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NOETHER LATTICES REPRESENTABLE AS QUOTIENTS 
OF THE LATTICE OF MONOMIALLY GENERATED 

IDEALS OF POLYNOMIAL RINGS 

D. D. ANDERSON, E. W. JOHNSON AND J. A. JOHNSON 

Noether lattices were introduced by R. P. Dilworth in [5] and const i tute a 
natural abstract ion of the lattice of ideals of a Noetherian ring. In his definitive 
work, Dilworth showed tha t a minimal prime of an element generated by n 
principal elements has rank ^ n. Following s tandard ring theoretical termi­
nology, a local Noether lattice with (unique) maximal element M is said to be 
regular if M has rank n and can be generated by n principal elements. 

In [3], K. P. Bogart showed tha t a distributive regular local Noether lattice 
of Krull dimension n is isomorphic to RLn, the sublattice of all ideals generated 
by monomials of any polynomial r i n g K\_Xij . . . , xn ] (k a field). In a later paper 
[4], Bogart extended his results on distributive regular local Noether lattices 
by showing tha t any distr ibutive local Noether lattice is the image of a multi­
plicative map 6 which preserves joins, and can in fact be thought of as the 
related congruence lattice. 

This paper began with two related problems which occurred a t about the 
same time. First : given Bogart 's result above tha t every distr ibutive local 
Noether lattice ^£ is the image of a distributive regular local Noether lattice 
RLn under a multiplicative map 6 which preserves joins, wha t special prop­
erties does<if have if 6 is a lattice homomorphism? And, second: wha t are the 
special properties of the quotients RLn/K, either in terms of internal properties 
or in terms of properties of the map 6, which distinguish them from the other 
distr ibutive local Noether lattices? The first question led to a general investiga­
tion of what we have called r-homomorphisms, and yielded a generalized 
"Fundamental Theorem" for this class of homomorphisms. Applied to the 
original question, it shows tha t if 6 is a lattice homomorphism, then J?f is, up to 
isomorphism, one of the quotients RLn/K. Since the natural map irK : RLn —* 
RLJK is a lattice homomorphism, the second problem is reduced to the 
problem of finding an internal characterization of the quotients RLn/K. Here 
we discovered tha t the quotients RLJK are distinguished (among distr ibutive 
local Noether lattices) by the property tha t the elements Et of the minimal 
base of the maximal elements are (what we have called) q-prime (i.e., if Fi and 
F2 are principal elements such tha t FXF2 S E, then Fx ^ E, F2 ^ E, or 
FiF2 = 0) . A generalization of Bogart 's result mentioned above is also ob­
tained outside of the local case. 
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It is convenient to introduce some terminology. 
By a homomorphism (or morphism) between Noether lattices i f and i f ' we 

will mean a multiplicative lattice homomorphism 0:i?->if'. If 0 is jus t a 
multiplicative map which preserves order, we will call 6 an O-morphism. 
Similarly, if we abbreviate join, meet and residual division by / , M and R, 
respectively, we will call 6 an X-morphism if 6 is a multiplicative map which 
preserves the X-operation (X = J, M, R). (It is easy to see that for X = J, 
M, R, any X-morphism is an O-morphism.) If 6 : ££ —->î r is a homomorphism, 
and if there exists a subset ^ of principal elements which generates i f under 
joins such that 6(E) is principal, for every element E G S, then we call 6 an 
r-homomorphism. We will also use the variations epimorphism and monomor-
phism, with or without further prefixes, when appropriate. 

If K Ç o ? w e denote by TTK the natural map of J£ to J£/K (i.e., TTK(A) = 

A V K). And if Sisasubmultiplicatively closed subset of Jzf we denote by is the 

natural map ofi^7 to i f s (i.e., is (-4) = ^4s) (see [2, Section 2]). We note that, 

in our terminology, is is both an r-epimorphism and an 7?-epimorphism (an 

i?-r-epimorphism), while TK is a /-epimorphism. (If if is a distributive ele­

ment, wK is an M-morphism, but in general, irK need not be either an ^-mor­

phism or an lf-morphism, or may be an Af-morphism and not an i?-morphism; 

see Corollary 1.1.) 
If 6 is any O-morphism, we will denote by Jf(d) the join of all elements A 

such that 6(A) = 6(0) and by J (6) the multiplicatively closed subset of all 
elements A such that 6(A) = (I). 

It is easily seen that if 6 : S£ —^^£' is any O-morphism and if J' (6) = S, 
then As S Bs implies 6(A) ^ 6(B). Hence, naturally associated with any 
O-morphism 6 is a map 6S : J£'s —»«J$f' defined by 6S(AS) = 6(A). Although 
discovered independently by the present authors, a slight variation of the map 
6s was first isolated and used by P. J. McCarthy to study what, in our setting, 
amounts to i^-epimorphisms [7]. We record the principal properties of 6s 
below without proof. 

THEOREM 1. Let 6 : i^7 —>0Sf/ be an O-morphism with J (6) = S. Then 
(i) 6s is an O-morphism; 
(ii) 6 = 6sis\ 

(iii) 6s(X) = Iif, and only if, X = I; 
(iv) 6 s is a J-morphism (resp. M-morphism, R-morphism) if, and only if, 6 

is a J-morphism (resp. M-morphism, R-morphism); 
(v) if 6 is an R-morphism, then 6 s (A) S 6 s(B) if, and only if, A S B. Hence 

6(££) is isomorphic to S£s so that, in particular, 6(S£) is a Noether lattice; 
(vi) if 6 is an ^-epimorphism and S = {1}, then 6 is an isomorphism; 

(vii) if 6 is an R-epimorphism, then 6 is an M-J-morphism. 

COROLLARY 1.1. If TK : i f —>if'/K is an R-morphism, and if K S J(^) = 
A {M\ M is maximal inf£\, then K — 0. 
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COROLLARY 1.2. / / S is a submitltiplicatively closed subset of $£ and 
if S = J (S), then ^ s ~^ s> Moreover, S is the largest multiplicatively closed 
subset of !£ such that S 5 S and A § -̂> A s is an isomorphism. 

It is trivial that if 9 : i f - > J ^ is a J-morphism and B ^ J f (0), then the 
restriction of 0 toJ^ ' /B is a / -morphism. We denote the restriction of 0 toJ^/B 

by 0B. Of course, in general, 0B will not be an isomorphism, even if B = ^ (0). 

However, (hi).of Theorem 1 allows us to restrict our a t tent ion to a special case. 

T H E O R E M 2. Let 0 \*£ —»o£f' be a homomorphism such that J (0) = {I}. If 

jf(d) = K, then the map 0K : ^£/K —>J2?' is an r-monomorphism provided 

(i) 0 is an epimorphism; or, provided 0 is an r-homomorphism and one of the 

following is satisfied: 

(ii) <if ' is local; 

(iii) 0 is prime in^£'; 

(iv) if D and E are elements of ^ with E £ ^ , then 0(D)0(E) = 6(E) implies 

E^DEV K. 

Proof. Clearly (ii) and (iii) imply (iv), since J (6) = {/}. We show tha t if 
(i) holds then 6 is an r-homomorphism satisfying (iv) and tha t if 6 satisfies 
(iv), then 0K is a monomorphism. 

Hence, assume (i) holds and let D and E be elements of ££ with E principal. 
Then 0(D) A 0(E) = 0(D A E) = 0((D : E)E) = 0(D : E)O(E), so t ha t 0(E) 
is weak meet principal, and therefore principal, in ££', [2, Theorem 2.9]. If 
0(D)0(E) = 0(E), then I = 0(D) V (O : 0(E)). Choosing C G i f so t ha t 
(9(C) = 0 : 0(E), we get / = 0(D) V 0(C) = 0(£> V C), so t ha t D y C = I 
and therefore £>E V CE = E. Since CE ^ K by the choice of C, it follows 
t ha t (iv) holds. 

Now, assume tha t (iv) holds and tha t A and B are elements of <££/K with 
0(A) ^ 0(B). If £ is any principal element in & such tha t E ^ A, then 
0(E) ^ 0 ( 4 ) ^ 0 ( £ ) , so tha t 

0(E) = 0(B) A 0(E) = 0(B A E ) = 0 ( ( £ : E)E) = 0(B : E)O(E). 

Since 4 is the join of principal elements in ^ , it follows tha t A ^ B \/ K = B. 

The following might well be called the fundamental theorem of r-homomor-
phisms. 

T H E O R E M 3. Let 0\^—^^£' be an epimorphism. Let S= J (0) and 
K =<3^(0s)> Then the following diagram is commutative, all maps involved are 
r homorphisms and the map (OS)K is an isomorphism. 
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^ - ><£' 

Proof. The results follow readily trom Theorem 1 and Theorem 2. 

We note that Theorem 2 can be used to obtain three alternative statements 
of Theorem 3 in which the conclusion is that ^£ s/K is isomorphic to the image 
in i f ' of 0. In particular, we observe that if d : i f —>J£' is an r-homomorphism 
and if one of (ii), (iii), or (iv) of Theorem 2 is satisfied, then 0(if ) is a sub-
Noether lattice of if'. 

In [4], K. P. Bogart showed that if i f is a distributive local Noether lattice 

with maximal element^, then there exists a regular local Noether lattice RL„ 

and a /-epimorphism 6 : RLn->J£\ If we denote the equivalence relation 

back induced on RLn also by 0, then RLJ9 ^ i f . We extend this result to 
regular Noether lattices in general, ( i f is said to be regular if i f ^ is regular for 

each maximal element M of i f . ) 

T H E O R E M 4. LetJ£ be a distributive Noether lattice. Then there exists a regular 

Noether lattice domain S% (J£) and a J-epimorphism 6 : 3? (^£) —>i^, which takes 

principal elements to principal elements, such that 

(i) 6 establishes a Injection between the maximal elements of ^{S/7) and the 
maximal elements of S£, and 

(iD j(0) = [i\. 

Proof. Let # ' be the family of maximal elements of i f . For each M £ # \ 
choose a finite set p{M) of principal elements such t ha t every prime P ^ M 
is the join of a subset of p (M) (this is possible since there are only finitely many 
primes i n i f M ) . Let 5 be the multiplicative closure of K = U M ^ P(M), and 
let & be the closure of 5 under joins, including 0 and / . Assume CS ^ i^7 and 
let N be maximal in the complement of &, so t h a t TV is not prime. Fix prin­
cipal elements E, F such tha t EF g N, E ^ N and /^ f£ TV. Then 
TV < N : E 9^ I, so N : E £ &, by the maximali ty of TV. Hence, we may 
choose Ni, . . . , Nk £ S with N : E = Ni V . . . V Nk. It follows t ha t 
N = V î - i (TV A TV,) = V t i (TV: TV,)TV,, Now, TV, ^ N : £ implies £ g TV : Nt. 
Since also TV ^ TV : TV,, it follows t ha t TV : TV, Ç ^ . Bu t then (TV : A^,)A^Z G ^ , 
i = 1, . . . , k, and therefore also TV Ç ^ . Hence & = ^ . 

Now, let X be the set of all subsets 4̂ of i£ such t ha t A C p ( M ) for some 
M ÇL 3F. Then by Theorem 8 of [1], there exists a unique regular Noether 
lattice domain 3$(J£) and a bijection 0 from the set of principal primes of 
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$$?) onto K that extends to an isomorphism of posets 0 : Spec ($(££))-*X 
given by 6(P) = {d(Px), . . . , 0(Pn)}, where P - Pi V . . . V Pn is the 
unique decomposition of P as a join of nonzero principal primes. If we extend 
6 to a map of ${$£) to i f by taking products to products and joins to joins, 
then 6 has the desired properties. 

We note t ha t above it is not sufficient to take p(M) to be an arbi t rary finite 
set of principal elements with join M (as it is in the local case). For example, 
i f = RLi © RL\ has two maximal elements, (M, I) and (/, M), both of which 
are principal. However neither (0, / ) nor (/, 0) is a join of powers of (M, I) 
and (/, M). 

T H E O R E M 5. Let<f£ be a distributive Noether lattice. Then there exists a regular 
distributive Noether lattice domain i f and an r-epimorphism 6 : S/f-^-^£ if, and 
only if ,<f£ is isomorphic to a quotient^/K of a distributive regular Noether lattice 
domain ^ . 

Proof. If J (6) = S, then J£§ is a distr ibutive regular Noether lattice 
domain [1], By Theorem 3 , i ^ i f £ / % where K = jf(Os). 

Because of the additional structural knowledge of the local case, Theorem 5 
can be strengthened considerably in the local case. If Xi, . . . , Xn is the minimal 
base of the maximal element of RLn, we adopt the notat ion 

RLn = RL(X1}...,Xn). 

The following theorem summarizes our results on distr ibutive local Noether 
lattices and gives the internal characterization referred to in the introduction. 
Recall t ha t an element E is g-prime if, for principal elements F\, F2, FiF2 ^ E 
implies Fi S E, F2 ^ E or FiF2 = 0. 

T H E O R E M 6. Let ( i f , M) be a distributive local Noether lattice. Let Ei, . . . , En 

be the minimal base for the maximal element M. And let 6 : RLn —><f£ be the 
unique J-epimorphism from RLn to f£ satisfying 6(X t) = Et. Then the following 
are equivalent: 

(i) Ei is q-prime, i = 1, . . . , n; 
(ii) 6 is an r-homomorphism; 

(iii) i^7 ^ RLJK, where K = tf(6); 
(iv) i^7 ^ RLJK, for some K; 
(v) if E, F are principal elements of RLn with 6(E) = 6(F) ^ 0, then E = F. 

Proof. Theorem 3 shows tha t (ii) implies (iii). T h a t (iii) implies (iv) is obvious. 
The verification tha t (ii) implies (i) is straightforward, using tha t the elements 
Xt (z RLm are prime and tha t principal elements in i f are join-irreducible. 

Assume tha t (i) holds and tha t 0 ^ 6(E) = I i i Et
8* = I I ï £ / » = 6(F). 

If Si > 0. But then E / » - 1 1 1 ^ £ / / = Et
s^1 1 1 ^ , £ / ' . T h a t (i) implies (v) 

now follows by induction. 
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Now, assume that (v) holds and that A and B are elements of RLn such that 
0(A) = 6(B). Let Ai} . . . , Am be the (unique) minimal base for A and let 
B\, . . . , Br be the minimal base for B. Then for each / there exist u and v such 
that 6(At) ^ 0(BU) ^ 0(AV), whence 0(At) = 6(E)6(AV) = 6(EAV), for some 
principal element E Ç RLn. It follows that 0(/l t) = 0 or 4̂ t = JEL4W. In the 
latter E = I and / = i>, so that 4̂ * = Bu. Hence A S B V K, where 
K = 3f (0). Similarly B ^ A \/ K. Since 0 ( i ) = 0(4 V X), we have that 
0(4) = 0(B) if, and only if, A V K = B V K. Since (4 V # ) A (5 V K) = 
(A A B) V K, it follows that 0 is an r-homomorphism. Hence (v) implies (ii), 
and the proof is complete. 

It is obvious that if S£' is isomorphic to a quotient ^£'/K and ^£ itself is 
isomorphic to a quotient of a distributive regular local Noether lattice, then 
f£ ' is isomorphic to a quotient of a regular, local Noether lattice. The following 
proves the somewhat surprising result that any sub-Noether lattice of a quo­
tient of a distributive regular local Noether lattice is isomorphic to a quotient of 
a distributive regular local Noether lattice. 

THEOREM 7. Let : i f —>if' be an r-monomorphism, where if r is isomorphic 
to a quotient of a distributive regular local Noether lattice. Then^£ = RLJK for 
some n and some K. 

Proof. Since 0(1) is idempotent, either 0(1) = I or 0(1) = 0. In the latter 
case, i f = {0}. Similarly, 0(0) is idempotent, and therefore either i f = {0J or 
0(0) = 0. We may assume 0(1) = I, 0(0) = 0, and 7 ^ 0 . Let Eu . . . , En be 
a minimal base for the maximal element M of i f , and let E\ , . . . , En

f be a 
minimal base for the maximal element M' of ^£'. We may assume 
that «if7 = RLJK and that E( = Xt V K. Note that in RLJK the inter­
section of a finite collection of principal elements is principal. Also, 

ERLi Xfi V K = Ai=i ^ V K, and 

117.! */y v i ^ n^x x/i v # 
if, and only if, either 

117-1 Xfi ^ K or ej £ /,- for all j = 1, . . . , m. 

Fix r and 5, 1 ^ r < 5 ^ w. Then 

0(Er) A 0(E,) - 0(Er A E r) ^ 0(M£S) = Wn
i=1 0(EtE,S), 

so 

0(Er) A 6(ES) ^ 0(EtEs), for some i = 1, . . . , n. 

Set 

0(£,) = ri"U JT/ ' V X, i = 1, . . . , n. 
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We assume that r, ^ Sj for 1 ^ j ^ u and that rj < s;- for j > w. Then 

B(Er) A 0(£,) = (ITUX/' V K) A (II?=1 X/> V X) 

= (A7-i*/< v if) A ( A ; J / ' v x) = ( A M ^ / 0 

A (A^X/0 V £ * 0(E«)0(E,) - n^ iZ/^» V K. 
If 0 (£ r ) A 0 (£ s ) - 0, then clearly 

6(Er) A 6(E8) = 6(Er)6(E8). 

Otherwise, r?- = i , + Sj for 1 ^ 7 ^ w and Sj = ij + s, for j > w. I t follows tha t 
ij è ?'j for all j , and hence tha t d(Et) ^ 6(Er). Since 0 is an embedding and 
£ 1 , . . . , En is a minimal base for if, it follows tha t i = r, and therefore t ha t 

0 (£ r ) A 0 (£ . ) = 6(Er)0(E8). 

Hence Er A Es = ErEs for all r 5* s. But then ( £ r : ES)ES = ErEs, so t ha t 
Er : £6. = Er V (0 : £ s ) . Since every principal element in ££ is a product of 
£ 1 , . . . , £w , it follows tha t Er is g-prime for all r, and hence tha t J?? is a quot ient 
of RLn. 

We note t ha t i f = [M\ M*] U {/} is natural ly embedded in RLJ Mz 

(when M is the maximal element of RLn) whereas for n ^ 2, the number of 
elements in a minimal base for M2 in i ^ exceeds the number of elements in a 
minimal base for M in RLn/M*. However, if J?f ' is taken to be a domain in 
Theorem 7, this cannot happen. 

T H E O R E M 8. Let ( i ^ , M) be a local Noether lattice and let 0 : i f —* i?Ln &£ aw 
r-monomorphism. If Ei, . . . , £ m is a minimal base for the maximal element of 
<S£, then ^ = RLmfor some m ^ n. 

Proof. We may assume i f ^ {0J. Of necessity, i f must be a domain, since 
RLn is. By Theorem 7, i f is isomorphic to RLm/K, for some K, so since the 
only primes of RLm are generated by subsets of the minimal base for the 
maximal element of RLm, we may assume i f = RLm. Let X\, . . . , Xm be the 
minimal base for the maximal element of RLm and let 7i , . . . , Yn be the 
minimal base for the maximal element of RLn. If 0 ( 7 , ) and 0 ( 7 , ) have a com­
mon factor, say Xkt then there exist principal elements £ , and £ , in RLn such 
tha t 0 ( 7 , ) = XkEt and 0 ( 7 , ) - XkEj. If * ^ j , then 

X, 2£,£, = (X,£,)(X,£,) = 0(7,)0(7,) = 0(7, A 7,) 
' = 0 ( 7 , ) A 0 ( 7 , ) = XkEt A X „ £ , = X , ( £ , A £ , ) ^ XkEtEj} 

which is a contradiction. A simple counting argument now shows tha t m ^ n. 

If if is any Noether lattice and £ 1 , . . . , En are principal elements, we 
denote by RL(Ei, . . . , En) the multiplicative lattice consisting of all joins of 
power products of Ei, . . . , En. 

I t follows from the previous results t ha t if £ 1 , . . . , En is a subset of the 
minimal base for the maximal element of RLm/K, then RL(E\, . . . , En) is a 
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sub-Noether latt ice of RLm/K and is in fact isomorphic to a quot ient of RL„. 

Although the elements £ 1 , . . . , En do not necessarily form a prime sequence, 
this behavior is reminiscent of t ha t described in [6], and the analogy is made 
even tighter by the fact t ha t the elements Qt = Ex V . . . V Et form a chain 
of g-prime elements of length n. These observations suggest natural generaliza­
tions of the definitions of prime sequence and regular. Specifically, if ££ is a 
Noether lattice, we call an ordered sequence Ei, . . . , £ „ . of nonzero principal 
elements (contained in the radical of J?f) a q-prime sequence if it satisfies the 
conditions 

(i) ( E 1 V . . . V E , ) : £*+i = £1 V . . . V Ei V (0 : £ , + 1 ) , for all 

i = 1, . . . , n — 1, and 

(ii) (0 : Et) A (Ji V J2) = ((0 : E%) A Ji) V ((0 : £<) A J2), for all 

i = I, . . . ,n, and for all /1 , / 2 £ RL(Eh . . . , £ J . 

We call a local Noether lattice («êf, M) q-regular if there exists a g-prime chain 
Ço < Qi < • . . < Qdy where d is the number of elements in a minimal base 
for M. 

We note that since the elements Eh ... , En are principal, (i) is equivalent to 

(£1 v . . . V Et) A Ei+1 = (£1 v . . . v £<)£i+i 

and (ii) is equivalent to 

Et(Ji A / 2 ) = EJi A £ i / 2 , 

for all i and for all J\, J2 G RL(Ei, . . . , £ „ ) . 

We begin by showing tha t , as for prime sequences, g-prime sequences are 
order independent. 

LEMMA 9.1. Let £ 1 , . . . , En be a q-prime sequence and <p £ Sn. Then 

£^(D, . . . , £^(n) w a q-prime sequence. 

Proof. Since £ 2 A £1 = £1 A £2 = £ i £ 2 , it suffices to show tha t 

(£1 V . . . V £ ,_ i ) A £ i + i = (£1 V . . . V £<_i)£<+i 

and tha t 

(£1 V . . . V £ , - 1 V £ t + i ) A £* = (£1 V . . . V £ . - 1 V £ i + i ) £ f . 

for all i ^ 2. 

Now, 

(£1 V . . . V £<_!) A Ei+1 = ( £ : V . . . V £ z _ i ) A Ei+1 

A (£1 V . . . V £ 0 = (£*£i+i V . . . V £ , _ i £ , + i ) 

V ( (£1 V . . . V £ ,_ i ) A £ , A £*£*+ i ) 

= ( £ i £ < + 1 V . . . V £<_i£ ,+i) V ( (£1 V . . . V £ ,_ i ) A £ « + i ) £ „ 
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so 
(£1 V . . . V £<_i) A Em = EiEt+j. V . . . V E^Em 

= (£1 V . . . V £,-!)£<+!, 
by the Intersection Theorem. 

Similarly, 

(Ei V . . . V E,_i V £ i + i ) A E , = (Ei V . . . V £«_i V E,+i) 

A (Ei V . . . V £ , ) A £ i = ( (Ei V . . . V £ ;_ i ) 

V ((£1 V . . . V £ , ) A E j + , ) ) A E( = (Ei V . . . V £*_i 

V £ , £ i + i ) A E, = ((Ei V . . . V E i - i ) A Et) V £ « + i £ , 

= (£1 V . . . V E i - i V Ei+1)Et. 

LEMMA 9.2. Let £ i , . . . , E„ be a q-prime sequence and ei, . . . , en nonnegative 

integers. Then 

AUEi" = IBE4«<. 

Proof. Since for r 7^ s, Er, Es is a g-prime sequence, we have 

£ / + 1 A £ s
m = £ r

m A £,, ; '+1 A £ r A £ , = ( £ r
m A £ , m ) 

A EsEr = £ / + 1 A ( £ / + 1 A ErEs) = Er
i+1 A ( ( £ / A £ , ) £ , ) 

- £ / + * A ((Es
jEr)Es) = E / + 1 A ( £ / + 1 £ , ) = ( £ / A £ / + 1 ) £ r 

by induction on the sum of the exponents. Hence 

= (LTd £«« W " = ITU E / S 
by induction on n. 

LEMMA 9.3. Let £ 1 , . . . , Enbe a q-prime sequence and let J be a join of power 
products of £ 2 , . . . , En. Then Ei A J = EiJ. 

Proof. If no power product involved has length > 1 , then the result follows 
from Lemma 9.1. Hence, assume some power product involving En has length 
> 1 . Wri te J = K V BEn, where K is the join of power products of 
£ 2 , . • • , En-\. 

By induction on the sum of the lengths of the power products of which / is 
the supremum, we have 

Ex A / = £1 A ((£1 V K) A (KV BEn)) = E, A (K V ((£1 V K) 

A BEn)) = £1 A (K V ( ( (£1 y K) A En) A BEn)) = El 

A (KV ( ( (£1 V K)En) A BEn)) 

(by the inductive hypothesis, since En does not appear in £1 V K wri t ten as 
a join of power products) 

= E, A (K V ( (£1 V K) A B)En)) = E, A (K V ((£1 A B) 

V (K A B))En)) 
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(since £1 A (K V B) = E,(K V B) = E,K V EXB = (E1 A K) V (Pi A B)) 

= £1 A ( P V £ i5£„) = (Pi A K) V PiPPw = P i P V E,BEn 

= Ei(K V P P J - E i / . 

LEMMA ^ A. Let EU . . . , Enbe a q-prime sequence in ̂ . Then RL (Eu . . . , P J 
is a distributive sublattice of ££. 

Proof. If P and /* are elements of PL (Pi, . . . , P J , where P and /* are 
power products, then P A /* is an element of PP(P i , . . . , P J , by Lemma 9.2. 

Hence, to show that 

P A (WUJÙ = V : = I ( P A / o , 

it suffices to consider the case P = Pi r + 1 . Moreover, by Lemma 9.3, we may 
proceed by induction on r. Let Jt = Hn

j==i E^ and assume i\ > 1 for 
i = 1, . . . , u and ti = 0 for i > u. Also, for 1 ^ i ' f£ u, let 

/ / = Ei<i-irn_2£A 

Then 

Ei'+1 A (Vi-i/«) = £ir+1 A £1 A (V'w/0 = £ir+1 A ((Vw/O 
v ( V o . f i . i i ) ) = £ i ( £ i r A ( ( V U J7) v (V,>, /«) ) 

= £i((V^_i £ i r A / / ) V V*>M (£i r A / , ) ) = V*=1 (£ r + 1 A / , ) . 

The equation 

(VLi Pi) A (V?_ i / , ) = V M (Pi A / , ) 

now follows by induction on u. 

THEOREM 9. Let Ei, . . . , En be a q-prime sequence in££. Then 

RL(Eu • • • , En) 

is a q-regular distributive Noether sublattice of J£. 

Proof. Since PL (Pi, . . . , En) is a distributive sublattice of ££ by Lemma 
9.4, and since every element of PL (Pi, . . . , En) is, by definition, a join of 
power products of Pi, . . . , En, it suffices to show that the elements Et are 
principal in PL (Pi, . . . , En). 

By Lemma 9.3 and Lemma 9.4, it is immediate that J A Et is a multiple of 
Eiy for every J £ RL(EU • • • , En). On the other hand, if J £ RL(EU • • • , P J 
and P is a power product of Pi , . . . , En, then PP^ ^ JP^ implies 

PE< = PEt A JE, = (P A J)Et, 

so that (irioSf) 

P = (P A / ) V (P A (0 : £ , ) ) = (P A J ) V (0 : PEt)P. 

It follows that either PP* = 0 or that P g J, whence P g J V (0 : E<) in 
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RL(Ei, . . . , En). Hence Et is both weak meet principal and weak join prin­
cipal, and therefore principal, in RL(Ei, . . . , En). 

THEOREM 10. Let (if, M) be a distributive q-regular local Noether lattice. If 

Eh ..., En is a minimal base for M, and if 

K = V {X^. ..Xn
e»\E^.. .En

e» = 0 ) , 

then ^£ — RLn/K. Conversely, any quotient of RLn is a distributive q-regular 
local Noether lattice. 

Proof. Let Ço < Qi < • . . < Qn be a g-prime chain in j£f. It is easily seen 
that each of the elements Qi is generated by a subset of E\, . . . , En with i 
elements, so we may assume that 0 = Ço, and that Qt = Ei V . . . V Et. ït 
follows that £ i , . . . , En is a g-prime sequence in i f , and hence by Lemma 9.1 
that each of the elements Et is g-prime. The isomorphism of i f with RLn/K 
now follows from Theorem 6. 
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