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effect since it is fastest in this region. F we repeat our old argument against using pressure melting 
alone , then the only obstacle size which can be used in this region is the largest, namely, that 
given by the intersection of the two curves. 

If the sliding is controlled by obstacles which lie in the region to the right of the intersection of 
the two curves in Fig. 2, then the speed of sliding is controlled by the stress concentration mechan­
ism since it is fastest in this region. Again repeating our argument against using this mechanism 
alone, the speed of sliding must be controlled by the smallest protuberances in this region. The 
size of these protuberances is again given by the intersection of the curves in Fig. 2. The obstacles 
of this size then control the rate of sliding. 

On setting equations (3) and (4) equal to each other and solving for L, the follow ing equation 
is obtained for the sliding velocity 

(2BCD)t(T)I+II(L') I + n 
sliding velocity = 3Hp 2 --:;: L (5) 

The high power over the term L '/L is rather unfortunate since only estimates can be made of this 
term. A value of L'/L equal to 4 in equation (5) would give it sliding rate of one meter per year 
which is almost within the range estimated by Nye 2 for a number of glaciers (4 to 79 m. /year). 

It clearly would be helpful if a frequency distribution of protuberance sizes and separations 
could be found on several exposed glacier beds so that the sliding model proposed here may be 
better tested . Laboratory tests cou ld be easily carried out to test this theory. 

The author wishes to thank Dr. Peter Haasen for first arousing his curiosity in the problem of 
glacier flow and Dr. J. W. Glen for a number of valuable suggestions for improving the calculations. 

MS. received 28 March 1956 
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DEFOR MAT ION OF FLOATING ICE SHELVES 

By J. W EERTMAN 

(Nava l Research Laboratory, Washington, D.e. ) 

AnSTRACT. The problem of the creep deformation of Aoating ice shelves is cons idered. The problem is solved 
us ing G len's creep law for ice and l\ye' s relat ion of steady-state creep (th e analogue of the L evy- Mises relat ion in 
plasti c ity th eory) . Good agreem ent is obtained between an obserycu creep rate at rvfaudheinl in the Antarctic and 
that predicted from the resul ts of creep tests made by Glen. 

ZUS.>\MMENFASSUi"\C. Das Problenl der Kr iechdefornl ation e iner sch w inll11cnden Eisp latte wird 1l1it Hilfe van 
Glen's E iskriechgese tz und :\ye's Gleichung f(ir den Kriechgleichgewicht sz ustand gelost (]\;ye's G leichung ist der 
Levy-Mises G leichung in cler Plas tizitatsthcoric ana log.) . Auf dicse ' '''e isc wird die in Maudheim in Antarktika 
beobach tete Kriechgesc h \\'indigkeit mit cler \'on den Glen'schen E xperi menten zu erwartende n in Einklang gebracht. 

I NTRODUCTI ON 

The p roblem of the flO\v of ice in glaciers and ice caps has been treated by N ye in a series of 
ve ry illuminating papers 1,2,3, 4 , 5 . One problem that has not been analyzed by his methods is 
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DEFORMATION OF FLOATING ICE SHELVES 39 
the creep of floating ice shelves . The analyses which have been given by Nye are inapplicable to 
this special problem because his solutions require a finite shear stress to exist at the bottom of the 
mass of ice being considered. At the bottom of a floating ice shelf the shear stress, of course, must 
be zero. This paper presents an analysis for this problem using G len's creep law 6 for ice and Nye's 
relation 1 of steady-state creep (the analogue of the Levy-Mises relation in p lasticity theory). It 
turns out that the solution is almost trivial. It is equivalent to the solution of the problem of a 
weightless material being compressed by fri ctionless plates. 

THEORY 

W e consider a floating ice shelf such as is shown in Fig. I. The shelf is assumed to be in a 
steady-state condition, its thickness h remaining constant in time. The thickness of the shelf is 
assumed to be many orders of magnitude smaller than its length. The direction y is perpen­
dicular to the surface of the shelf, x is parallel to the surface and perpendicular to the 
ice front, and z is parallel both to the surface and the ice front . Consider the case where 
creep movement can occur in the x and y direction but not in the z direction. In the Appendix is 
given a case where creep in the z direction is permitted: 

The .equations for equilibrium are 

(r) 

where a ij are the usual stress components (aii is positive when in tension), g is the gravitat ional 
acceleration, and PI is the density of the ice. An average density is used in the following analysis. 
It is a simple matter, however, to give an exact solution to the problem using a density which is a 
function of y. 

'We now make the assumption, which we believe to be quite reasonable, that at a position far 
from the edge of the she lf all the stress components must be independent of x and z . This assump­
tion along with the cond ition that the shear stress at the top and bottom surface of the shelf must 
be equal to zero reduces Eqs. (I) to 

. (2) 
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and 

Integrating Eq. (2) gives 
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Uxy = a xz = u yz = O 

ayy=-PIg(h - y) 
The stresses U xx and azz must still be determined. 

Nye's relation 1 of steady-state creep (based on Glen's creep law 6) is 
Eij= Aa'ij 

where 

and 
-r2 = ! a'ija'ij (summed over i andj) 

and 

(5) 

(6) 

a';j=aij-·F>ijUkk (summed over k) (8) 
Here n is a constant, A is a constant which depends on the temperature and may depend on the 
density, Soii is equal to zero when i does not equal j and equals one when they are equal, and €ij is 
a strain rate which must satisfy the equation 

i __ = t ( 8Ui+ 8Uj) . (9) 
' J 8xj 8Xi 

where Iti is a velocity component. 
Since the creep rate is zero in the z direction the term a'zz must equal zero. 

gives the relation that azz .is equal to !(axx -f-uyy ). Eq. (5) now reduces to 

ixx= - Eyy= (2 A )- nluxx-ayvln- l(axX- uyy) 

This condition 

(10) 

(11) 

These equations are consistent with Eq. (9) only if i xx and Eyy do not depend on y. 
Setting Exx equal to K, the creep rate, and substituting Eg:. (4) into Eq. (10) one obtains 

axx= ±2AIKI1 /n_P'Igh+ Plgy . (12) 

The plus sign is used when K is positive, an expanding shelf; the minus sign when K is negative, 
a shrinking shelf. Both the stresses a xx and U yy are functions of y . For an expanding shelf the values 
ofax", are such that it is in tension at the top of the shelf and in compression at the bottom. The 
stress a yy is always in compression. 

We now take advantage of the fact that the shelf is floating in the sea. Let Pw be the density of 
the sea water. Then axx must obey the equation 

f h f hp1l pw 
o a",:rJiy= - 0 pwg(hPI/pw - y)dy. 

Setting U xx given by Eq . (12) into Eq. (13) one obtains for K 

K = (tPIgh2)"(I-pJ/pw)n I [fA dy r 
This equation gives the result that we are seeking, namely, the creep rate of the shelf. It is a parti­
cularly simple result; the creep rate in the shelf from top to bottom is constant. It turns out that K 
can only be positive. Therefore a shrinking shelf cannot exist. 

The solution just found for the stresses and creep rate in an ice shelf applies only far from the 
edges of the shelf. Near an edge the stress distribution must change. Since 

f
hPI' PW f It 
o PWg(hpI/PW - y)y dy + oUxxy dy 

(the torque exerted across a unit cross-section of the shelf, perpendicular to the surface and 
parallel to the ice front) is not equal to zero, a torque of this magnitude must exist at either end of 
a shelf in order to maintain mechanical equilibrium. Such a torque may be maintained in several 
ways such as, for example, by mean3 of an overhanging cliff at the ice front of the shelf. 
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COMPARISON WITH EXPERIMENT 

We wish to compare now an observed creep rate of the ice shelf at Maudheim with that pre­
dicted by Eq. (14), Schytt 7 states that a two kilometer base line stretched at a rate of 30 cm./month. 
This speed gives a creep rate of 1·8 X 10-3 years- I. The shelf at Maudheim was approximately 
185 m. thick. The temperature of the shelf varied from -17'5° C. near the top surface to - 16'5° C. 
at a depth of 100 m. Temperatures below 100 m. were not known. Presumably the temperature . 
at the bottom surface is about - 1'5° C. The density of the ice varied from 0'50 gm. cm.- 3 near 
the top surface to 0·80 gm. cm.-3 at a depth of 55 m. and then approached the value of 
solid ice (0'91 gm. cm.- 3). 

The constant A appearing in Eq. (14) can be obtained from the results of Glen on the creep 
of ice. Glen found that if a is the uniaxial stress applied to a laboratory specimen then the creep 
rate is given by 

K = B exp (- Q/RT) exp (Q/RTm)a" (IS) 
where T is the temperature, T m is the melting point of ice, B is a constant equal to 0'017 bars- 4 . 2 

years- I (one bar is ,equal to 106 dynes cm.- 2), Q is an activation energy and is equal to 321000 call 
mol., 11 is a constant equal to 4'2, and R is the gas constant. In terms of the quantit ies entering 
into Eq. (IS) the constant A is given by 

A-"= ( V3)"+12- IB exp (-Q/RT) exp (Q/RTrn). 

(See Nye l for the reason for the inclusion of the factor in front of B .) 

The term f: A dy in Eq. (14) can be calculated ifthe temperature is known at all depths. un­

fortunately it is not known below 100 m. But enough of the temperature distribution is known so 

that upper and lower limits can be set on LhA dy. If it is assumed that the temperature increases 

linearly from - 17'5° C. at the top surface to - 16'5° C. at a depth of 100 m. and then remains 
constant at - 16'5° C. to the bottom surface, Eq. (14) predicts a creep rate of 1'2 X 10- 3 years- 1 

(with PW = I'02S gm. cm.- 3 and PI = 0·82 gm. cm.- 3, value estimated from quoted thickness of 
shelf and its height above sea levelS). If it is assumed that the temperature increases linearly from 
- 16'5° C. at a depth of 100 m. to -1'5° C. at the bottom surface, Eq. (14) predicts a creep rate of 
2'3 X 10- 3 years- I. The observed rate, 1·8 X 10- 3 years- I, lies between these calculated extreme 
values. If the average density of the ice is as high as 0·88 gm. cm. - 3 instead of the estimated value 
of 0·82 gm. cm.- 3, the predicted creep rates are reduced by a factor of three. As mentioned pre­
viously an exact solution for the creep rate of an ice shelf can be easily obtained for the case where 
the density of the ice is a function of the depth. Thus if the density-depth curve is known a better 
check can be obtained on this theory. Another refinement on the calculation of the creep rate can 
be made if the variation of the constant A with density is known. 

The author wishes to thank Professor R. P . Sharp for drawing his attention to the work of 
Schytt. 
1118. received 16 May 1956 
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.-\PPENDIX 
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Consider a detached floating ice sheet which is free to creep in both the x and z direction. 
Consider the situation far from the edge of the sheet. ,Assume again that the various stresses are 
independent of x and z. Eqs. (z), (3), and (4) will still be valid. It is reasonable in this situation 
to take Uxx equal to Uzz since an arbitrary rotation of the axes about the y axis ought not to change 
the fo rm of the solution. Eq. (10) now takes the form 

K- ' _. _ . _A"I UXX-uyy !n-1(uxX-uyv) 
- €xx- €zz--2€yy - 73 --3--

Proceeding as before we find for K 

_ I (PTgh2)" ( PT )"j [Jh ]" K - - - - 1- - Ady 
V3 2V3 PW 0 

The creep rate predicted by Eq. (17) is a factor (Z/V3)'I/V3 ""1'1 larger than that predicted by 
Eq. (14). The creep rate predicted by Eq. (17) is isotropic. That is, any base line on the shelf, 
regardless of its orientation, will stretch at this rate. For Eq. (14) only a base line perpendicular to 
the sea front will stretch. In any actual situation in the Antarctic the truth probably lies somewhere 
between Eqs. (14) and (17). 

When the density of ice, PT, is a function of the depth, the term ! P1h2(1 - PI/PW) in Eqs. (14) 
and (17) should be replaced by 

J
hJh 1 [Jh ]2 Pl(y ) dy dx - - Pl(y ) dy . 
o x Zpw 0 

THE OLD MORAINES OF PANGNIRTUNG PASS, 
BAFFIN ISLAND* 

By H . R. THOMPSON 

(Department of Geography, McMaster University, Hamilton, Ontario) 

A BSTRACT. The "old moraincs" of Pangnirtun g Pass were con s tructed by trunk g lac iers, tributary g lac iers , 
g lacial st reams, rockfalls, t a l us -c reep and o the r agents and processes. Ri vers have since reworked or removed the 
d epos its lying along the axis of the Pass and have begun to dissect the remainder. The old m oraines have ice cores, 
whic h have tend ed to m e lt, collapse and flow downhill, thus further complicating the drift topography. The fresh­
ness of many old-moraine fronts implies a recen t warming up of the cl imate, which is a lso reflected in the decay 
of the modern glaciers ; but erosional undermining may also cause fresh fro nts. Althou g h no accurate date can be 
ass ig ned to the disappearance of the trunk g lac iers, A.D. 500 is g iven as a tentative est imate. There ha ve s ince 
been a t least two ma in advances of the tributary g laciers, of which the first followed close on the disappearance of 
the trunk glaciers and the second occu rred n o t later than 1850. 

Z USAMMENFASSUNG . Die "alten Moranen" des Pangnirtungpasses wurden durch Hauptg letscher, Seitengle tschcr, 
G le tsch e rflUsse. das Kriech e n von Schutthalden und andere Agenzie n und Vorgiingc aufgebaut. FlUsse haben 
seitdem die en tlan g der A c hse des Passes li egende n Ablagerungen veriindert oder besc itigt und haben begonnen, 
den R es t zu zerschn eiden. Die. alten Moriinen haben Eiskerne mit d er Neigung z u schm elzen , einzufallen und 
bc rgab ZlI fliessen, wobei s ie di e T opograp hi c des G letscherschutts weiter komplizieren. Die Kahlheit vieler Alt­
moranestirnen Hisst auf ein e kurzliche Erwarmung des Klimas schliessen, die sich auch im S chnlelzen der jungste n 
G le tsch e r zeigt ; Unte rwaschu ng kann jedoch auc h kahle Stirnen erzeugen. Obgleich fur J as Verschwinden der 
H auptg letscher ke in gcn a u er Zeitpunkt angegebe n werden kann, wird das J ahr 500 n.Chr. vorgeschlagen . Se itdem 
kam es z u mindestens zwei Hallpt vorstiisse n der Seitengletscher . Der erste von ihnen fol g te di cht auf den Schwund 
d e r H auptgletscher, der z",e ite kam spiitestens 1850. 

INTRODUCTION 

Several papers have already appeared in this Journal under the general title , "Studies in glacier 
physics on the Penny I ce Cap, Bafl'in Island, 1953" 12, 19. Complementary to the expedition's 
glaciological programme was a geomorphological study of Pangnirtung Pass, the great through­
valley that cuts across Cumberland Peninsula a few miles to the e~st of the Penny Ice Cap 2, 14,1 5 . 

'" Substance of a paper read before the Society, 1 June 1955. 

https://doi.org/10.3189/S0022143000024710 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000024710

