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Abstract

In this paper we present a minimax theorem of infinite dimension. The result contains several
earlier duality results for various trigonometrical extremal problems including a problem of Fejer.
Also the present duality theorem plays a crucial role in the determination of the exact number
of zeros of certain Beurling zeta functions, and hence leads to a considerable generalization of
the classical Beurling's Prime Number Theorem. The proof used functional analysis.
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1. Introduction

In [6] Ruzsa proved a duality property between certain extremal quantities.
For a different kind of extremal problem a similar duality phenomenon was
described in [3]. Later it turned out that the two types of extremal problems
are in fact special cases of a class of extremal problems [5]. This class can
be parametrized by a continuous variable r, where 0 < r < 1, and the
extremal problems in [3] and [6] belong to the special cases r = 0 and
r = 1, respectively. So it was natural to look for a more general formulation
of duality to cover the general class of extremal problems as well.
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In this paper we present a minimax theorem of several dimensions, which
is general enough to cover both the above-mentioned extremal problems and
the extremal problem of [2]. Actually, we need to introduce the problem in
a several dimensional setting for the sake of [2], where in a certain analytic
number theoretical problem this general duality plays a crucial role.

Most of the work presented here is contained in the author's thesis [4].
The author would like to express his gratitude to Professor I. Z. Ruzsa for
calling his attention to the paper [6] and for giving useful comments in the
course of his work.

2. The theorem

Let d e N and denote T4 = (R/2nZ)d . We define

(1) Z d
+ : = { z = ( z l , . . . , z d ) e Z d : 3 j < d , z , = ••• = z,. = 0 , z j + l > 0 } .

For any M, L c lf+ we introduce

(2) f(M,L):=\fe3r:f>0, f(x) = 1 + £ a(k)cos(k-x),

I
fl(k) < 0 (k £ M), a(k) > 0 (k £ L) > ,

where y denotes the set of trigonometric polynomials of d variables, and

Jt(M, L) := | T G BMiJ4): rfr(x) ~ 2 £ f(k) cos(k • x),

r(k) < 0 (k i M), r(k) > 0 (k £ L)

where BM(Td) stands for the regular Borel measures of I .
We consider a fixed p e BM^) with Fourier-Lebesgue series

(4) dp(\) ~ 1 + 2 J 3 r(k) cos(k • x).

Our goal is to find the extremal quantity

(5) ap(M, L) := inf{(/, p):fe
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where the scalar product of / and p is

(6) (f,p) = - ^ 1^ /(x)dp(x) = 1 + £ a(k)r(k).

Observe that, with the notation

(7) M:=Zd
+\M, L:=lf+\L,

we get

(8) ( / , T > < 0 f o r a l l /

Hence if a e BMiT4) satisfies

(9) a-p

then

and hence taking infinum over / € &~{M, L) we obtain

(10) aa(M,L)<ap(M,L).

O n t h e o t h e r h a n d s u p p o s e t h a t a sa t is f ies , f o r s o m e / e R , t h e i n e q u a l i t y

( 1 1 ) a > a (</A(x) = d x x d x 2 - - d x d ) .

Introducing the extremal quantity

(12) (op(H,K):=sup{t:3reJt(H,K), a = p + x>tX},

we see from (9), (10), (11) and ( / , a) > (f, tX) = t, that

(13) ap{M,L)><0p(M,L).

Given this observation our aim is to prove the sharpness of (13).

THEOREM. Let M, LcZd
+ and p€BM{Td) be arbitrary. We have

ap(M,L) = cop(M,L).

3. Proof of the duality theorem

Since p, M, L and M, L are fixed once and for all, we use a , &~ and
a), J! without writing out p, M, L and p, M, L respectively. In view
of (13) it is enough to prove co>a.

We can suppose a > -oo and as / = 1 6 &", we have a < 1. For any
m e M and 1 e L, 1 + cos(m • x) e y and 1 - cos(l • x) e 9". Now if a = 1
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then 1 = a < (1 + cos(m • x), p) = 1 + r(m) and 1 = a < (1 - cos(l • x) , p) =
1 - r ( l ) , hence r(m) > 0 ( m e M ) , r(l) < 0 (I e L) and so T := k-p e J?,
and so a = p + x = A can occur in (12) and co = 1.

Therefore, we can suppose -oo < a < 1. Moreover, we can suppose
a = 0, since for any a € (-00, 1) we can consider

p* = —-(-a • X + p), a=ap.{M,L), co* = (Op.(M, I )

and trivially

» —a 1 „ * —a 1
a =- 1- -: a = 0, co =-j h co

I — a 1—a 1—a 1—a

proves a = co if co* = 0. Hence we take now a = 0 and prove co > 0 .
Denote

(14) &>:={h

and with conditions on the coefficients identical to &, introduce

3?:=\ge6r: (g, p) = 0, #(x) = 1 + £ a(n)cos(n• x),

(15) ^ +

a(n) < 0 (n ^ M), a(n) > 0 (n g L) I .

In the Banach space C(Td), where the norm is the supremum norm as
usual, @ forms an open, nonvoid convex cone, and & is another convex
set. Then "§ is nonvoid since for any / o e / with 0 < (fQ, p) < 1 (such
fQ must exist since a = 0 < 1) we have

Moreover, & n & = 0 . Indeed, for any £ e J 3 n ̂ , 0 < min g < 1 and so
with S = j min g we have

and hence 0 = a < (F, p) = -3/(1 — S) < 0, a contradiction. Therefore
we can apply the separation theorem of convex sets (cf. [1, Corollary 2.2.2])
to & and &, which furnishes a nontrivial continuous linear functional /
satisfying

(16) I&>>0>I&, 71 = 1.
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Here 71 = 1 is a matter of normalization since ISP > 0 and 7 1 = 0 would
imply I£P = 0 and hence 7 = 0, and therefore 71 > 0 is guaranteed. The
separation constant can be chosen to be 0 since & is a cone and I£P # 0
implies I£P = (0, oo) or [0, oo) once I£P is bounded from below. Also,
we can suppose that 7 is even in the sense that

(17) / ( / ( X ) ) = J - £ / ( / ( « , * , + ••• + «„*,))
1 «i «„-*»

since we can define a new functional by the right hand side of (17) if it does
not hold for 7 itself. Applying the representation theorem of F. Riesz (cf.
[1, Theorem 4.10.1]) we obtain a n e BMiT4) which satisfies, according to
(16) and (17),

(18) 1 = -JL_ j^.dn, rf/i(x)~l+2>(k)cos(k-x).

We define the index sets

(19) tf+= {k € z j : r(k) ! 0}, M+ = N+f)M, L+ = LnN+,
o *- o o oo

where the three alternatives (+, 0, - ) are to be understood separately. Ac-
cordingly, we denote the elements of M+ by m+ , elements of JW0 by m,,,
etc. For any #0 e 3? and a > 0

g0 + a cos(m0 • x) e &, go-a cos(l0 • x) e &,

and hence (16) and (18) give after a —• +oo the inequalities

(20) 6(<n0)<0,

Suppose now that n e M_ U L+ . Clearly,

( ) l

and so (16) and (18) now yield 1 < b(n)/r(n) and

(21) s:=in

Finally we define for k, n e N+ u N_ the function

/k,»W := j^j c o s ( k •x) - jpj c o s ( n •x)-

Then (fk n , p) = 0 and for a fixed g0 e 'S and a > 0 we have

S o - a / k . n ^ (keL + ,neL_) ,
*o + «/k ' . e S ? (k€A/+,neM_),
gQ + afVa€S? ( k e M + , n e L + ) ,
? 0 - f l / k l ^ (keM_,n€L_) .
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Again, we refer to (16), I& < 0 and (18) to obtain after a —> +oo the
inequalities

A(U *(L) b(m_) b(m+)
(l) {l) ' ( )r(m_) " r(m+) '

r(l+) " r(m+)' r(m_) " r ( l j "

Comparing (23) and (21) we obtain that for a certain real s > 1

(24) ^ j > 5 > ^ 2 (neM_UL+, keM+UL_).

Now let us define

(25) T:= f l - - ) A + -n-p, dr(x)~2j2 f(k)cos(k-x).
kez^

Then it is easy to check that the constant term in the Fourier-Lebesgue series
of T is zero, and (24) along with (20) can be expressed as

(26) *(m)<0 (meM), t(l) > 0 ( l e i )

whence

(27) T 6 ^ .

Now with f = 1 - l/s > 0 we infer from ft > 0 and (25)-(27) that cr :=
x + p>tk and so <y > t > 0, which completes the proof of our theorem.
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