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0. Introduction. The cone length Cl(f) of a m a p / : X-> Y is defined to be the least
number of attaching maps possible in a conic (or iterated mapping cone) structure for / .
Cone length is a homotopy invariant in the sense that if <p : X -» X and p : Y ->• Y are
homotopy equivalences then C/(po/o<p) = Cl(f). Furthermore Cl(f) depends only on the
homotopy class of/. It was shown by Ganea [8] that the cone length of the map * ->• X
coincides with the strong Lusternik-Schnirelmann category of A" as a space (see Proposition
1.6 below). Recent work of Cornea ([3]-[6]) is much concerned with cone length and its role
in critical point theory. For example, l e t / b e a smooth real valued function on a manifold
triad {M\ VQ, V\) with VQ ^ 0. Under certain conditions, i f /has only "reasonable" critical
points then it must have at least Cl(Vo^^M) of them (see [6]).

In this paper we consider the cone length of the exterior join fibration
pa+p : E(airP) -» X x Y for given maps a : A ->• X and /3 : B ->• Y (see [11] or [12] for a
definition). The exterior join fibration arises in situations as diverse as Hopf invariants ([7),
[15, Part II]) or immersions of real projective spaces. Indeed an example of its occurrence can
be quoted as well from Cornea's work mentioned above. In Corollary 2.7 of [6] it is shown
that if M and N are differentiate manifolds then the so-called /1-index of the map
/ + g : M x N -+ U, (f+ g)(x, y) =f{x) + g(y), is the exterior join of the ^-indices of given
m a p s / : M-*• U and g : N ->• U.

As our main result it is shown that the inequality Cl(pa.p) < Cl(a)Cl(/3) is valid. Both
the equality and the inequality can occur. Our approach in establishing this inequality is to
describe specific kinds of attaching maps. We focus especially on slash products (the name is
appropriated from the work of Hardie-Porter [9]). Essentially these operations belong to a
generalized theory of Whitehead products and this theory is investigated to the extent of
giving a cofiber theorem. The main technical lemma used (Lemma 2.1) generalizes [13,
Lemma 3.3] and is of independent interest; for instance, the conic structures obtained in [14]
may be established by using it.

We work in the category of well-pointed based spaces. All our constructions are made in
this category-in particular M(f,g) denotes the reduced double mapping cylinder on m a p s /
and g.

1. Review of cone length. In this section we review some notions related to cone length. Let

Ai A2 An

L a2\ an\
I t Y (1.1)

a

Glasgow Math. J. 40 (1998) 445-461.

https://doi.org/10.1017/S001708950003278X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003278X


446 HOWARD J. MARCUM

be a conic (or iterated mapping cone) structure for a : A\ -+ X. By this we mean that there
exist homotopies such that each square

* *• Ai+\

is a homotopy pushout for / = 1,. . . , n (letting An+\ = X) and that there exists a homotopy
ano ... otf| => a. The minimum number of attaching maps a, possible in a conic structure for
a is called the cone length of a, denoted Cl(a). If no such number exists then Cl{a) = oo. If X
is a space then we set Cl{X) = C/(* -> X). Thus, for example, Cl(X) = 1 if and only if X has
the homotopy type of a suspension space. In particular if A' is contractible then Cl(X) = 1.

The following are some properties of cone length. The first property is obvious.

PROPOSITION 1.1. Given A -4 X -4 Z, then Cl(gof) < Cl{f) + Cl(g).

PROPOSITION 1.2. Suppose that the homotopy commutative square

is a homotopy pushout. Then the following inequalities hold.

M)<Cl{A)+\.
(b) Cl(B -»• M) < Cl(E -> A).
(c) Cl(M) < Cl(A) + Cl(B) + 1.
(d) Cl(M) < Cl(E) + max{Cl(A),

Proof, (a) This is implied by [11, Lemma 3.2].
(b) It is immediate from homotopy pushout properties that any conic structure for

E ->• A gives rise to a conic structure for B -» M which has the same number of attaching
maps. The inequality Cl(B -> M) < Cl(E -> A) follows.

(c) Clearly Cl(M) < Cl(B) + Cl(B -+ M) by Proposition 1.1. But by part (a) we have
Cl(B ->• M) < Cl(A) + 1 and so the inequality asserted in part (c) holds.

(d) By [5, page 703]. •

COROLLARY 1.3. The inequality Cl(f) < Cl(X) + 1 is valid for any mapf: A ->• X.

Proof. Trivially the commutative square
i

•A

I'
•X
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is a homotopy pushout. Hence the inequality which is claimed follows directly by application
of Proposition 1.2(a) to this square. •

Unless Cl(X) is small in value, the inequality in Corollary 1.3 usually provides only a
very rough estimate of Cl(f). For, typically one can expect Cl(f) to be significantly smaller in
value than Cl(X).

PROPOSITION 1.4. Let ^>{X) denote an integer valued function on spaces having the fol-
lowing properties.

(1) <t>(X) = <J>(A") if X and X are of the same homotopy type.

C -> B
(2) If 4- => I is a homotopy pushout then <t>(X) < <&(B) + 1.

* -y X

Then <&{X) < Cl(X) + k where k is the value of<t> on contractible spaces.

Proof. Suppose Cl(X) = n and that (1.1) is a conic structure for A'in which A\ ~ *. Then
®{A2) < <t>01|) + 1 = k + 1 by properties (1) and (2). By iteration

* ( * ) < 9(AH) + \<(k + (n-\))+\=k + n = k + Cl(X)

and the proposition is established. •

EXAMPLES 1.5 (a) Let caf'(A') denote the pointed Lusternik-Schnirelmann category of a
space X as defined in [10, p. 1297] but renormalized to take the value zero on contractible
spaces. Then cat*(A") satisfies properties (1) and (2) with k — 0. Consequently

(b) N o t e t h a t Cl{X) itself satisfies p r o p e r t i e s (1) a n d (2) wi th k=\. Th i s j u s t yields
Cl(X)<Cl(X}+\.

(c) Recall [8] that the strong Lusternik-Schnirelmann category of a space X is the least
interger n such that there is a CW-complex of the same homotopy type as X that can be
covered by n + 1 self-contractible subcomplexes. We consider the based version, denoted
Cat*(A0, in which each subcomplex is required to contain the base point. Then Cat*(A")
satisfies properties (1) and (2) with k = 0. Hence Cat*(A )̂ < Cl(X) by Proposition 1.4. In fact
these numerical invariants are usually equal, as we next see.

The following result is due to Ganea [8]; also see Cornea [4]. For completeness we
include a proof.

PROPOSITION 1.6 (Ganea). If X is path connected and non-contractible then
Cl(X) = Cat*(T).

Proof. In view of Example 1.5(c) only the inequality Cl{X) < Cat*(A") need be verified.
Now if X doesn't have the homotopy type of a CW complex or is not path connected then
Cat*(A") = oo and there is nothing to prove. Hence assume that Cat*(Z) = n < oo. Since A'is
non-contractible, n > 1. Let Y be a CW complex of the same homotopy type as X and let
{t/,}"_0 be a covering of Y by n + 1 self-contractible subcomplexes, each containing the base
point. Set Y,• = UQ U . . . U £/, for / = 0 , . . . n,; Y, is a subcomplex of Y. Then
YQ = £/o — *, Yn = X and we claim that
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Y1nu2 rn_,

* ~ Yo

is a conic structure for * —*• Y. To see this, note that each square

is a topological pushout. This square is also a homotopy pushout since the map
y,-_i n U, —>• y,-_i is necessarily a cofibration (for (7, and y,-_i are subcomplexes). Since
Ui ~ * it follows that y,_i n £/,• -» y,-_i is an attaching map for y,-_i -> y,. Because there are
n attaching maps we conclude that Cl(X) = CI(Y) < n =

2. A fundamental lemma on certain homotopy colimits. In the next lemma we present an
extension of [13, Lemma 3.3]. Also Nomura-Nagase [17] have given a result which may be
viewed as a generalization of [13, Lemma 3.3]. Their result is quoted below as Proposition
2.5. Our Lemma 2.1 is the more general result but a relation between the two is indicated in
Example 2.4.

LEMMA 2.1. Let the diagram below be given.

Set V = hocolim | /
A

I. Then the homotopy commutative square

X B

M{a,b)

is a homotopy pushout. Note that if F is itself a homotopy pushout then the maps
homotopy equivalences.

and r) are
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Proof. Observe that a homotopy commutative cube

M{a, 0) •• M{v, u)

449

M{a,b)

M{g,(3x)

may be formed in which by construction the bottom and top squares are homotopy push-
outs. Now by two applications of [13, Lemma 3.3] the front and left squares are seen to be
homotopy pushouts. By results of Mather [16] it follows at once that the rear and right
squares are also homotopy pushouts. Next we claim that the homotopy commutative square
in the statement of the lemma is just the composite in this cube of the front and right squares
(or equivalently the left and rear squares). Our claim will be established if we show that
M(v, u) may be identified with M(a, p). Consider the following 3x3 situation.

M(a,f3)

M(a,b)

M{a,b)

a B

We proceed to take double mapping cylinders both horizontally and vertically as indicated,
making use of the identification M{a\, 1) ~ A,M(\,P\) — B and M(\c, lc) — C. An appli-
cation of [12, Lemma 4.2] then yields the result M(v, u) ~ M(a, /S), as claimed. •

That Lemma 2.1 is indeed a generalization of [13, Lemma 3.3] follows from the next
proposition.

PROPOSITION 2.2 In Lemma 2.1 we have the following properties.
(a)Ifct\ is an identity map then V ~ M(g, P\).
(b) If fi\ is an identity map then V ~ M(ot\,f).
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Proof. These identifications follow immediately since V is obtained by taking successive
homotopy pushouts. •

EXAMPLE 2.3. We consider the diagram

in which P is taken to be just the homotopy pullback of/and g and a = a\ op0, /} =
Lemma 2.1 then yields the square

E{f*9)

Pf*9

X

as a homotopy pushout. Here/* g denotes the fiberwise join of/and g (see §2 of [15, Part I]
for a definition of/* g). It is to be emphasized that V is an arbitrary homotopy colimit of the
form indicated.

EXAMPLE 2.4. Lemma 2.1 may be applied in the context of an arbitrary cube. Let the
homotopy commutative cube below, denoted Q, be given.

Suppose F :a°f=$ fi°g and F' : a'of => flog1 and let

= hocolim

A' X B'
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We may then form the homotopy commutative diagram

M(f,g)-

451

in which the map S is induced by homotopy commutativity of the cube. It follows by Lemma
2.1 that square [JJ in this diagram is a homotopy pushout. Furthermore we observe that if in
the original cube c : C -»• C is an identity map then <j> is a homotopy equivalence.

PROPOSITION 2.5 ([17, Theorem 1.8]). In the homotopy commutative cube Q above suppose
that the top and bottom squares are homotopy pushouts. Then the induced square

M(f,g)

X

is a homotopy pushout.

COROLLARY 2.6. Square [n] in the diagram of Example 2.4 above is a homotopy pushout if
the top and bottom squares of Q are homotopy pushouts.

3. The exterior join case. Let homotopy fractorizations of maps a and p be given as
follows.

a P

( \ f~, I~^ (3-0

We suppose that specific homotopies F: c*i o« => a and G : fi\ ob =» /S have been selected.
Now we define

v = -

to be the homotopy colimit of the diagram:

4x

XxB
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Consider the homotopy commutative cube below.

Ql X 1
Ai X B :

a x 1
xB

AxB-

1 xb
l x l

a x 1

y
*AxB

1 xb
a x 1

y

Ax Bx

Ax xBx

1 x/3

1 x/3

ax x Bx
——*Ix7

a x 1

Applying Lemma 2.1 in the context of Example 2.4 and taking note of the presence of the
identity map 1 x 1 : ^ x 5 ^ ^ x 5 in the cube (which implies that <p : M(\ x fi\ob,
u\ oa x 1) -> E(a-kp) is a homotopy equivalence) we obtain a homotopy commutative diagram

Pa-kb

.V
^6

-*X xY

Pa+0 (3.2)

in which square Q] is a homotopy pushout, with induced map S : V -» X x Y.

PROPOSITION 3.1. The identifications

Y) =

are valid and each of the squares

E{a+b) •

Pa-kb

Ax X Bx

£ • E(a+b) E{a+b)

Pa-kb

•E{a

is a homotopy pushout.
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It is interesting to observe that if the spaces A\ and B\ are each one point spaces then the
above squares become cofiber sequences. In fact there is some analogy here to be noted with
the cofiber sequence of a triple.

4. Whitehead products via the exterior join functor. In this section we give a presentation
of Whitehead products from the point of view of the exterior join functor. Actually our
definition of the Whitehead product is more general than the classical one and is somewhat
related to the star product approach of Blakers-Massey [2].

Let the following data be specified:

I—2—A

a

•X

U:E{a+0)->Z (4.1)

Here the homotopies G and H need only be given up to track equivalence and are assumed to
be neither homotopy pushouts nor homotopy pullbacks. However we refer to data (4.1) as
constituting the cofiber case if indeed G and H are assumed to be homotopy pushouts. Now
the two squares in (4.1) determine unique classes OQ : A -» Fa and GH : B -» Fp satisfying
iaoaG = a and 1$°OH = b respectively. Then by application of the exterior join functor we
obtain a map w : A * B -*• E(a iff}) and the following homotopy commutative diagram in
which the vertical composites are fibration sequences:

A*

1

A*

* X * •

K

+ E{orkP) •

Pa+0

•*Ix7

U
- » Z (4.2)

An explicit formula for a representative of vv may be taken to be

(a(u),H(vA0) , if 0 < r < 1
w[u, v, t] =

( C ( M , 4 - 4 0 , 6(v)) , if \<t< 1,

for M € A, v € B.

DEFINITION 4.1. In the context of data (4.1) we will refer to w above as the Whitehead
product map associated to the squares G and H. Also we set WP(U; CQ, OH) =
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U°w : A * B-> Z and call this composite the Whitehead product class corresponding to the
data (4.1). Additionally we will say that the map U : E{aicfi) -*• Z is (air0)-projective if there
exists a map y : X x Y -*• Z such that Y°Pa*p — U.

From diagram (4.2) it is clear that WP(U; CFG, OH) — 0 whenever the map U is (or-fr/J)-
projective. The converse statement is true in the cofiber case, namely:

PROPOSITION 4.2. In the cofiber case o/(4.1) the square

A*B

is a homotopy pushout and consequently WP(U; <rG, aH) = 0 if and only if U is (a1c{i)-projec-
tive.

Proof. Because the exterior join functor preserves homotopy pushouts, the square in
(4.2) containing K must be a homotopy pushout when we are in the cofiber case. The pro-
position follows. •

In fact, by using the P-construction, a precise description (covering all cases, not just the
cofiber case) of the mapping cone of w in (4.2) may be given, as follows.

THEOREM 4.3. {The Cofiber Theorem for the Whitehead product map). For the data (4.1)
consider the homotopy factorizations

a 0

where /̂ <j and HH are the respective maps induced on mapping cones by the homotopies G and
H. Here if : A -> Ca indicates inclusion in the mapping cone at parameter t = 1 (and similarly
for if). Set

v =
Then the square

A*B w

is a homotopy pushout.
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Proof. Under the exterior join functor the composite squares

X-^A-^A

a

induce the homotopy commutative diagram below.

w

r
A*B

i * i i \U\

* x * • ->-CaxCb

Being an instance of the cofiber case, square [TJ will be a homotopy pushout. And by (3.2)
square [fi] is a homotopy pushout. Thus the composite square is a homotopy pushout as
claimed. •

EXAMPLE 4.4. We consider the above results in the setting of the ordinary Whitehead
product. That is, we suppose given the data

A *-* B *~*

u v v
i I s EA V SB > Z

T.A

in which DA and Dg denote the defining homotopies for the respective suspensions. Note
that ODA — r)A '• A ->• QUA and ODB = r\B '• B ->• fiE5 where r]A and rjs are the canonical
maps.

In this case a check of the definitions shows that the composite arrow

HA v E S

may be identified with the composite

W

A * B -> Y,A v "LA v

where H^is the ordinary Whitehead product map as defined, say, in [7, page 181], r denotes
parameter reversal, and T is interchange of factors. It follows therefore from the Cofiber
Theorem 4.3 that the square
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A*B
W

•*- Y,A V S B

inc

•EAxEB

is a homotopy pushout-a classical fact proven in [1, Theorem 4.2]. Furthermore if
[,]; 7r(IL4, Z)x 7r(E£, Z)-> n{A*B,Z) denotes the ordinary Whitehead product pairing,
then we see that

WP((u v v)°T; riA, r\B) = [-u, -v] : A * B -*• Z,

for all M e 7r(E/4, Z), v e n{T,B, Z).

5. The slash product map construction. In this section we give a construction of the slash
product map; this construction is viewed as one generalization of the Whitehead product map
defined in Definition 4.1. There is both a left and a right version to be considered. These are
denoted (a/ct\, p) and (a, ft/fi\) respectively. They have the functorial forms indicated below.

~ ~ (a/

G. R (5.1)

(5.2)

For example, the square /? in (5.1) is by definition the following composite square.

r
A*B- •E{aic0)

* X * •

Here the left square is obtained by applying the exterior join functor to the squares G and H,
while the right square is obtained as in Proposition 3.1 and is always a homotopy pushout.
Of course the left square will be a homotopy pushout if G and H are homotopy pushouts
(since the exterior join functor preserves homotopy pushouts). These remarks yield part (a)
in Proposition 5.1 below. The similar definition and analysis of (a, /V^i) is omitted.
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PROPOSITION 5.1 (a) If in (5.1) the squares G and H are homotopy pushouts then so is R.
(b) If in (5.2) the squares J and K are homotopy pushouts then so is S.

REMARK 5.2. Given squares

*—*x
it is clear that the identifications

are valid. That is, the slash product map construction generalizes the Whitehead product
map construction.

Referring to the conic structure (1.1) let a, : A,•• -*• X denote the composite

A t - > A i + \ -> • ...-*• A n - * - X.

In particular an = an. Also let the square

be assumed to be a homotopy pushout. By iterating Proposition 5.1 we thus have:

PROPOSITION 5.3. Under the hypotheses just described, the diagram

A~i*B A2*B An*B

(a,/a3,/3)| (a2/o3>/3)| {an/lx,0)\

) ( ) E ( a n i r p ) =—»• X x Y

constitutes a conic structure for pa{*p- Consequently, Cl(paii,p) < Cl(ct\) whenever Cl(P) — 1.

In Proposition 5.3 it is to be emphasized that all the attaching maps in the conic structure
are slash product maps, with the top attaching map (an/\x, P) being a Whitehead product
map, by Remark 5.2.

EXAMPLE 5.4. In this example we examine the cone length of the projection map
prr : A'x 7-> Y. By Corollary 1.3 we have C/(pry) < Cl(Y)+ 1. We note that this same
estimate can be obtained via Proposition 5.3 even though pry itself is not an exterior join
fibration. To see this we refer to the diagram
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X

inc
q

X x F - ^ Y

Pry

where by definition the half-smash I K Y is the cofiber of the inclusion of X — X x * into
X x Y. By Proposition 1.1 we have C/(prr) < Cl(p) + Cl{q). Plainly Cl{q) = 1. Next we note
that the map p is an exterior join fibration since the identification

(X *\
E M, * 4, \=

V* Yj
is valid. Furthermore Proposition 5.3 is applicable because Cl(X^-*)=\; hence
Clip) < Cl(Y). In consequence the inequality

C/(pr y :Xx K - > Y) < Cl(Y) + 1

is again obtained.

REMARK 5.5. As mentioned in the introduction the name "slash product" is appro-
priated from Hardie-Porter [9]. The relevant example there concerns the map

(SP * \
(ip x iq)/ep+l : Sp+<> = Sp * 5 * - ' -> E\ I * J. = (Sp x S») U (£/>+1 x *)

V* /̂
(see [9, Definition 1]) which from the viewpoint adopted in this article would be called a
Whitehead product rather than a slash product.

6. The cone length of pai,p. This section is devoted to proving the following theorem.

THEOREM 6.1. For maps A -> X and ft : B -> Y the inequality

mP) < Cl(a) • Cl(P)

is valid.

Suppose Cl(a) = n > 1 and Cl(fi) — k > 1. Let conic structures

Ai A2 An

S2 an\
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and

B\ B2 Bk

12\ bk

h b2 bk-i

Pi

be given where A\ = A,a\ =a,B\ =B and f$\ = p. As usual we let a, : Aj-* X and
fij : Bjr -»• Y denote the composites

Aj 4- Ai+\ 4-' . . . -> y4n -5- X

respectively for 1 < ;' < n, 1 <j < k. Of course a,, = an and fa — bk- We consider the factor-
ization

^ X x Y

of />o,*/j,; note that this has C/(ai) factors. Now for each / = 1 , . . . ,« the square

x Y

is a homotopy pushout, by Proposition 3.1. That is to say, the above factorization decom-
poses /?<,,./?, into iterated double mapping cylinders. Also Cl(pait^) < Cl(fi\) by Proposition
5.3 since Cl{a,) = 1. Hence by Proposition 1.2(b) we deduce that

and consequently the inequality C/(pff|^,) < Cl(a\) • Cl{fi\) is obtained since as was pointed
out above there are Cl(a\) factors in the factorization of paiirp,. This completes the proof of
Theorem 6.1.

In Theorem 6.1 one should note that not all the attaching maps are describable as slash
product maps. Indeed a sequence of slash product maps does occur in the conic structure but
interspersed between any two such are other attaching maps which we have not described
explicitly.

7. Concluding remarks. For spaces X and Y let X v Y -*• X x Y be the inclusion of the
wedge into the product. It is instructive to look at Theorem 6.1 as applied to this example.
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Such an application is possible since this inclusion may be identified with the exterior join
fibration of the maps * -> X and * -*• Y (cf. [15, Part II]). Hence Theorem 6.1 yields the
inequality

Cl(Xv y-» X x Y) < Cl(X) • Cl(Y). (7.1)

However this inequality is not a sharp result. For example, assume that X and Y are spaces
each having cone length < 2. Then (7.1) gives 4 as an upper bound for the cone length of
Xv y->- Xx Y. But it is shown in [11, (6.1)] that the inequality Cl(Xv Y-> X x Y) < 3
obtains and indeed appropriate attaching maps are described there.

Finally we note that Corollary 1.3 may be applied to patp : E(airfi) -> X x Y as a map.
This yields the inequality Cl(pat,p) < Cl(X x Y)+ I and we wish to compare this estimate
with that given in Theorem 6.1. We restrict attention to spaces X and Y that are path-
connected and non-contractible. Then by Proposition 1.6 we may write CI(X x Y) =
Cat*(Jrx Y). Now it is a result of Takens [18] that Cat*^ x Y) < Cat*(7) in this case.
Hence the inequality

fi) < Cl(X) + Cl(Y)+\ (7.2)

is obtained. We observe that sometimes it is Theorem 6.1 that is the better estimate, some-
times (7.2).
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