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A HAHN-BANACH THEOREM IN SUBBASE
CONVEXITY THEORY

M. VAN DE VEL

0. Introduction. In the last fifteen years, topology has shown up with
an increasing interest in the use of closed subbases. Starting from Frink’s
internal characterization of complete regularity (Frink [6]), De Groot and
Aarts used closed subbases to obtain Hausdorff compactifications of
completely regular spaces, thus giving a characterization of the latter in
terms of their subbases [1]. The main tool of that paper is the notion of a
linked system, which naturally leads to the notions of supercompactness
and superextensions [7]. After 1970, these two topics developed to in-
depedennt theories, with several deep results available at this moment.
Most results up to 1976 are summarized in [12].

In supercompactness theory, Strok and Szymarnsky's result of [20] that
metric compacta have binary subbases settles a hard conjecture of
De Groot. Simplified proofs of this result have been given in (4] and [18].
In [2], Bell and van Mill present a measure for the strength of compact-
ness in terms of closed subbases (called compactness number) in such a
way that supercompactness (Compactness number 2) is the strongest.
They prove the existence of compacta with any preassigned compactness
degree, using elaborate combinatorial techniques.

In superextension theory, another hard conjecture (again, of De Groot)
has been settled in [10], namely that the superextension of the unit
interval is a Hilbert cube. Van Mill recently generalized his result to non-
degenerate metric continua [11], thereby parallelling the efforts of
Curtis, Schori and West in hyperspace theory ([19] and [3]). Besides a
great portion of infinite dimensional topology, Van Mill's proofs also
make an extensive use of subbase convexity theory.

This completely new theory started from investigations of [13] and (5],
combined with the techniques and ideas exposed in the author’s paper on
the Lefschetz fixed point property of superextensions [21], and it fits in
with the setting of abstract convexity theory [9].

One of the most exciting aspects of subbase convexity theory (devel-
oped mainly for normal binary subbases) is the great number of parallel-
lisms with ordinary convexity theory in classes of (subspaces of) topo-
logical vectorspaces, e.g., the existence of retractions onto convex sets, the
existence of ‘‘nearest point’”’ mappings, and continuity of convex closure
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operators [14, 2.6, 3.4]. Even the notion of a linear map has been trans-
lated successfully within the framework of subbases ([17, 3.1] and
(15, 1.2]). A noteworthy result is obtained in the former paper, linking up
the theory with its very beginning: any two disjoint members of a normal
subbase can be separated by a ‘‘subbase linear’”” map into [0, 1], a result
which extends the classical Urysohn theorem from normal spaces to
completely regular spaces.

One purpose of the present paper is to prove another parallel result,
which is famous in vectorspace theory: The Hahn-Banach theorem (§ 4).
Regarding only the geometric interpretation (separation of convex sets by
linear maps) it turns out that an almost literal translation of the theorem
in the language of subbase convexity is valid for “‘compact’ convexities:
compare our Theorem 11 with the Hahn-Banach theorem as formulated
e.g. in 8, p. 57].

To obtain such a result we have also introduced a notion of convexity
for arbitrary (non-closed) subsets, giving some extra parallellism with
linear convexities (§ 3).

In Section 2, we show that certain hyperspace convexities satisfy the
above mentioned ‘‘compactness’”’ condition, thereby extending the class
of ““good’ convexity structures.

Proposition 8" in Section 2 was given to me by the referee.

1. Basic notions and results.

1. Generalities. All topological spaces are assumed to be 7';. Recall thata
T'1-subbase & of a space X is a closed subbase such that for each S € .
and foreachx € X — Sthereisan .S’ € . withx €. C X — S, and that
a normal subbase & is a closed subbase such that for any pair S, S. € .¥
of disjoint sets there exist Sy, Sy € .% with

S CSY - So' e Csz’ - Slli SPUSY =X

In (14, 2.1], a topological convexity on a space X is defined to be a
collection 4" of nonempty closed sets of X such that X € %, ¢ is closed
under nonempty intersection, and % is a closed subbase for the topology
of X. Note that & \U {@} is an abstract convexity structure in the sense of
[9, p. 471]; we omit @ only to facilitate the use of hyperspaces. If 4 C X
is an arbitrary set, then

I,(4) = N{ClA CCe 7}
will be called the & -convex closure of 4.

If % is a closed subbase of X, then H(X,.¥) will denote the collection
of all nonempty sets of type N.%’, with .’ C.%. This yields a topo-
logical convexity on X which is said to be generated (or induced) by & .
Members of H(X,.%) will also be called .¥-convex sets, and we write I,
instead of Iy (x . g)-
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This explicit description of a convexity in terms of a generating subbase
occurs quite naturally in many circumstances (e.g. in case of super-
extensions, cf. [21, p. 39], or on hyperspaces, cf. Theorem 3 below),
motivating the (informal) expression ‘‘subbase convexity theory.”

We let H(X) denote the set of all nonempty closed subsets of a space X.
If A4, ..., 4, are nonempty subsets of X, then we write

(A1, ..., 4,) = '{CE HX)|CC UlAiélnd CMNA;# ﬂforeachi}' .

i

Then H(X) is topologized by taking as an open base the family of all sets
of type (Oy,...,0,), where n 2 1 and Oy, ..., O, are open sets of X.
The resulting space is the hyperspace of X. Note that a topological
convexity % on X is a subset of H(X). In the sequel, ¢ will always be
topologized as a subspace of H(X) whenever topological considerations
on %4 are involved.

A topological convexity ¢ on X will be called compact if (i) € is
normal 7'} as a subbase of X, and (ii) the subspace % of H(X) is compact.

Notice that a space carrying a compact convexity is automatically
compact and Hausdorff.

Compact convexities were studied in [14]. A main result of that paper is
formulated in Theorem 2 below. The most interesting examples of com-
pact convexities are the following ones:

(1) ¥ = H(X) for a compact T space X;

(2) % is the set of all closed linearly convex sets of a compact convex
subspace of a locally convex topological vectorspace (cf. (14, EExample
5.1]);

(3) If X is compact 7%, then the family

WG X) Ce HXP VO] Ce HX))

generates a compact convexity on H(X) (cf. [16, Theorem 1.3]);

(4) % is a normal binary convexity (cf. [14, Theorem 3.8]). A con-
vexity € is called binary if for each family %’ C % of which any two
members meet, () % # 0: cf. [22, p. 48]. Equivalently, % has Helly
number 2 (cf. [9, p. 473]) and the underlying space is compact;

(5) If €', is a compact convexity on X, 7 = 1, 2, then

CiX Cy={C X Col Cr€ €1, Co€ bl
is a compact convexity on X; X X, as one can easily verify.

The following result on compactness of convexities will be useful. If %

is a convexity on X, then# (%) denotes the collection of all sets of type
C,X)N G or (C)NE, Cc ¥

2. THEOREM. Let 4 be a normal T, convexity on the compact space X.
Then the following assertions are equivalent:
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(i) € is compact;
(ii) the convex closure operator I, : H(X) — € is a continuous retrac-
tion;
(iii) H(C) is a mormal Ty subbase for € ;

See [14, Theorem 4.2]. Note the particular case ¢ = H(X).

2. Compact convexities on hyperspaces. As a first application, we
shall prove the following result, which is a considerable sharpening of a
result in {16, Theorem 1.3], and which provides a new class of examples of
compact convexities (notation of Theorem 2):

3. THEOREM. Let € be u compact convexity on X. T hen the convexity on
€ C H(X) induced by the closed subbase (€ is also compact.

Proof. The family H (%, (%)) is easily seen to be a normal T}
subbase (the proof is identical to the one in [16] for the case 4 = H(X)).

Let &/ C H(X). A set B ¢ H(X) is called a transversal set of .o/
(cf. [16]) if B meets all members of .27. The collection of all transversal
sets of &7 will be denoted by L (7). If.«/ C %, then we shall write

L) = LW)NTE.

With this notation we obtain a diagram of functions which is easily seen
to commute:

H(E) —=4s H(?)
inclusion H(I,)

H(H(X))——>H(H(X))

Here, H (I,) denotes the canonical extension of the map I, : H(X) — %
to the corresponding hyperspaces. (Note that for compact YV, Z and for a
continuous f: ¥V — Z, the map H(f): H(Y) —» H(Z) defined by
H(f)(A4) = f(4), is continuous.) Notice that H (/) is continuous since
% is compact (Theorem 2). It has been proved in [16, Corollary 1.5] that
the transversality map L is continuous. Hence, the map L, is con-
tinuous.
Let .o/ C % be closed and nonempty. By definition,

*) e @) = NICX)| Ce Lg@)) N {L(UA)NE
= —L%’-L(g'(JZ/) N <[@(UM)>-

Using the latter formula, we are able to prove the compactness of the

induced convexity in the following way.
Assume &7 ¢ H(%) is not (% )-convex. Then there is a
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CE Iy ) —, ie. a (closed) convex set C of X such that
CE Lelyo); CCl(UA); Cd.A.

Let &, A C % be disjoint open sets such that C ¢ @ and ./ C #.
Choose open sets Oy, . .., O, of X such that

Cc{0,...,00N% C 0.

As C = I,(C) and as I, is continuous, there exist open sets Py, ..., P,
of X such that C € (P,,...,P,),and such that foreach D € (P,,..., P,),

I,(D) € (O, ..., 0.

We may assume moreover that each O; includes some set P;.

Since C C 1,(\U.e7), we find that I,(\J.27) N P; # @ for cach j. By
the continuity of 7, and of the union operator, there is a neighborhood U
of &/ ¢ H(%') such that for each.oZ” ¢ U and for each 7,

I,(UA)Y NP, .

By the continuity of 1,0 L, there ts another neighborhood 17 of
o/ € H(%)suchthatforeach .o/’ ¢ 17, 1,0 L,(57") meets (Py,...,P,).
Then

W=UNTN(R)

is a neighborhood of .7 ¢ H(%") which contains no.# (% )-convex set.
Indeed, let .o/’ € . Then there is a set

C" € Lol )Y NN APy, ..., Py),

and there exist points
a] €I (ULYNP, j=1,...,m.

Then define
C' = I,(C"\Itar, ..., a,)}) NI (U7,

If B ¢ % meets all members of .7’ then so does I,(\J.2/") N B, i.e.,
I,(JZ)YNB e L"),

Since C" € 14 14("), we have
0=C"NI,(UZ')YN\NBCCNB,

from which it follows that C' ¢ Ly L4 (7). Also, C' € (I,(\U ")),
whence

C" € Ly (&").
On the other hand,
c'"\U {(ll/, e ,(lm/} € <P1v ey Pm>
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whence
I, (C"\Jda, ..., an'}) € (O ..., 0.,
and, in particular, ¢’ C U'i=1 O;. For each 7 € {1,...,n} there is a P;

included in O, so
(l]'/ G C‘lﬂpj C C/mO,:.

This shows that €’ € {0y, ..., 0,). It follows that ¢’ ¢ # and hence
that C’ ¢ .&7". Therefore, /" is not 4 (€ )-convex.

3. More about subbase convexity. For the purpose of our Hahn-
Banach theorem, we need to have a good notion of convexity for arbitrary
subsets of a space. There are three reasonable candidates, of which the
third one will turn out to be the best one in the present circumstances:

4. Definitions. Let % be a convexity on X, and let 4 C X be arbitrary.
Then
(i) A is n-comvex relative to ¢ (n = 2) if for each I C A with
| < m, I,(F) C 4;
(i) A is weakly convex relative to ¢ if A is n-convex for each n = 2;
(iii) A is convex relative to € if for each compact set B C 4, I,(B) C A.

The notions of weak convexity and of 2-convexity have already
occurred implicitely in the literature on the subject of convexity (cf. [14]
Theorems 2.4 and 4.2, which form a part of Theorem 5 below).

To end with, we say that a set 4 C X is (weakly) biconvex relative to 6
if both 4 and X — 4 are (weakly) convex relative to 4. These biconvex
sets will play the same role as the ‘‘half-spaces” in vectorspace theory.
Their use is essential in our proof of the Hahn-Banach theorem.

Among the above defined notions there exist several relations:

5. THEOREM. Let € be « normal Ty convexity on X ;
(i) if € is a compact convexity, then a closed set of X 1s weakly convex if
and only if it is convex;
(i) if € is a binary convexity (cf. Section 1) then a subset of X is
2-convex if and only if it s weakly convex,
(iii) if € is a binury convexity, then an open or closed subset of X is
2-convex if and only if it is convex.

Proof. (i) is a reformulation of Theorem 4.2 of {14]. For a proof of (ii)
and of (iii) we need the following auxiliary result:

5. LEMMA. Let € be a normal binary convexity and let Ay, . .., 4, € €.
Then

T, (Ui 4) = U T dar, -, a) ay € Ay, i=1,...,0) ().
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(Note that this formula is equally valid for a linear convexity on a
compact convex set in a vectorspace). Recall [14, Theorem 3.4] that there
is a “‘nearest point map’’

P X XE—X
sending a pair (x, C) to the unique point of C with the property that,

wheneverx € D € 4 and D M C # 0, we have p(x, C) € D (cf. (14]).
Ifx e Iday,...,q), wherea; € A, 72 =1,...,n, then obviously

i=1

If thelatteris true, thendefine«; = p(x, 4 ;) foreachs. If x ¢ I {ay, ..., a,},
then by the normality of % there exist Sy, S; € % such that

xES1—S2; ]‘6’{(11!"'!”!1} CSQ—S1; 51U52=X

Now, U'i=1 4;  Ss, for otherwise x ¢ S,. Therefore, 4, M S; = 0 for
some 7. But x € S, and hence «; € S, by the defining property of the
nearest point map, a contradiction.

To prove (ii), let A C X be 2-convex. We prove by inductiononn = 2
that 4 is n-convex for each n. Assume this has been proved for all
m < n = 2,and let /' C 4 contain n + 1 points. Fixing xy € F, we find
that

Ty (F) = I(Ig (F — {xod) I {wo}) = U {el, %o} [x € T (F — {x0})}

by the above formula (x). As |F — {xo}| = n, we have [, (F — {xo}) C 4,
and hence I {x, x¢} C A for each x € I4(F — {x¢}), proving that
Io(F) C A.

To prove (iii), we first notice that the equivalence of 2-convexity and of
convexity for closed sets is essentially Theorem 2.4 of (14]. Let O C X now
be an open set which is 2-convex, and let 4 C O be closed. % being a
normal 7'; subbase on the compact space X, we can find foreachx € 4 a
convex closed neighborhood A4, contained in O. X being compact, a
finite number A4,, ..., 4, of these neighborhoods suffices to cover 4.
By () and by (ii), we find that

Io(4) C Lg(glAi) Co.

By (i) above, the expressions “4 € € and “4 is nonempty % -
convex closed” are equivalent for a compact convexity % .

Relative to normal binary subbases, the notions of weak convexity and
of convexity are not equivalent for arbitrary subsets: let X = [0, 1]«
(¢ 2 wy) be a Tychonov cube and let.7 be its canonical normal binary
convexity, generated by the subbase of all sets of type

0, ¢] or w4 1], t€10,1], i€ q
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where 7;: X — [0, 1] is the 7¢th projection. Let 4 C X be the set of all
points (x;)cq of X with x; 5 0 for an at most finite number of indices 1.
Then 4 is 2-convex relative to.7 , and hence weakly convex. However, it
is not convex: let B C X be the set of all points (x;) ;e in X with x; 5 0
for at most one index 7. Then B iscompact, B C 4,and I-(B) = X  A.

It is an open problem whether convexity and weak convexity relative
to a compact convexity are equivalent for open subsets.

6. Convexity preserving mappings. Let % and & be convexities on,
respectively, X and V, and let f: X — ¥V be a function. Then f is
called a convexity preserving (c.p.) map if for each D ¢ & it is true that
f~UD) € € \J {0} (cf. (15, p. T7]).

Notice that a cp map is automatically continuous. We have the follow-
ing result:

7. THEOREM. Let € and & be convexilies on, respectively, the compact
spaces X and YV, and let f : X — YV be a function,

(i) if f is a cp map, then for each (weakly) & -convex set B C Y, the set
f~UB) C X is (weakly) € -convex;

(ii) if € is a compact convexity, and if f is continuous, then f is a cp map
if and only if for each finite set F C X,

JU(F)) C Is(f(F)).
The proof is left to the reader. For (ii), use Theorem 5(i).
The following result will be useful in constructing (bi-) convex sets:

8. THEOREM. Let € be a compact convexity on the space X. Then for each
subset A of X, the mapping

kA . X - (g
sending x € X to I4({x} \J A) is convexity preserving.

Proof. The map k, is continuous by the continuity of I, and of the
union operator. We can therefore apply Theorem 7 (ii) for a simple proof
that k4 is a cp map. Notice that if Ay, ..., 4, € &, then I,)l4:,

., 4,} equals the family

{Ce ¥ CCIlg(Ujmr4;)and foreacha, ¢ A,i=1,...,n,
cN I(g{(ll, e ey (Ln} # ﬂ},

as one can easily verify. Let xy,...,x, € X and let x € Tg{xy, ..., x,).
We have to show that

Io(fx} \J A) € Tyl Lo \J A), ..o, Lo ({x) \J AN,
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First, Iy ({x} \U 4) is obviously included in the set

Lg(iL:)l Ty ({x4} UA)) .

Assume next that there exist a, € Io({xi} \J A), ..., q, € T¢({x,d Y A),
such that
Ifg({x} ) A) M .[rg{(l], P ,(l,,} = 0

By normality of % (as a subbase), there exist S;, S, ¢ % with
x} VA CS —Se; f{an,...,a CTSe—Si; S1US, =X.
Then {x, ..., x,} C Sy, for otherwise e.g. x; € S;, whence
a; € I(fed \J 4) C Sy,
a contradiction. Therefore,
x € Iglxy, ..., %, C Sy,
again a contradiction.

The mappings k4, A C X, are in one variable. Their cp property
breaks down if more variables are considered:

8. Fact. If € is any convexity on any X with at least two points, then the
map f: X X X — €, defined by

f,9) = Ielx, yb (x5 € X)
is not cp relative to the product convexity € X € on X X X (c¢f. 1(5)).
(With the above notation, this corresponds to the case 4 = §).
Proof. Let @ # b in X. Then
H ={Cec b acC={d,X)N7
is a convex set of %, and clearly
taf X XV X X{a} CfHH).
If f~1(4") were convex relative to @ X %, then
X XX = Igpg(la} X XU X X {a}) CfUX).
However, f(b, b) = {b} 4.4 .

A final auxiliary result needed for the construction of biconvex sets is
the following one:

9. LEMMA. Let € be a compact convexity on X, and let O C X be convex
and open. Then the sets {O) N\ € and (O, X) N\ € are A (€ )-convex and
open.
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Proof. (0) N\ € and (0, X) N € are open by definition. Let.«/ C %
be closed—and hence compact.

If o/ C{O)N % then U CO, and U is a compact set of X.
Hence I4(\U.97) C O, and it follows (using formula (x) of Theorem 3)
that

Iy ) CUe(UA)NE COYNE.

Ifo/ C{0,X)N\ %, then AN O # @foreach 4 € .«7. Choose an open
set O4 of X for each 4 € .97, such that A N O, # Pand O, C O, C O
(notice that X is compact 7', and hence regular). .2/ C % being compact,
there exist 41, ..., 4, € & such that

o C L_jl (040 X).

Hence

ikn_)l 04, ¢ L (&) (notation of Theorem 3),
and consequently,

B = ]rg(gl (1,,.) € Lg().

O being convex, we find that B C O. Therefore, if C € 1 ¢ 14 (%), then
CNM B # Pand, consequently, CMO = @. Using formula (x) of Theorem 3
again,

Ly @) C Lelyg?) COX)NE.

Notice that the converse of Lemma 9 is also true: If (O) N\ % or
(0, XY N\ € are #(€)-convex, then O C X is convex (0 C X arbi-
trary). This follows from the fact that the canonical embedding of X in &
is a cp map (cf. [15] Example 1.3(c)). It is not difficult to prove that
(0, X) N\ € is weakly convex if and only if O is weakly convex. However:
if (O) M % is weakly convex and if O C X is open, then O is convex, by
an argument similar to the one used in the proof of Theorem 5(iii).

4. The Hahn-Banach theorem.

10. THEOREM (Biconvex Enlargements). Let € be a compact convexity
of X and let C, O be (weakly) convex disjoint sets of which C is closed and O
is open. Then there is a (weakly) biconvex closed set D of X, such that
CCDand DN O = 0.

Notice that the closed sets € and D are convex in either case (cf.
Theorem 5(1)).
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Proof. We first deal with the weak convex case. Let
9 =Dl D%, CCDDNO =,

andlet 2’ C & bea chain with respect to inclusion. Then U &2’ M 0 = §,
and hence U 27 N 0 = . Since U 2’ is the limit of the net 2’ C ¥,
we find by compactness that \J &' € 4. Hence & has a maximal
element D by Zorn's Lemma. For each finite set {x;,...,x,} CX we
write

D(xy,...,x0 =1yl Igxy, ..., x,y M\ D # 8.

Notice that D(xy, ..., x,) is the inverse image of the # (% ')-convex set
(D, X) under the cp mapping ki, ... (cf. Theorem 8). Hence,
D(xy, ..., x,) is convex and closed. Obviously, D C D(xy, ..., x,) and

D(xy,...,x,) = X if x; € D for some 1.
For cach n = 1 we prove the following statement by induction on the

number p, where O £ p = n:

Co(p). If x1,...,x, € X — D are such that x1,...,x, 7 O and
Xpi1y -+, %, C O, then

D(xy,...,x,) = D.

Proof of C,(0). Letxy, ..., x, € Oand assume that D(xy, ..., x,)#%D.
By the maximality of D there is a point y ¢ D(xy, ..., x,) M 0. Hence,

Tdxs, oo %0y} M D # 0.

However, {x1, ..., x,, v} C O, contradicting that O is weakly convex.
Proof of C,(p — 1) = C,(p). Let xy,...,x, € X — D where
X1, ... ,%, ¢ Oand x,41, .. ., %, € O. Hf D(xy,...,x,) 5 D, then we can

again choose a point
yE D@y, . ..,x) MO0
by maximality of D. Hence
Te{xy, oo %0, v} M D # 0,
and it follows that
Xp € D(X1, - o o Xpet, ¥y Xpi1y v oy X))
By C,(p — 1), the latter set equals D, contradicting that x, ¢ D.

This completes the inductive proof of C,(p). If » = 1 and if
X1y o ooy Xy € X — D, then Ifxy, ..., x40 CX — D, forotherwise

xn+1€D(xlr-'~1xn) :Dr

a contradiction. Hence, D is weakly biconvex.
In order to obtain the second part of the theorem, we have to proceed
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in a dual way. We briefly sketch the idea: Let
P = {P| Pisconvexopen, O CP,CN\P =@}

If ' C& is a chain, then U %' N C =0 and U2’ is obviously
convex and open again.
Let P € & be a maximal element, and put

Py, ..o, x0) = W glxr, ..., x0 v} NP = 0.

Combining Lemma 9 with Theorems 8 and 7 (i), P (x4, . . ., x,) isaconvex
open set including P. Using the above induction technique, we find that
the closed set X — P is weakly convex, and hence convex.

A biconvex set can be regarded as a kind of a half-space, and the
above theorem can already be interpreted as some sort of Hahn-Banach
theorem. In order to obtain a fully parallel result with vector space
theory, we now examine the existence of cp maps which separate convex
sets. The range of these cp maps is the unit interval (not the real line),
equipped with its linear structure, which corresponds to the (normal
binary) convexity

([t 6]l 0= h St 14,

11. Tae HAHN-BANACH THEOREM. Let € be a compact convexity on X.
(i) If C and D are disjoint closed convex sets of X, then there is a cp map
f: X — [0, 1] which strictly separates C and D 1.e.,

C Cf10,t) and D C f~'(t, 1] for somet € [0, 1].

(i) If each biconvex closed set of X 1s a Gs-set, and if C, O are disjoint
convex sets of which C s closed and O is open, then there is « cp map
f: X — [0, 1] which separates C and O, 1.e.,

C Cf~10) and O C f~1(0, 1].

Notice that (i) guarantees at the same time that there exist convex
open sets in X (e.g. the inverse images of open intervals).

Proof. (1) is actually a reformulation of (17, Theorem 2.1] which states
that if % is a normal 7', subbase of X and if Sy, S, € .% are disjoint, then
there is a map

f: X —[0,1]

such that f(So) = 0, f(S1) = 1, and for each ¢ € [0, 1], f~1[0, {] and
f-1[t, 1] are (countable) intersections of members of .. Hence, (i) is
already valid for a normal 7', convexity.

Before proving (ii), we want to point out that the Gs-condition on
biconvex closed sets is necessary: If D C X is biconvex closed, then
separating D and X — D by a cp map as in (ii) yields that D is Gs.
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For a proof of (ii) we need two preparatory lemmas:

12. LEMMA. Let € be a normal T convexity, and let C be a biconvex
closed Gs-set of the compact space X. Then there is a sequence (K,)n—=1" of
biconvex closed sets of X such that

(1) K, CintKyy1;
2) UK, =X-—-C.
n=0
Indeed, let (4,),—0” be a sequence of closed sets of X such that

dy=0 and U A4,=X —C.

n=0

By induction, we construct a sequence of biconvex closed sets (K, ),—0",
satisfying (1), and also

2) 4,CK,CX — C foreachn = 0.

Put K¢ = 0. If Ky, ..., K, are properly constructed, then (4,;;\J
K,) N\ C = @, whence by the convexity of X — C,

I(g(An+1 U Kn) m C = ﬂ
Using (i) of Theorem 11, thereisat € [0,1]andacpmapf: X — [0, 1]

such that

Ig(4,41 Y Ky) Cintf710,¢; CNSf0, 8] = 0.
Putting K41 = f71[0, t] completes the induction, and Lemma 12 easily
follows.

13. LEMMA. Let € be a normal T, convexity on the compact space X and
let C be a biconvex closed Gy-set. For each open set 0 of X including C there is a
biconvex closed set H of X such that CMY H = @and 0\J H = X.

Let (K,).—0” be a sequence of biconvex closed sets as in Lemma 12.
Then

O} Ui{intK,|] = = 0}

is an open cover of X which, by compactness, reduces to a finite subcover.
The largest set K, appearing in this cover yields the desired set H.

We now proceed with a proof of part (ii). By Theorem 10, there is a
biconvex closed extension D of C not meeting O. Since D is a Gs-set, we
can apply Lemma 12 to obtain a sequence K (1/2"),-,” of biconvex closed
sets such that

K(l) = Q11{(1/2n) C intK(1/27L+l);X — D = CO) K(I/Qn),

n=0
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Using Lemma 13, we can find for each » = 0 a biconvex closed set
H(1/2"), such that

H/2) N K1/2) = @; H(1/2) U K(1/2") = X.

Notice that H(1) = X and that H(1/2**') C H(1/2") for each n. We
also put K(0) = X and H(O) = 0.

Modifying an Urysohn-type procedure from [17, 2.1], we now construct
for each dyadic rational » € [0, 1] two convex closed sets H(r), K (r), such
that

(1) if r <5, then H(r) C H(s), K(r) D K(s), H(r) N\ K(s) = 0;

(2) for each dyadic ¢t € [0, 1], H(t) U K(¢) = X.

These conditions are already satisfied if 7, s and ¢ are among the dyadics
0,1 or 1/2". We proceed inductively as follows. Assume that H(¢) and
K (t) are properly constructed for each dyadic ¢ with denominator =<2".
We then construct H(¢) and K (¢) simultaneously for all

t e {3/201 L, (20 — 1) /2n+Y (%)

(all fractions are assumed to be irreducible). Let » < s be two consecutive
fractions with denominator =2”, and let t = 3(r + s). If » = 0, then
t = 1/2"*1 and H(t) and K () have already been constructed. If » > 0,
then ¢ is in the set (). Using (1), H(r) N\ K(s) = @. As € is a normal
subbase, there exist .Sy, S» € % such that

H(T)CSl_Sz; K(S)CSQ—Sl; SIU52=X.

We put H(t) = S;and K(¢t) = S, Using (2), it easily follows that
H(r) CH(t) CX — K(s) C H(s);
K(s) CK() CX — H(r) CK(r).

Hence, the new sets fit in with our inductive assumption of (1) and (2).
Having produced H (t) and K (¢) in this way for all dyadic ¢ € [0, 1], we
define a mapping f : X — [0, 1] as follows:

fx) = inf{r] x € H(r)}.

If s < f(x) is dyadic, then x ¢ H(s), whencex € K(s) by (2). If f(x) < s
for a dyadic s, then choose a dyadic » with f(x) < r < s. Hence,x € H(r)
and consequently x ¢ K(s) by (1). This shows that

fx) =supfs] x€ K(s)}.

Using both formulas for f(x), it is easily seen that for each real number
t E [O’ 1]7

10, 8] = N{H(r)| r > ¢, r dyadic}
1] = N{K(s)| s < ¢, s dyadic},
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showing that fis a cp mapping. Moreover,ifx € X — D, thenx € K(1/2")
for some n > 0, and hence f(x) > 0. It follows that C C f~'(0) and
0 Cf7(0, 1].

We finally present an example, showing that the compactness condition
on a convexity cannot be removed from the second part of the Hahn-
Banach theorem.

14. Example. Let X = [0, 1]*> be the unit square with projections
T, me X — [0, 1]
onto the first, resp. the second axis. Define

€ ={X|\Uld c HX)| m'(¢t) T Aand w7 '(t) T A4
for each ¢ € [0, 1]}.

Obviously, % is a 1 convexity on X, and 4 C H(X) is not a closed
subset. We show that % is normal as a subbase of X:
If d denotes the usual metric on X, then we write

D(x,7) ={y € X| d(x,vy) <7} (r > 0).

Let A, B ¢ % be disjoint and nonempty. Then 4 \U B ¢ % — {X} as
one can easily verify. Let ¢ € [0, 1], and choose x(¢) € m,~1(¢) — (4 U B).
Let €(¢) > 0 be such that

D(x(t), e()) N (AU B) =0, ) <1/2.
Notice that D(x(¢), e(t)) \J 4 € % . Select a finite cover of [0, 1] of type
{[ti_fiyfi"'ei]l izlv’--)n}r €i=€(ti)1

and let x;, 72 = 1,...,n be the corresponding points in m,~'(¢;) respec-
tively. The property

D(xye) N (AIB) =0
remains valid if x; is moved a little along =~ (¢,).
Hence we may assume that the second coordinates of the x; are
mutually different. It easily follows that
A =AU Uity — e ti + 6] X {max)}]NX

isin % again. Moreover, 4’ M B = @, and 4’ meets each vertical fiber of X.
Similarly, 4’ can be extended to a set A’ ¢ % such that A" N\ B = 0,
and A" meets each horizontal (and vertical) fiber of X. Applying the
same procedure on B, we obtain an extension B’ of B such that B” ¢ ¥,
B M A" = @, and B’ meets each fiber of X.

X being normal, there exist closed sets S;, Ss C X such that

A” CS1—'32; 13” CSz—‘Sl; S]US‘Z-_—"X
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As S1 N\ B” = @, no fiber of X can be included in S;, whence S; € %.
Similarly, S, € %, and it follows that % is a normal convexity.

The resulting non-compact convexity does not satisfy part (ii) of our
Hahn-Banach theorem. In the picture below, the fat line indicates a
convex closed set C of X. All points outside of C and outside of the dotted
line constitute a convex open set O of X:

N

1 2

3 3
1 1
a5 O -
2 7 2

|

|

|

! 0

|

|

I

1 2

13 3

O is not biconvex, since its complement includes the vertical fiber over
1/3. No extension of O, which is disjoint with C, is convex, since such an
extension must contain a point of the dotted line and hence it contains a
full horizontal fiber of X.

15. Remarks. (1) The equivalence of (i) and (ii) in Theorem 2 (quoted
from [14]) has been obtained independently and earlier by R. E. Jamison
in his 1974 dissertation (University of Washington, Seattle).

(2) In a forthcoming paper of the author, entitled ‘‘Pseudo-boundaries
and Pseudo-interiors for Topological Convexities,”” we have extended
convexity theory to non-compact spaces. In comparison with the present
results, a considerable sharpening has been obtained—even in the case of
compact spaces—of Theorem 10 on biconvex enlargements.
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