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A HAHN-BANACH THEOREM IN SUBBASE 
CONVEXITY THEORY 

M. VAN DE VEL 

0. Introduction. In the last fifteen years, topology has shown up with 
an increasing interest in the use of closed subbases. Starting from Frink's 
internal characterization of complete regularity (Frink [6]), DeGroot and 
Aarts used closed subbases to obtain Hausdorff compactifications of 
completely regular spaces, thus giving a characterization of the latter in 
terms of their subbases [1]. The main tool of that paper is the notion of a 
linked system, which naturally leads to the notions of supercompactness 
and superextensions [7]. After 1970, these two topics developed to in-
depedennt theories, with several deep results available at this moment. 
Most results up to 1976 are summarized in [12]. 

In supercompactness theory, Strok and Szymansky's result of [20] that 
metric compacta have binary subbases settles a hard conjecture of 
De Groot. Simplified proofs of this result have been given in [4] and [18]. 
In [2], Bell and van Mill present a measure for the strength of compact­
ness in terms of closed subbases (called compactness number) in such a 
way that supercompactness (compactness number 2) is the strongest. 
They prove the existence of compacta with any preassigned compactness 
degree, using elaborate combinatorial techniques. 

In superextension theory, another hard conjecture (again, of De Groot) 
has been settled in [10], namely that the superextension of the unit 
interval is a Hilbert cube. Van Mill recently generalized his result to non-
degenerate metric continua [11], thereby parallelling the efforts of 
Curtis, Schori and West in hyperspace theory ([19] and [3]). Besides a 
great portion of infinite dimensional topology, Van Mill's proofs also 
make an extensive use of subbase convexity theory. 

This completely new theory started from investigations of [13] and [5], 
combined with the techniques and ideas exposed in the author's paper on 
the Lefschetz fixed point property of superextensions [21], and it fits in 
with the setting of abstract convexity theory [9]. 

One of the most exciting aspects of subbase convexity theory (devel­
oped mainly for normal binary subbases) is the great number of parallel-
lisms with ordinary convexity theory in classes of (subspaces of) topo­
logical vectorspaces, e.g., the existence of retractions onto convex sets, the 
existence of "nearest point" mappings, and continuity of convex closure 
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operators [14, 2.6, 3.4]. Even the notion of a linear map has been trans­
lated successfully within the framework of subbases ([17, 3.1] and 
[15, 1.2]). A noteworthy result is obtained in the former paper, linking up 
the theory with its very beginning: any two disjoint members of a normal 
subbase can be separated by a ' 'subbase linear" map into [0, 1], a result 
which extends the classical Urysohn theorem from normal spaces to 
completely regular spaces. 

One purpose of the present paper is to prove another parallel result, 
which is famous in vectorspace theory: The Hahn-Banach theorem (§ 4). 
Regarding only the geometric interpretat ion (separation of convex sets by 
linear maps) it turns out tha t an almost literal translation of the theorem 
in the language of subbase convexity is valid for "compac t" convexities: 
compare our Theorem 11 with the Hahn-Banach theorem as formulated 
e.g. in [8, p. 57]. 

To obtain such a result we have also introduced a notion of convexity 
for arb i t rary (non-closed) subsets, giving some extra parallellism with 
linear convexities (§3) . 

In Section 2, we show tha t certain hyperspace convexities satisfy the 
above mentioned "compactness" condition, thereby extending the class 
of "good" convexity structures. 

Proposition 8' in Section 2 was given to me by the referee. 

1. Basic n o t i o n s and resu l t s . 

1. Generalities. All topological spaces are assumed to be 1\. Recall t ha t a 
Ti-subbase £/ of a space X is a closed subbase such tha t for each S ^ 5^ 
and for each x Ç X — S there is an S' Ç 5f with x £ S' C X — S, and tha t 
a normal subbase S^ is a closed subbase such tha t for any pair Si, S2 G 5f 
of disjoint sets there exist 5 / , SV G $f with 

S i C S i ' - S 2 ' ; SaCSa' - S i ' ; S i 'US 2 ' = I 

In [14, 2.1], a topological convexity on a space X is defined to be a 
collection c€ of nonempty closed sets of X such tha t I f ^ , ^ is closed 
under nonempty intersection, and c€ is a closed subbase for the topology 
of X. Note t ha t ^ \J {0} is an abstract convexity structure in the sense of 
[9, p. 471] ; we omit 0 only to facilitate the use of hyperspaces. If A C. X 
is an arbi t rary set, then 

I*(A) = C\{C\A C C ^ ) 

will be called the ^-convex closure of A. 
If £f is a closed subbase of X, then H(X, S^) will denote the collection 

of all nonempty sets of type P i ^ ' , with 5^' C «5^. This yields a topo­
logical convexity on X which is said to be generated (or induced) by «5^. 
Members of H(X,S^) will also be called ¥-convex sets, and we write 1^ 
instead of IH(x,se)-
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This explicit description of a convexity in terms of a generat ing subbase 
occurs quite natural ly in many circumstances (e.g. in case of super­
extensions, cf. [21, p. 39], or on hyperspaces, cf. Theorem 3 below), 
motivat ing the (informal) expression "subbase convexity theory ." 

We let H{X) denote the set of all nonempty closed subsets of a space X. 
If Ai, . . . , An are nonempty subsets of X, then we write 

(Ah...,An)= {CeH(X)\CC U 4 < and C n 4 , 5*0 for each i f . 

Then H(X) is topologized by taking as an open base the family of all sets 
of type (Oi, . . . , On), wrhere n ^ 1 and 0 i , . . . , On are open sets of X. 
The resulting space is the hyper space of X. Note t ha t a topological 
convexity ^ on X is a subset of H(X). In the sequel, c€ will always be 
topologized as a subspace of H{X) whenever topological considerations 
on m are involved. 

A topological convexity ? on I will be called compact if (i) c€ is 
normal Tx as a subbase of X, and (ii) the subspace 9? of H(X) is compact . 

Notice tha t a space carrying a compact convexity is automatical ly 
compact and Hausdorff. 

Compact convexities were studied in [14]. A main result of t ha t paper is 
formulated in Theorem 2 below. T h e most interesting examples of com­
pact convexities are the following ones: 

(1) c€ = H(X) for a compact T2 space X; 
(2) cê is the set of all closed linearly convex sets of a compact convex 

subspace of a locally convex topological vectorspace (cf. [14, Example 
5.1]); 

(3) If X is compact 1\, then the family 

\{c,x)\ C£H(X)\KJ[(C)\ cemx)} 
generates a compact convexity on H(X) (cf. [16, Theorem 1.3]); 

(4) ^ is a normal binary convexity (cf. [14, Theorem 3.8]). A con­
vexity c$ is called binary if for each family c€' C ^ of which any two 
members meet, O ^ 3^ 0: cf. [22, p. 48]. Equivalent ly , c€ has Helly 
number 2 (cf. [9, p. 473]) and the underlying space is compact ; 

(5) If ^ j i s a compact convexity on Xu i = 1,2, then 

^ i x Sf2 = {Ci x c2 | Ci G ^ i , c 2 ç %f2} 
is a compact convexity on X i X X2 as one can easily verify. 

The following result on compactness of convexities will be useful. If rif 
is a convexity on X, then Jf?( (^7) denotes the collection of all sets of type 

(c,x)n ^or (C)n tf, c e tf. 
2. T H E O R E M . Let c€ be a normal Tx convexity on the compact space X. 

Then the following assertions are equivalent: 

https://doi.org/10.4153/CJM-1980-061-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-061-x


A HAHN-BANACH THEOREM 807 

(i) c1o is compact; 
(ii) the convex closure operator I<€ : H(X) —» rif is a continuous retrac­

tion; 
(iii) J ^ ( ^ ) is a normal 7\ subbase for 9o ; 

See [14, Theorem 4.2]. Note the particular case ^ = H(X). 

2. Compact convexities on hyperspaces. As a first application, we 
shall prove the following result, which is a considerable sharpening of a 
result in [16, Theorem 1.3], and which provides a new class of examples of 
compact convexities (notation of Theorem 2): 

3. THEOREM. Let *& be a compact convexity on X. Then the convexity on 
*& C H(X) induced by the closed subbase ffi (ff€) is also compact. 

Proof. The family H($> ,3?(f$)) is easily seen to be a normal 7\ 
subbase (the proof is identical to the one in [16] for the case ^ = H(X)). 

Let s/ C H{X). A set B G H(X) is called a transversal set of J / 
(cf. [16]) if B meets all members oîs/. The collection of all transversal 
sets of s/ will be denoted by J_ (se), lis/ C^, then we shall write 

±*(«flO = ± ( ^ ) H %J. 

With this notation we obtain a diagram of functions which is easily seen 
to commute: 

H ( ^ ) U > ff(^) 

inclusion H(IV) 

H{H{X)) i—*H(H(X)) 

Here, H(L€) denotes the canonical extension of the map 1% : H(X) —> c€ 
to the corresponding hyperspaces. (Note that for compact F, Z and for a 
continuous / : Y -> Z, the map H(f) : H(Y) -* H(Z) defined by 
H(f)(A) = f(A), is continuous.) Notice that H(Lê) is continuous since 
^ is compact (Theorem 2). It has been proved in [16, Corollary 1.5] that 
the transversality map J_ is continuous. Hence, the map JL% is con­
tinuous. 

Let s/ C ^ be closed and nonempty. By definition, 

(*) i^M) = n f<c, *>| c <E -LA^)\ r\ (iv(\js/))r\& 
= ± « ± * ( j / ) n < / » ( u ^ ) > . 

Using the latter formula, we are able to prove the compactness of the 
induced convexity in the following way. 

Assume s/ G H^) is not J^(^)-convex. Then there is a 
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C G Ije(<g)(<£^) — sé, i.e. a (closed) convex set C of X such that 

C e i , l , W ; C C M U ^ ) ; C G s/. 

Let 0, 3% C ^ be disjoint open sets such that C G ^ and j / C ^ -
Choose open sets Oi, . . . , On of X such that 

CG < O i , . . . , o n > n ^ c ^. 

As C = l<g(C) and as L^ is continuous, there exist open sets Pi , . . . , Pw 

of X such that C G ( P i , . . . , POT), and such that for each J9 6 ( P i , . . . , Pw ), 

7*(D) € (OL . . . , O B ) . 

We may assume moreover that each 01 includes some set P}. 
Since C C / f ( U i ) , we find that I^{\Js/) C\ P j ^ 0 for each j . By 

the continuity of Lê and of the union operator, there is a neighborhood U 
of j / G # ( ^ ) such that for each J / ' G t/ and for each j , 

By the continuity of J_# o ±^ , there is another neighborhood V of 
j / G # ( ^ ) such that for each st' G 1% _U o J_*(j / ' ) meets (Pi , . . . ,P m ) . 
Then 

if = u n rn <̂ > 
is a neighborhood of se G Hi^) which contains no J^(^)-convex set. 
Indeed, lets/' G H7. Then there is a set 

c" G _u±*(^ ' )n (Pi, . . . ,p m ) , 

and there exist points 

a/ Ç ^ ( U i ' l H P , 7 = 1 , . . . ,w. 

Then define 

c = LAC u {«/, . . . , flm'}) n P , ( U ^ ) . 

If P G ^ meets all members ois/' then so does J V ( U ^ ' ) H P, i.e., 

Since C" G J_ ̂  _L *(<$/'), we have 

0 ^ c" r\ i<e{\Jsé') r\B ce r\ B, 
from which it follows that C G _U_U(ç / ' ) - Also, C G (I«(U <$?')), 
whence 

c e /Jf»)(^'). 
On the other hand, 

C ' W j a , ' O € <P, Pm) 
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whence 

W ' U f a x ' , . . . , 0 ) <E ( d On), 

and, in particular, C C U^=i Ot. For each i Ç {1, . . . , n} there is a P^-
included in 0*, so 

This shows tha t C £ (Oi, . . . , 0 n ) . I t follows tha t C (f_ 3% and hence 
tha t C d s/\ Therefore, J / ' is not J f ( ^ ) - c o n v e x . 

3. More a b o u t subbase convexi ty . For the purpose of our Hahn-
Banach theorem, we need to have a good notion of convexity for arbi t rary 
subsets of a space. There are three reasonable candidates, of which the 
third one will turn out to be the best one in the present circumstances: 

4. Definitions. Let rif be a convexity on X, and let A C X be arbi t rary. 
Then 

(i) A is n-convex relative to (€ (w ^ 2) if for each F C A with 
\F\£n,Iv(F)CA; 

(ii) A is weakly convex relative to cé if A is ^-convex for each n ^ 2; 
(iii) 4̂ is convex relative to ^ if for each compact set B 04 ,L< € (B ) C A. 

The notions of weak convexity and of 2-convexity have already 
occurred implicitely in the li terature on the subject of convexity (cf. [14] 
Theorems 2.4 and 4.2, which form a par t of Theorem o below). 

To end with, we say tha t a set A C X is (weakly) biconvex relative to (€ 
if both A and X — A are (weakly) convex relative to ^ . These biconvex 
sets Avili play the same role as the " half -spaces" in vectorspace theory. 
Their use is essential in our proof of the Hahn-Banach theorem. 

Among the above defined notions there exist several relations: 

5. T H E O R E M . Let c€ he a normal 7 \ convexity on X; 

(i) if cé is a compact convexity, then a closed set of X is weakly convex if 
and only if it is convex; 

(ii) if ^ is a binary convexity (cf. Section 1) then a subset of X is 
2-convex if and only if it is weakly convex; 

(iii) if *io is a binary convexity, then an open or closed subset of X is 
2-convex if and only if it is convex. 

Proof, (i) is a reformulation of Theorem 4.2 of [14]. For a proof of (ii) 
and of (iii) we need the following auxiliary result: 

5'. LEMMA. Let *$ be a normal binary convexity and let A\, . . . , An £ ^ . 
Fhen 

IviU^iAi) = U {I«{au . . . , an}\ at G Au i = 1, . . . , n) (*). 
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(Note t ha t this formula is equally valid for a linear convexity on a 
compact convex set in a vectorspace) . Recall [14, Theorem 3.4] t ha t there 
is a ' 'nearest point m a p " 

p : X X <% -*X 

sending a pair (x, C) to the unique point of C with the proper ty tha t , 
whenever x f D f <% and £> C\ C ^ 0, we have p(x, C) f D (cf. [14]). 

If x G i^{fti, . . . , an}, where at ^ Ai} i = I, . . . , n, then obviously 

xG /«(u 4,j . 

If the lat ter is true, then define a t = p(x,A t) for each i. If x (? / ^ { a i , . . . ,an}, 
then by the normali ty of ^ there exist 5i , S2 G ^ such tha t 

x G 5i — 5 2 ; I<g{ai, • . • ,.aw} C S2 — Si; Si \J S2 = X. 

Now, Ul=i ^4i ^5*2, for otherwise x G 5 2 . Therefore, A t C\ S\ ^ 0 for 
some i. But x G -Si, and hence at G 5i by the defining proper ty of the 
nearest point map , a contradiction. 

T o prove (ii), let A C X be 2-convex. We prove by induction on n ^ 2 
tha t 4̂ is w-convex for each n. Assume this has been proved for all 
w ^ n ^ 2, and let F C 4̂ contain w + 1 points. Fixing x0 G F, we find 
tha t 

L€(F) = I(ê{Lé{F-{x,\)\J{x,})= U { ^ { x , X o ) | x G ^ ( F - {x0})} 

by the above formula (*). As \F — {x0} | = w, we have I<#(F — {x0} ) C -4, 
and hence /^{x, x0} C A for each x G i"#(F — {x0}), proving tha t 
Le(F) C i . 

T o prove (iii), we first notice t ha t the equivalence of 2-convexity and of 
convexity for closed sets is essentially Theorem 2.4 of [14]. Let 0 (Z X now 
be an open set which is 2-convex, and let A C 0 be closed. *io being a 
normal 7 \ subbase on the compact space X, we can find for each x G A a 
convex closed neighborhood Ax contained in 0. X being compact , a 
finite number Ai, . . . , An of these neighborhoods suffices to cover A. 
By (*) and by (ii), we find t ha t 

I«(A) c/*(y 4<) co. 
By (i) above, the expressions UA G ^ " and "A is nonempty ^-

convex closed" are equivalent for a compact convexity ^ . 
Relative to normal binary subbases, the notions of weak convexity and 

of convexity are not equivalent for a rb i t rary subsets: let X = [0, l ] a 

(a ^ o>o) be a Tychonov cube and let J^~ be its canonical normal binary 
convexity, generated by the subbase of all sets of type 

T T - ^ O , t] or Tccl[t, 1], t G [0, 1], i G a, 
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where Tt : X —» [0, 1] is the ith projection. Let A C X be the set of all 
points (Xi)^ of X with xf ^ 0 for an a t most finite number of indices i. 
Then A is 2-convex relative to 37~, and hence weakly convex. However, it 
is not convex: let B C X be the set of all points (x z)7 € a in X with xt 9e 0 
for a t most one index i. Then 5 is compact, B (Z A, and Ig-(B) = X (J_A. 

I t is an open problem whether convexity and weak convexity relative 
to a compact convexity are equivalent for open subsets. 

6. Convexi ty preserving m a p p i n g s . Let ^ and Q be convexities on, 
respectively, X and F, and let / : X —> Y be a function. Then / is 
called a convexity preserving (c.p.) map if for each D G ^ it is t rue tha t 
Z " 1 ^ ) e ^ ^ { 0 } (cf. [15, p. 77]). 

Notice tha t a cp map is automatical ly continuous. We have the follow­
ing result: 

7. T H E O R E M . Let ^ and 2) be convexities on, respectively, the compact 
spaces X and Y, and let f : X —> Y be a function; 

(i) i / / is a cp waf, then for each (weakly) 2-convex set B C Y, the set 
f~~l(B) C X is (weakly) ^-convex; 

(ii) if *$ is a compact convexity, and if f is continuous, then f is a cp map 
if and only if for each finite set F C X, 

f(I«(F)) CIv(f(F)). 

The proof is left to the reader. For (ii), use Theorem 5(i) . 

The following result will be useful in constructing (bi-) convex sets: 

8. T H E O R E M . Let ^ be a compact convexity on the space X. Then for each 
subset A of X, the mapping 

kA:X-*c£ 

sending x £ X to I^({x\ U A) is convexity preserving. 

Proof. The map kA is continuous by the continuity of 1% and of the 
union operator. We can therefore apply Theorem 7 (ii) for a simple proof 
tha t kA is a cp map. Notice tha t if A\, . . . , An G ^ \ then I#(<#){A\, 
. . . , An\ equals the family 

{C e cê\ C C I<g(UÏ=iAi) and for each at G A,, i = 1, . . . , n, 

C n / y { a i , . . . ,an\ * 0}, 

as one can easily verify. Let Xi, . . . , xn, £ X and let x £ i#{#i, . . • , xn}. 
We have to show tha t 

/*({*} \JA) e I^m{Iv({xi] ^J A),...,L,({xn} \J A)}. 
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First, I<$({x\ U A) is obviously included in the set 

/«(y /*({*<} VA)J . 

Assume next that there existai G I<e({xi) U /I) , . . . , aw. G /<-<?({ ̂ | ^ -4), 
such that 

/*({*} U 4 ) n / , { f l l a j = 0. 

By normality of ^ (as a subbase), there exist Si, S2 G ^ with 

| x | U 4 C S i - S 2 ; {ai, . . . ,aw} C S 2 - S i ; Si U S2 = X. 

Then {xi, . . . , xn) C S2, for otherwise e.g. x* G Si, whence 

a, G /*({*,} W^4) C S i , 

a contradiction. Therefore, 

x G /^{xi, . . . , xn\ C S2, 

again a contradiction. 

The mappings kA, A C X, are in one variable. Their cp property 
breaks down if more variables are considered: 

8'. Fact. If *io is any convexity on any X with at least two points, then the 
map f : X X X —> &, defined by 

f(x,y) = i<e{x,y\ (*,y e x) 
is not cp relative to the product convexity ^ X ^ on X X X (cf. 1(5)). 

(With the above notation, this corresponds to the case A = Q). 

Proof. Let a j* b in X. Then 

Jf = {C G r^| a G C} = ({a},X)r\ <é 

is a convex set of ^ , and clearly 

{a} XXKJX X {a} Cf'x(X). 

\if~l(C^) were convex relative to cé X ^, then 

XXX = I«x«({a} XXVJ X X {a}) C / ~ W . 

However, f(b,b) = {b} G j f . 

A final auxiliary result needed for the construction of biconvex sets is 
the following one: 

9. LEMMA. Let *io be a compact convexity on X, and let 0 C X be convex 
and open. Then the sets (0) P\ ^ and (0, X) C\ ^ are ffl{^€) -convex and 
open. 
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Proof. (0) C\ <g and (0, X) C\ <£ are open by definition. Let s/ C ^ 
be closed—and hence compact. 

If se C (0) C\ <% then U ^ C 0, and U ^ is a compact set of X. 
Hence I<g(\Jstf) C 0, and it follows (using formula (*) of Theorem 3) 
that 

I*m&) C {I«(\Js/))C\V C (0)C\V. 

If s/ C (0, X) C\ <£, then A C\ 0 ^ 0 for each A G t</. Choose an open 
set 0A of X for each i f j / , such that i H O A ^ 0 and 0A C ÔA C 0 
(notice that X is compact T2 and hence regular), s/ C ^ being compact, 
there exist ^4i, . . . , An G s/ such that 

i C U (0Ai,X). 
i=l 

Hence 

U ÔAi G J_ (s/) (notation of Theorem 3), 

and consequently, 

B = Ivyj^J G -U(«»0. 

0 being convex, we find that B C 0. Therefore, if C G _L# A.<&(&/), then 
C r\ B 9e 0 and, consequently, C C\ 0 ^ 0. Using formula (*) of Theorem 3 
again, 

/ ^ ) ( ^ ) C J-*±*(«aO C {0,X)C\V. 

Notice that the converse of Lemma 9 is also true: If (0) P\ ^ or 
(0, X) H ^ are Jf (^)-convex, then 0 C X is convex ( O C X arbi­
trary). This follows from the fact that the canonical embedding of X in ^ 
is a cp map (cf. [15] Example 1.3(c)). It is not difficult to prove that 
(0, X) C\ ^ is weakly convex if and only if 0 is weakly convex. However: 
if (0) r\ ^ is weakly convex and if 0 C X is open, then 0 is convex, by 
an argument similar to the one used in the proof of Theorem 5(iii). 

4. The Hahn-Banach theorem. 

10. THEOREM (Biconvex Enlargements). Let *$ be a compact convexity 
of X and let C, 0 be (weakly) convex disjoint sets of which C is closed and 0 
is open. Then there is a (weakly) biconvex closed set D of X, such that 
C C D and D C\ 0 = 0. 

Notice that the closed sets C and D are convex in either case (cf. 
Theorem 5(i)). 
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Proof. We first deal with the weak convex case. Let 

2 = {D\ D e ^,C CD,Dr\0 = 0}, 

and let 2' C 2 be a chain with respect to inclusion. Then \J 2' C\0 = Q, 
and hence XJW C\ 0 = 0. Since U 21 is the limit of the net 2' C ^ \ 
we find by compactness t ha t U ^ ' G % -̂ Hence ^ has a maximal 
element D by Zorn's Lemma. For each finite set {xi, . . . , xn) C X we 
write 

D(xlt . . . , x j = {y| J^X! , . . . , x„, j | n i ) ^ ) . 

Notice t ha t D(xï} . . . , xn) is the inverse image of the J ^ ( ^ ) - c o n v e x set 
(D,X) under the cp mapping k{xi,...tXnl (cf. Theorem 8) . Hence, 
D(x\, . . . , xn) is convex and closed. Obviously, £> C D(xi, . . . , x j and 
Z)(xi, . . . , xn) = X if Xi Ç D for some i. 

For each w ^ 1 we prove the following s ta tement by induction on the 
number p, where 0 ^ p ^ n: 

Cn(p). If Xi, . . . , xn (z X — D are such that xi, . . . , xp ({_ 0 and 
xp+1, . . . , xn , £ 0 , //zen 

D(xi , . . . , xn) = D. 

Proof of Cn(0). Let Xi, . . . , xn Ç 0 and assume tha t D(xi, . . . , x j 9^D. 
By the maximali ty of D there is a point y £ D(xx, . . . , x„) Pi 0. Hence, 

i ^ { x i , . . . , x„, 3̂} n p ^ 0. 

However, {xi, . . . , x„., y} C 0 , contradict ing tha t O is weakly convex. 

Proof of Cn(p — 1) =^ Cn(p). Let Xi, . . . , xn £ X — D where 
Xi, . . . , xp (£ 0 and xp+i, . . . , xn £ 0 . If D(x\, . . . , xw) 3^ £>, then we can 
again choose a point 

y e D(xlt. . . ,xn)C\0 

by maximali ty of D. Hence 

I<g{xu . . . ,xn,y] H D ^ 0, 

and it follows t ha t 

x p G Z/(Xi, . . . , x p _ i , y, Xp+i, . . . , xw) . 

By Cn(£ — 1), the lat ter set equals D, contradict ing tha t xp (L D. 

This completes the inductive proof of Cn(p). If w ^ 1 and if 
Xi, . . . , xn+i £ X — D, then I<${xi, . . . , xn+i\ C X — D, for otherwise 

xn+i £ D(xh . . . , xn) = D, 

a contradiction. Hence, D is weakly biconvex. 
In order to obtain the second par t of the theorem, wre have to proceed 
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in a dual way. We briefly sketch the idea: Let 

0> = [p\ P is convex open, O C P, C C\ P = 0}. 

If 0>' C ^ is a chain, then U &' C\ C = 0 and U &' is obviously 
convex and open again. 

Let P Ç ^ be a maximal element, and put 

P(xu . . . , xn) = {y\I<g{xu . . . , xn, j | n ? ^ e ) . 

Combining Lemma 9 with Theorems 8 and 7(i),P(xi, . . . , xn) is a convex 
open set including P . Using the above induction technique, we find that 
the closed set X — P is weakly convex, and hence convex. 

A biconvex set can be regarded as a kind of a half-space, and the 
above theorem can already be interpreted as some sort of Hahn-Banach 
theorem. In order to obtain a fully parallel result with vector space 
theory, we now examine the existence of cp maps which separate convex 
sets. The range of these cp maps is the unit interval (not the real line), 
equipped with its linear structure, which corresponds to the (normal 
binary) convexity 

{[*i,*2]| O ^ i g f e g 1}. 

11. THE HAHN-BANACH THEOREM. Let ^ be a compact convexity on X. 
(i) If C and D are disjoint closed convex sets of X, then there is a cp map 

f : X —> [0, 1] which strictly separates C and D i.e., 

C Cf-'IO, t) and D Cf~l{t, 1] for some t G [0, 1]. 

(ii) / / each biconvex closed set of X is a G&-set, and if C, 0 are disjoint 
convex sets of which C is closed and 0 is open, then there is a cp map 
f : X —> [0, 1] which separates C and 0, i.e., 

C Cf-'iO) andO Cf-'iO, 1]. 

Notice that (i) guarantees at the same time that there exist convex 
open sets in X (e.g. the inverse images of open intervals). 

Proof, (i) is actually a reformulation of [17, Theorem 2.1] which states 
that if f/ is a normal 1\ subbase of X and if So, Sx ^ ff are disjoint, then 
there is a map 

/ : X -» [0, 1] 

such that /(So) = 0, /(Si) - 1, and for each t (E [0, 1], /-^[O, t] and 
f_1[/, 1] are (countable) intersections of members of ff. Hence, (i) is 
already valid for a normal Pi convexity. 

Before proving (ii), we want to point out that the Gs-condition on 
biconvex closed sets is necessary: If D C X is biconvex closed, then 
separating D and X — D by a cp map as in (ii) yields that D is Gs. 
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For a proof of (ii) we need two preparatory lemmas: 

12. LEMMA. Let %f be a normal 7\ convexity, and let C be a biconvex 
closed Gd-set of the compact space X. Then there is a sequence (i£n)n=i°° of 
biconvex closed sets of X such that 

(1) KnC'vatKn+x\ 
CO 

(2) U X , = I - C. 
71=0 

Indeed, let (An)n=iT be a sequence of closed sets of X such that 

CO 

Ao = 0 and U An = X - C. 

By induction, we construct a sequence of biconvex closed sets (Kn)n==oœ, 
satisfying (1), and also 

(2') An C Kn C X - C for each n ^ 0. 

Put i£0 = 0- If Ko, • • • , Kn are properly constructed, then (An+i\J 
Kn) r\ C = 0, whence by the convexity of X — C, 

Using (i) of Theorem 11, there is a £ € [0, 1] and a cp m a p / : X —» [0, 1] 
such that 

h(An+i U i Q C int/-i[0,1]; C H / - i [ 0 , f] = 0. 

Putting i£w+i = /_ 1[0, /] completes the induction, and Lemma 12 easily 
follows. 

13. LEMMA. Let & be a normal T\ convexity on the compact space X and 
let C be a biconvex closed Gt-set. For each open set 0 of X including C there is a 
biconvex closed set H of X such that C Pi H = 0 and 0 VJ H = X. 

Let (Kn)n=oœ be a sequence of biconvex closed sets as in Lemma 12. 
Then 

{0} U f i n t i q n ^ 0} 

is an open cover of X which, by compactness, reduces to a finite subcover. 
The largest set Kn appearing in this cover yields the desired set H. 

We now proceed with a proof of part (ii). By Theorem 10, there is a 
biconvex closed extension D of C not meeting 0. Since D is a Ga-set, we 
can apply Lemma 12 to obtain a sequence K(l/2n)n=™ of biconvex closed 
sets such that 

CO 

K{\) = <d;K(l/2n) C mtK(l/2'l+1);X - D = U K(l/2a). 
B=0 
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Using Lemma 13, we can find for each n ^ 0 a biconvex closed set 
H(l/2n), such that 

H(l/2n+1) r\ K(l/2n) = 0; H(l/2n) U K(l/2n) = X. 

Notice that # (1 ) = X and that i7(l/2^+1) C #(1/2*) for each w. We 
also put K{0) = X and H(0) = 0. 

Modifying an Urysohn-type procedure from [17, 2.1], we now construct 
for each dyadic rational r £ [0, 1] two convex closed sets H(r), K(r), such 
that 

(1) if r < s, then H(r) C His), K(r) D K(s), H(r) H K(s) = 0; 
(2) for each dyadic / Ç [0, 1], H(t) U K(i) = X. 

These conditions are already satisfied if r, s and t are among the dyadics 
0, 1 or \/2n. We proceed inductively as follows. Assume that H(t) and 
K(t) are properly constructed for each dyadic t with denominator ^2n. 
We then construct H{i) and K(t) simultaneously for all 

/ G {3/2w+1, . . . , (2n+1 - 1)/2W+1} (*) 

(all fractions are assumed to be irreducible). Let r < she two consecutive 
fractions with denominator ^2n, and let t = | ( r + s). If r = 0, then 
t = 1/2W+1, and H(t) and K(t) have already been constructed. If r > 0, 
then / is in the set (*). Using (1), H(r) Pi K(s) = 0. As ^ is a normal 
subbase, there exist Si, 52 G ^ such that 

H(r)CSi-S2; K(S)CS2-SÛ S I U 5 2 = X . 

We put i7(0 = 5i and i£(/) = 52. Using (2), it easily follows that 

ff(r) C # ( 0 CX -K(s) CH(s)-
K(s) CK(t) CX - H(r) CK(r). 

Hence, the new sets fit in with our inductive assumption of (1) and (2). 
Having produced Hit) and K(t) in this way for all dyadic / £ [0, 1], we 

define a mapping/ : X —• [0, 1] as follows: 

f(x) = inf {r| x £ i7(r)}. 

If ^ < fix) is dyadic, then x d His), whence x £ Kis) by (2). lîfix) < s 
for a dyadic s, then choose a dyadic r with fix) < r < s. Hence, x G # ( / ) 
and consequently x (L Kis) by (1). This shows that 

fix) = sup{s| x Ç i£(s)}. 

Using both formulas for fix), it is easily seen that for each real number 
t 6 [0, 1], 

f~l[0, t] = O {#(01 r > *, r dyadic} 

/ - ! [ / , ! ] = O f T O I 5 <t, 5 dyadic}, 
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showing tha t / is a cp mapping. Moreover, if x Ç X — £>, thenx G i^(l/2w) 
for some w > 0, and hence f(x) > 0. It follows that C C / _ 1 (0) a n d 
o c/-*(<), i]. 

We finally present an example, showing that the compactness condition 
on a convexity cannot be removed from the second part of the Hahn-
Banach theorem. 

14. Example. Let X = [0, l ]2 be the unit square with projections 

Tri, T2 : X -» [0, 1] 

onto the first, resp. the second axis. Define 

? = ( I ) U j i Ç H(X)\ irrl{t) <t A and ir<rl(t) <£ A 
for each t£ [0, 1]}. 

Obviously, ^ is a 7\ convexity on X, and ^ C H(X) is not a closed 
subset. We show that ^ is normal as a subbase of X: 

If d denotes the usual metric on X, then we write 

D(x, r) = {y e X\ d(x, y) ^ r] (r > 0). 

Let A, B £ & be disjoint and nonempty. Then A U B Ç c~€ — [X\ as 
one can easily verify. Let t £ [0, 1], and choose x(t) Ç 7ri_1(/) — (̂ 4 \J B). 
Let e(/) > 0 be such that 

£(*(*), e(0) H (4 U 73) = 0, e (0 < 1/2. 

Notice that D(x(t), e(t)) VJ A Ç 9". Select a finite cover of [0, 1] of type 

{[U - eiyti + e j | i = 1, . . . , n\, et = e(^), 

and let xi} i = 1, . . . , n be the corresponding points in 7ri_1(^) respec­
tively. The property 

D(xu et) H (AVJ B) = 0 

remains valid if xt is moved a little along 7ri_1(/z). 
Hence we may assume that the second coordinates of the xt are 

mutually different. It easily follows that 

A' = [AVJ U"=i [tt ~ eu U + et] X {TT2 (X,)} ] H X 

is in ^ again. Moreover, A' C\B = 0, and A' meets each vertical fiber of X. 
Similarly, A' can be extended to a set A" £ ^ such that A" C\ B = 0, 
and A" meets each horizontal (and vertical) fiber of X. Applying the 
same procedure on B, we obtain an extension B" of B such that B" £ ^ \ 
B" C\ A" = 0, and B" meets each fiber of X. 

X being normal, there exist closed sets Si, S2 C X such that 

^4" C St - S2; 5 " C S2 - Si; S\ U & = I . 
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As Si r\ B" •= 0, no fiber of X can be included in Si, whence Si £ &. 
Similarly, S2 G ^ , and it follows that ^ is a normal convexity. 

The resulting non-compact convexity does not satisfy part (ii) of our 
Hahn-Banach theorem. In the picture below, the fat line indicates a 
convex closed set C of X. All points outside of C and outside of the dotted 
line constitute a convex open set 0 of X: 

I 1 
3 3 M^HMMMMMMMMr 

[c~" 
• C 1 

0 

1 2 
1 r >2 3 

— o 1 

0 is not biconvex, since its complement includes the vertical fiber over 
1/3. No extension of 0, which is disjoint with C, is convex, since such an 
extension must contain a point of the dotted line and hence it contains a 
full horizontal fiber of X. 

15. Remarks. (1) The equivalence of (i) and (ii) in Theorem 2 (quoted 
from [14]) has been obtained independently and earlier by R. E. Jamison 
in his 1974 dissertation (University of Washington, Seattle). 

(2) In a forthcoming paper of the author, entitled "Pseudo-boundaries 
and Pseudo-interiors for Topological Convexities," wre have extended 
convexity theory to non-compact spaces. In comparison with the present 
results, a considerable sharpening has been obtained—even in the case of 
compact spaces—of Theorem 10 on biconvex enlargements. 

REFERENCES 

1. J. M. Aarts and J. de Groot, Complete regularity as a separation axion, Can. J. Math. 
21 (1969), 96-105. 

2. M. G. Bell and J. van Mill, The compactness number of a compact topological space, 
(to appear in Fund. Math.). 

3. D. W. Curtis and R. M. Schori, 2X and C(X) are homeomorphic to the Hilbert cube, 
Bull. Amer. Math. Soc. 80 (1974), 927-931. 

4. E. K. van Douwen, Special bases for compact metrizable spaces, (to appear in Fund. 
Math.). 

5. E. K. van Douwen and J. van Mill, Supercompact spaces, (to appear in Gen. Top. 
Appl.). 

https://doi.org/10.4153/CJM-1980-061-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-061-x


820 M. VAN DE VEL 

6. O. Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964), 
602-607. 

7. J. de Groot, Supercompactness and superextensions, Contributions to extension theory 
of topological structures, Symp. Berlin 1967 (Deutsche Verlag de Wissenschaften, 
Berlin, 1969), 89-90. 

8. A. Grothendieck, Topological vector spaces (Gordon and Breach, N.Y., 1973). 
9. D. C. Kay and E. W. Womble, Axiomatic convexity theory and relationships between 

the Caratheodory, Kelly, and Radon Number, Pacific J. Math. 38 (1971), 471-485. 
10. J. van Mill, The superextension of the closed unit interval is homeomorphic to the Hilbert 

cube, Fund. Math. 103 (1978), 151-175. 
11. Superextensions of metrizable continua are Hilbert cubes, (to appear in Fund. 

Math.). 
12. Supercompactness and \Voilman spaces, M. C. tract 85 (Mathematisch 

Centrum, Amsterdam, 1977). 
13. J. van Mill and A. Schrijver, Subbase characterizations of compact topological spaces, 

Gen. Top. Appl. 10 (1979), 183-201. 
14. J. van Mill and M. van de Vel, Subbases, convex sets, and hyperspaces, (to appear in 

Pacific J. Math.) 
15. Convexity preserving mappings in subbase convexity theory, Proc. Kon. Ned. 

Acad. Wet. 81 (1978), 76-90. 
16. On superextensions and hyperspaces, Topological Structures II, Math. 

Centre tract 115, Amsterdam (1979), 769-180. 
17. J. van Mill and E. Wat tel, An external characterization of spaces which admit normal 

binary subbases, Amer. J. Math. 100 (1978), 987-994. 
18. C. F. Mills, A simpler proof that compact metric spaces are supercompact, Proc. Amer. 

Math. Soc. 73 (1979), 388-390. 
19. R. M. Schori and I. E. West, 21 is homeomorphic to the Hilbert cube, Bull. Am. Math. 

Soc. 78 (1972), 402-406. 
20. M. Strok and A. Szymansky, Compact metric spaces have binary bases, Fund. Math. 

89 (1975), 81-91. 
21. M. van de Vel, Superextensions and Lefschetz fixed point structures, Fund. Math. 10/+ 

(1978), 33-48. 
22. A. Verbeek, Superextensions of topological spaces, M.C. tract 41, Amsterdam. 

Vrije Universiteit, 
Amsterdam, Holland 

https://doi.org/10.4153/CJM-1980-061-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-061-x

