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Let S be a pseudo-metric space with pseudo-metric d. Then for each non-
empty A S S, xecl(A) if and only if d(x, A) = 0, and d{x, y) = d(y, x) for
all x, y e S. Thus, if d(x,y) = 0, then xeel({>>}) by the first requirement and
jecl({:c}) by the second requirement. It is natural then to expect that if a topo-
logical space S is to be pseudo-metrizable, it should at least satisfy the require-
ment:

If x, y e S and x e cl ({y}), then y e cl ({*}).

Spaces satisfying this requirement were termed essentially T\ by Worrell and Wicke
[6] and Ro by Davis [1 ]. Several characterizations have been given for such spaces
by Davis (ibid.). In this paper we propose to give another characterization and to
use these characterizations to indicate various classes of spaces that have this
property built into their definition, a fact which apparently has been generally un-
noticed. Although the concept of being an essentially Tx space is certainly modest
in scope, we hope to indicate further the role this property plays in topology and
that the results of our investigations about this role will be of interest.

It is easy to see that if such a space is also To, then it is necessarily 7 \ . Thus
7\ spaces are those which are both To and essentially 7 \ . Since there are To spaces
which are not 7\ and every pseudo-metric space which is not metric is essentially
Tt but not To, the properties of a space being To and essentially 7\ are independent
of one another. Moreover, this shows that for spaces which are inherently essen-
tially 7 \ , it is necessary to assume only the To separation property whenever the
7\ separation property is desired. A simple example of this is the following:

A space S is metric if and only if it is pseudo-metric and To (rather than 7\).

In a pseudo-metric space, every closed set can be expressed as a countable
intersection of open sets. Such sets are termed Gs. The following theorem shows
that essentially 7\ spaces may be considered as generalizations of spaces all of
whose closed sets have this property.

THEOREM 1. The following statements about a space S are equivalent:
(a) S is essentially Tx.

451

https://doi.org/10.1017/S1446788700010326 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010326


452 Dick Wick Hall, Sheila K. Murphy and Eugene P. Rozycki [2]

(b) For every pair of points x and y of S, the sets cl({x}) and C1({JC}) are
either equal or disjoint.

(c) Every open set contains the closure of each of its points.
(d) Every open set is the union of some collection of closed sets of S.
(e) Every closed set is the intersection of some collection of open sets of S.

PROOF, (a) implies (b): Let x, y e S, and suppose there is a point z e cl({x}) n
cl({j>}). Since cl({x})n cl({j}) is a closed set containing {z}, we have cl({z}) c
c l ^ x ^ n c l ^ } ) . Now z£cl({x}) implies xecl({z}), and so cl({x}) £ cl({z}).
Similarly cl({^}) £ cl({z}). Thus C1({JC}) U cl({j}) = cl({y}) n c\({y}) and we
conclude that cl({x}) = cl^y}).

(b) implies (c): Let xeU where U is open, and let yec\{{x)). By (b),
cl({x}) = cl({;y}), hence xecl({y}). Since U is an open set containing x, we must
have that yell. Thus cl({x}) s U.

(c) implies (d): Let Ube a non-empty open set of S. By (c), U=\JxeVcl([x}).
(d) implies (e): This follows immediately by taking complements.
(e) implies (a): Let x, y e S and xeel({}>>)• Then every open set containing

x must contain y. Suppose y<£cl({x}). Then by (e), some open set containing
cl({x}), and hence x, does not contain y, a contradiction.

The statement that the space S is a developable space means that there is a
sequence Gt, G2, • - • of collections of open sets such that for each i, Gt covers
5, <ji+1 £ G{, and if x e U where U is open, there is an i such that xe Ve Gt

implies V s U. The sequence Gx, G2, • • • is called a development for 5*.
The statement that the space S is a pseudosemi-metric space means that there

exists a non-negative, real-valued function d, denned on 5 x 5 and such that (i)
d{x, x) = 0 for all xe S; (ii) d{x,y) = d(y, x) for all x,y e S; and (iii) for each
non-empty A ^ S, xe c\(A) if and only if d(x, A) = 0. If, in addition, we have
that d(x, y) = 0 implies x = y, then S is termed a semi-metric space.

It follows immediately from the definition of a pseudosemi-metric space, that
it is necessarily essentially 7\. Since every developable space is a pseudosemi-
metric space (Heath [3]), it follows that every developable space is essentially T1.
Just as for metric and pseudo-metric spaces, we have:

A space S is a semi-metric space if and only if it is a pseudosemi-metric space
and To.

Another interesting and important class of spaces that are essentially 7\ is
given by the following theorem, a proof of which may be found in Thron ([5],
page 98). The 7\ separation property is not being assumed here.

THEOREM 2. Every regular space is essentially Tt.

In particular, this shows that every uniform space is essentially 7\ since each
such space is completely regular.
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Normal spaces are not necessarily essentially Tt. This is illustrated by the
simple example where S = [a, b, c} and the open sets are 0, {a}, {b}, [a, b}, and S.

The relation, xRy if and only if cl({x}) = cl({>}) for an arbitrary space S,
is an equivalence relation such that the resulting space S/R is To (Pervin [4],
page 155) and whose topology is lattice isomorphic to that of the space S
(Thron [5], page 92). If the space S is also essentially 7 \ , the equivalence classes
induced by R are of the form cl ({x}) and the resulting quotient space is necessarily
7 \ . From this and a result by Finch ([2], corollary (2.1)'), it follows that if 5X and
5*2 are essentially 7\ spaces and Rlt R2 are relations denned as above for Slt S2,
respectively, then Sl/R1 and S2lR2 are lattice isomorphic if and only if Si/./?! and
S2IR2 a r e homeomorphic. From this there follows:

THEOREM 3. If St and S2 are essentially Tt spaces, then S^ and S2 are lattice
isomorphic if and only if SijRl and S2/R2 are homeomorphic.

In the discussion immediately preceding the above theorem it was pointed out
that the identification process x -* cl({x}) yielded a 7\ space if the original space
was essentially T1. It is well-known that if Sis a pseudo-metric space with pseudo-
metric d, then the resulting quotient space SjR is a metric space with metric D
denned by Z>(cl ({x}), cl ({y})) = d(x, y) with the map x ->•cl ({x}) being distance-
preserving. The only serious problem one encounters in proving this theorem is to
show that the function D is well defined and this is easily overcome by application
of the triangle inequality to the pseudometric d. Since this property is no longer
available for pseudosemi-metrics, it would be of interest to determinee whether
the space SjR is a semi-metric space when S is a pseudosemi-metric space. That this
is indeed the case follows from a modified result of Heath [3]. He introduced three
conditions which lead from a Tx space to a metric space, with semi-metric and de-
velopable spaces as intermediate steps. If one is willing to replace points by their
closures, the 7"rseparation property may be dropped and the same conditions will
lead from an arbitrary space to a pseudo-metric space, with pseudosemi-metric and
developable spaces as intermediate steps.

DEFINITION. Let S be a space such that for each point x e S, there exists a
sequence <G;(x)> of open sets, such that x e G,(x) s G j . j ^ / o r each i > 1.

CONDITION A. For each xe S, {Gj(x)|« = 1, 2, • • •} is a local base at x. Ify e S,
and if <xn> is a sequence of points of S, such that for each n, y e Gn(xn), then <xn>
converges to y.

CONDITION B. Ify e S, and <xn> and <zB> are sequences of points ofS, such that
for each n, {y, xn} £ Gn(zn), then <xn> converges to y.

CONDITION C. Ifx, y e S, and there is an n, such that x e Gn(y), then y e Gn(x).

We first make the observation
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THEOREM 4. If S is a space satisfying Condition A, then every closed subset of
S is a G5. Thus, S is essentially Tx.

PROOF. Let F £ S be closed. For each i, let S;(F) = 1J {Gt(x)\x e F}. Then
F £ Si(F) and S^F) is open for each i. Hence F £ f) jSi(F). If x e f]iSi(F), then
for each i, there is a point xt e F, such that x e G;(XJ). Then <x;) converges to x,
and so every neighborhood of x contains a point xt of F. Thus x e cl (F) = F and
F=f]iSi(F).

THEOREM 5. (a) A space S is a pseudosemi-metric space if and only if S satis-
fies Condition A.

(b) A space S is developable if and only if S satisfies Condition B.
(c) A space S is pseudometrizable if and only if S satisfies Conditions B and C.

We shall not give the proof here since it is rather lengthy but mention that
its basic outline is contained in Heath [3].

A result that rather surprised us, and which together with Theorem 5 above,
gives another proof that every developable space is pseudosemi-metric, is the
following:

THEOREM 6. If a space S satisfies Condition B, then S satisfies Condition A.

PROOF. Let x e S. We must show that {G;(X)|J = 1, 2, • • •} is a local base at
x. For, if not, then there is a neighborhood U of x, and for each n, a point yn e Gn(x)
such that yn $ U. Then \x, yn) £ Gn(x), and using Condition B with zn — x for
each n, then <^n> converges to x, and thus yn e U for all but finitely many n, a con-
tradiction. Hence {G;(x)|j = 1, 2, • • •} is a local base at x. Finally, let y e S and
<xn> a sequence of points, such that for each n, ye Gn(xn). Then [y, xn} £ Gn(xn)
for each n, and by Condition B, <jcn> converges to y. Condition A is thus satisfied.

In the following let R be the equivalence relation which identifies closures of
points.

THEOREM 7. (a) If S is a pseudosemi-metric space, then S[R is a semi-metric
space.

(b) If S is a developable space, then SfR is also a developable space.

PROOF. We give a proof of (a) only, the proof of (b) being similar. The pro-
jection map p : S -* S/R is open, closed, and continuous. Well-order the points
of S. By Theorem 5(a), S satisfies Condition A. Let the elements of S[R be de-
denoted by R[x], where xe S. Given R[x] e SfR, for each n, define gJR[x]) =
p(Gn{z)), where z is the first point of S in cl([x]). Then gn(R[x]) is an open set of
SfR. Also, if n > 1, z e Gn(z) £ Gn_x(z) implies R[x] = R[z]ep(Gn(z)) £
p{Gn^{z)). Thus R[x]egn(R[x]) £ gn^{R[x]).

To show that {#;(^M)U = 1, 2, • • •} is a local base at R[x], let U be any
neighborhood of R[x] in SfR. Then p~1(U) is open and contains cl({*}), hence
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z ep~1 (£/), where z is again the first element in cl ({*}). There exists an n then, such
that Gn(z) s p~\U). But then, gn{R[x\) = p(Gm(z)) £ p{p-\U)) = £/, and so
{0iCR[*])l« = 1, 2, • • •} is a local base at R[x].

Given R[y] e S/i?, and a sequence, <-R[x]n>, of points of S/R, such that for
each n, R[y] e ffn(R[x]n), let t be the first point of cl ({*}), and zn the first point of
p-HR[xl.). Then for each «, tec\{{y}) ^ p-\p{Gn{zn))) = Gn{zn)- Since 5
satisfies Condition A, <zn> converges to f. Let U be any neighborhood of R[y].
T h e n / ^ ^ t / ) is open and contains cl({j>}), hence tep~l(U). Then there is an m,
such that zn ep~l(U) for all n ^ w. So, />(zn) = R[x]n ep(p~l(U)) = U for all
n~2: m, and <•/?[*]„> converges to R[y]. Therefore, SfR satisfies Condition A, and
since S/R is T}, S/R is a semi-metric space.

References

[1] A. S. Davis, 'Indexed systems of neighborhoods for general topological spaces', Amer. Math.
Monthly 68 (1961), 886-893.

[2] P. D. Finch, 'On the lattice equivalence of topological spaces', / . Austral. Math. Soc. 6
(1966), 495-511.

[3] R. W. Heath, 'Arcwise connectedness in semi-metric spaces', Pacific J. Math. 12 (1962),
1301-1319.

[4] W. J. Pervin, Foundations of General Topology (Academic Press, New York, 1964).
[5] W. J. Thron, Topological Structures (Holt, Rinehart, and Winston, New York, 1966).
[6] J. M. Worell, Jr., and H. H. Wicke, 'Characterizations of developable topological spaces,

Can. J. Math. 17 (1965), 820-830.

State University of New York at Binghamton

https://doi.org/10.1017/S1446788700010326 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010326

