousing his curiosity in the problem of
glacier flow and Dr. J. W. Glen for a number of valuable suggestions for improving the calculations.

MS. received 28 March 1956
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DEFORMATION OF FLOATING ICE SHELVES

By J. WEERTMAN
(Naval Research Laboratory, Washington, D.C.)
ApsTRACT. The problem of the creep deformation of floating ice shelves is considered. The pro_biem 1s solved
using Glen’s creep law for ice and Nye's relation of steady-state creep (the analogue of the Lévy-Mises relation in

plasticity theory). Good agreement is obtained between an observed ereep rate at Maudheim in the Antarctic and
that predicted from the results of creep tests made by Glen.

ZUSAMMENFASSUNG. Das Problem der Kriechdeformation einer schwimmenden Eisplatte wird mit Hilfe von

Glen’s Eiskriechgesetz und Nye's Gleichung fiir den Kriechgleichgewichtszustand gelist (Nye’s Gleichung ist der

Lévy-Mises Gleichung in der Plastizititstheorie analog.). Auf diese Weise wird die in Maudheim in Antarktika

beobachtete Kriechgeschwindigkeit mit der von den Glen’schen Experimenten zu erwartenden in Einklang gebrachrt.
InTRODUCTION

The problem of the flow of ice in glaciers and ice caps has been treated by Nye in a series of

very illuminating papers!. 2. 3 4.5, One problem that has not been analyzed by his methods is

https://doi.org/10.3189/50022143000024710 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000024710

DEFORMATION OF FLOATING ICE SHELVES 39

the creep of floating ice shelves. The analyses which have been given by Nye are inapplicable to
this special problem because his solutions require a finite shear stress to exist at the bottom of the
mass of ice being considered. At the bottom of a floating ice shelf the shear stress, of course, must
be zero. This paper presents an analysis for this problem using Glen’s creep law ¢ for ice and Nye’s
relation! of steady-state creep (the analogue of the Lévy-Mises relation in plasticity theory). Tt
turns out that the solution is almost trivial. Tt is equivalent to the solution of the problem of a
weightless material being compressed by frictionless plates.

THEORY

We consider a floating ice shelf such as is shown in Fig. 1. The shelf is assumed to be in a
steady-state condition, its thickness 4 remaining constant in time. The thickness of the shelf is
assumed to be many orders of magnitude smaller than its length. The direction ¥ is perpen-
dicular to the surface of the shelf, x is parallel to the surface and perpendicular to the
ice front, and z is parallel both to the surface and the ice front. Consider the case where
creep movement can occur in the x and y direction but not in the z direction. In the Appendix is
given a case where creep in the 2 direction is permitted.

The .equations for equilibrium are
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where o;; are the usual stress components (oy; is positive when in tension), g is the gravitational
acceleration, and py is the density of the ice. An average density is used in the following analysis.
It is a simple matter, however, to give an exact solution to the problem using a density which is a
function of y.

We now make the assumption, which we believe to be quite reasonable, that at a position far
from the edge of the shelf all the stress components must be independent of x and 2. This assump-
tion along with the condition that the shear stress at the top and bottom surface of the shelf must
be equal to zero reduces Egs. (1) to

doy, )
(f)‘ pIg—0 % “ . & i % . . - - (Z)
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and

By =TS0y =10 = e @ = = 2 a4 e (3)
Integrating Eq. (2) gives
opy=—>pigh—y) . - « . . .« - - - 4
The stresses o, and o,, must still be determined. 2
Nye’s relation! of steady-state creep (based on Glen’s creep law 9) is

éij:AO",'j . . . s . . . . . 7 (5)
where
P T T
and
2=40"y0’;; (summed over i and j) o il =t (5]
and

o'ij=0y—38;jopx (summed over &) s e B0 B L A5
Here n is a constant, A is a constant which depends on the temperature and may depend on the
density, 8;; is equal to zero when i does not equal j and equals one when they are equal, and €; is
a strain rate which must satisfy the equation

: ouy  Ou;
where #; is a velocity component.

Since the creep rate is zero in the z direction the term o', must equal zero. This condition
gives the relation that o, is equal to }(o,,{-0,). Eq. (5) now reduces to
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These equations are consistent with Eq. (9) only if &, and ¢,, do not depend on y.
Setting &, equal to K, the creep rate, and substituting Eq. (4) into Eq. (10) one obtains

op=42A4|K|Vr—pigh+prgy . . . . . . . (12)
The plus sign is used when K is positive, an expanding shelf ; the minus sign when K is negative,
a shrinking shelf. Both the stresses o,, and o, are functions of y. For an expanding shelf the values
of o, are such that it is in tension at the top of the shelf and in compression at the bottom. The
stress oy, is always in compression.
We now take advantage of the fact that the shelf is floating in the sea. Let py be the density of
the sea water. Then a,, must obey the equation

k fprlew ,
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o o
Setting o,, given by Eq. (12) into Eq. (13) one obtains for K
h n
K=GougieyG—prowr[[[4d]” - - - - G

This equation gives the result that we are seeking, namely, the creep rate of the shelf. It is a parti-
cularly simple result ; the creep rate in the shelf from top to bottom is constant. It turns out that K
can only be positive. Therefore a shrinking shelf cannot exist.

The solution just found for the stresses and creep rate in an ice shelf applies only far from the
edges of the shelf. Near an edge the stress distribution must change. Since

horlpw h
f pwg(hpz/pw—y)y dy +f°axxy dy

o
(the torque exerted across a unit cross-section of the shelf, perpendicular to the surface and
parallel to the ice front) is not equal to zero, a torque of this magnitude must exist at either end of
a shelf in order to maintain mechanical equilibrium. Such a torque may be maintained in several
ways such as, for example, by means of an overhanging cliff at the ice front of the shelf.
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CoMPARISON WITH EXPERIMENT

We wish to compare now an observed creep rate of the ice shelf at Maudheim with that pre-
dicted by Eq. (14). Schytt states that a two kilometer base line stretched at a rate of 30 cm./month.
This speed gives a creep rate of 1-8 x10-3 years1. The shelf at Maudheim was approximately
185 m. thick. The temperature of the shelf varied from —17'5° C. near the top surface to —16-5° C.
at a depth of 100 m. Temperatures below 100 m. were not known. Presumably the temperature.
at the bottom surface is about —1-5° C. The density of the ice varied from 0'50 gm. cm.™3 near
the top surface to 080 gm. cm.~3 at a depth of 55 m. and then approached the value of
solid ice (0'9r gm. cm.—3).

The constant A appearing in Eq. (14) can be obtained from the results of Glen on the creep
of ice. Glen found that if o is the uniaxial stress applied to a laboratory specimen then the creep
rate is given by

K=B exp (—Q/RT) exp (Q/RT,,)a" § il o [
where T"is the temperature, 7', is the melting point of ice, B is a constant equal to o-or7 bars—4-2
years™! (one bar is equal to 106 dynes cm.~2), Q is an activation energy and is equal to 32,000 cal/
mol., 7 is a constant equal to 4-2, and R is the gas constant. In terms of the quantities entering
mto Eq. (15) the constant 4 is given by

A=(v/3)"*1271B exp (—Q/RT) exp (Q/RT,,).
(See Nye! for the reason for the inclusion of the factor in front of B.)

7
The term f A dy in Eq. (14) can be calculated if the temperature is known at all depths, Un-
o
fortunately it is not known below 100 m. But enough of the temperature distribution is known so
h
that upper and lower limits can be set on f A dy. If it is assumed that the temperature increases
o

linearly from —17-5° C. at the top surface to —16-5° C. at a depth of 100 m. and then remains
constant at —16-5° C. to the bottom surface, Eq. (14) predicts a creep rate of 1-2 X 10-3 years-1
(with pyp=1-025 gm. cm.~3 and p;—o0-82 gm. cm.—3, value estimated from quoted thickness of
shelf and its height above sea level8). If it is assumed that the temperature increases linearly from
—16-5° C. at a depth of 100 m. to —15° C. at the bottom surface, Eq. (14) predicts a creep rate of
2:3<X 1073 years~1. The observed rate, 1-8 % 10-3 years—1, lics between these calculated extreme
values. If the average density of the ice is as high as 0-88 gm. cm.—3 instead of the estimated value
of 082 gm. cm.~3, the predicted creep rates are reduced by a factor of three. As mentioned pre-
viously an exact solution for the creep rate of an ice shelf can be easily obtained for the case where
the density of the ice is a function of the depth. Thus if the density-depth curve is known a better
check can be obtained on this theory. Another refinement on the calculation of the creep rate can
be made if the variation of the constant 4 with density is known.

The author wishes to thank Professor R. P. Sharp for drawing his attention to the work of
Schytt.
MS. received 16 May 1956
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APPENDIX

Consider a detached floating ice sheet which is free to creep in both the x and z direction.
Consider the situation far from the edge of the sheet. Assume again that the various stresses are
independent of ¥ and 2. Egs. (2), (3), and (4) will still be valid. It is reasonable in this situation
to take o,, equal to a,, since an arbitrary rotation of the axes about the y axis ought not to change
the form of the solution. Eq. (10) now takes the form

"=l g —0,
(i‘ W) o n w e i
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Proceeding as before we find for K

Al L R

The creep rate predicted by Eq. (17) is a factor (2/y/3)"/4/3 ~11 larger than that predicted by
Eq. (14). The creep rate predicted by Eq. (17) is isotropic. That is, any base line on the shelf,
regardless of its orientation, will stretch at this rate. For Eq. (14) only a base line perpendicular to
the sea front will stretch. In any actual situation in the Antarctic the truth probably lies somewhere
between Eqgs. (14) and (17).

When the density of ice, py, is a function of the depth, the term $p74%(x —p1/pw) in Egs. (14)
and (17) should be replaced by

[y avas—- ) @]

THE OLD MORAINES OF PANGNIRTUNG PASS,
BAFFIN ISLAND*

By H. R. THoMPSON
(Department of Geography, McMaster University, Hamilton, Ontario)

ApsTrACT. The “old moraines” of Pangnirtung Pass were constructed by trunk glaciers, tributary glaciers,
glacial streams, rockfalls, talus-creep and other agents and processcs. Rivers have since reworked or removed the
deposits lying along the axis of the Pass and have begun to dissect the remainder. The old moraines have ice cores,
which have tended to melt, collapse and flow downhill, thus further complicating the drift topography. The fresh-
ness of many old-moraine fronts implies a recent warming up of the climate, which is also reflected in the decay
of the modern glaciers ; but erosional undermining may also cause fresh fronts. Although no accurate date can be
assigned to the disappearance of the trunk glaciers, A.D. 500 is given as a tentative estimate, There have since
been at least two main advances of the tributary glaciers, of which the first followed close on the disappearance of
the trunk glaciers and the second occurred not later than 1850.

ZusaMMENFASsUNG. Die ,,alten Moriinen” des Pangnirtungpasses wurden durch Hauptgletscher, Seitengletscher,
Gletscherfliisse, das Kriechen von Schutthalden und andere Agenzien und Vorginge aufgebaut. Fliisse haben
seitdem die entlang der Achse des Passes liegenden Ablagerungen veriindert oder beseitigt und haben begonnen,

den Rest zu zerschneiden. Die alten Moréinen haben Eiskerne mit der Neigung zu schmelzen, einzufallen und

bergab zu fliessen, wobei sie die Topographie des Gletscherschutts weiter komplizieren, Die Kahlheit vieler Alt-
morinestirnen lisst auf eine kiirzliche Erwirmung des Klimas schliessen, die sich auch im Schmelzen der jiingsten
Gletscher zeigt; Unterwaschung kann jedoch auch kahle Stirnen erzeugen. Obgleich fiir das Verschwinden der
Hauptgletscher kein genauer Zeitpunkt angegeben werden kann, wird das Jahr 500 n.Chr. vorgeschlagen. Seitdem
kam es zu mindestens zwei Hauptvorstissen der Seitengletscher. Der erste von ihnen folgte dicht auf den Schwund
der Hauptgletscher, der zweite kam spitestens 1850.

INTRODUCTION

Several papers have already appeared in this Journal under the general title, ““Studies in glacier
physics on the Penny Ice Cap, Baffin Island, 1953” 12,19, Complementary to the expedition’s
glaciological programme was a geomorphological study of Pangnirtung Pass, the great through-
valley that cuts across Cumberland Peninsula a few miles to the eost of the Penny Ice Cap 2:14:15,

* Substance of a paper read before the Society, 1 June 1955.
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