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Abstract

In this paper we present a minimax theorem of infinite dimension. The result contains several
earlier duality results for various trigonometrical extremal problems including a problem of Fejér.
Also the present duality theorem plays a crucial role in the determination of the exact number
of zeros of certain Beurling zeta functions, and hence leads to a considerable generalization of
the classical Beurling’s Prime Number Theorem. The proof used functional analysis.
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1. Introduction

In [6] Ruzsa proved a duality property between certain extremal quantities.
For a different kind of extremal problem a similar duality phenomenon was
described in [3]. Later it turned out that the two types of extremal problems
are in fact special cases of a class of extremal problems [5]. This class can
be parametrized by a continuous variable r, where 0 < r < 1, and the
extremal problems in [3] and [6] belong to the special cases r = 0 and
r = 1, respectively. So it was natural to look for a more general formulation
of duality to cover the general class of extremal problems as well.
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In this paper we present a minimax theorem of several dimensions, which
is general enough to cover both the above-mentioned extremal problems and
the extremal problem of [2]. Actually, we need to introduce the problem in
a several dimensional setting for the sake of [2], where in a certain analytic
number theoretical problem this general duality plays a crucial role.

Most of the work presented here is contained in the author’s thesis [4].
The author would like to express his gratitude to Professor I. Z. Ruzsa for
calling his attention to the paper [6] and for giving useful comments in the
course of his work.

2. The theorem

Let d € N and denote T = (R/27Z)" . We define
(1) Zi:={z=(z,,...,zd)EZd:3j<d, zy=-=2;=0, z,,, >0}

Forany M, L C Z° we introduce
+

2) FM,L):={feT:f20, flx)=1+ Y a(k)cos(k-X),

kez!
ak) <0 (k¢ M), ak)>20(k¢L),,
where .7~ denotes the set of trigonometric polynomials of d variables, and

A M, L):={7eBM(T"): di(x)~2 " t(k)cos(k-x),

kez?
(k) <0(k¢M), t(k)20(k¢L)e,

where BM(T d) stands for the regular Borel measures of T,
We consider a fixed p € BM (Td) with Fourier-Lebesgue series
(4) dp(x) ~1+2 ) r(k)cos(k - x).
kez!
Our goal is to find the extremal quantity
(5) o (M, L):=inf{(f, p): f € F (M, L)}
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where the scalar product of f and p is

1

(6) (o0 =—— [ f0dox) =1+ T a@r®.

(2m)" Jr rezd

ez!
Observe that, with the notation
— d - d

(M M=Z\M, L:=Z/\L,
we get
(8) (f,7)<0 forall feF(M,L)and tc.#(M,L).
Hence if ¢ € BM (Td ) satisfies
9) c-p=t1€#(M,L),
then

(fro)<{f.p, [feFM, L),
and hence taking infinum over f € ¥ (M, L) we obtain

(10) o, (M, L)< a,(M, L).
On the other hand suppose that o satisfies, for some ¢ € R, the inequality
(11) o >th (dA(x)=dx dx, --dx,).

Introducing the extremal quantity

(12) wp(H,K):=sup{t:31€l(H,K), oc=p+121tl},
we see from (9), (10), (11) and (f, ¢) > (f, tA) =1, that

(13) ap(M,L)pr(ﬁ,f).

Given this observation our aim is to prove the sharpness of (13).

THEOREM. Let M, L C Z‘fr and p € BM (Td) be arbitrary. We have
a,(M,L)= wp(ﬁ, L).

3. Proof of the duality theorem

Since p, M, L and M, L are fixed once and for all, we use o, & and
w, # without writingout p, M, L and p, M, L respectively. In view
of (13) it is enough to prove w > «.

We can suppose o > —oc and as f=1¢€.¥, we have a < 1. For any
meM and le L, 1+cos(m-x) € F and 1 —cos(l-x) € F . Nowif a=1
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then l =a<(l+cos(m-x), p)=1+r(m) and 1 =a < (1l —cos(l-x), p) =
1-r(l),hence r(m) >0 (me M), rl) <0 (leL) andso t1:=A—-p €A,
andso o =p+7=4 canoccurin (12) and w=1.

Therefore, we can suppose —x < a < 1. Moreover, we can suppose
a =0, since for any o € (—o0, 1) we can consider

* l £ * — —
pr=g—g(-a-d+p), a =apM,L), @ =0.M,1L)

and trivially

-a + 1
l-a l1—-a

L - + 1
Tl-a l1-a

proves a = w if w* = 0. Hence we take now a =0 and prove w > 0.
Denote

(14) P ={heC(T%): h>0},

and with conditions on the coeflicients identical to ¥ , introduce

*
a a=0, w = w

T={geT:(g,p)=0, gx)=1+ Ea(n)cos(n.x),
nezi

(15)
am)<O0(m¢ M), am)>20(n¢ L)

In the Banach space C (Td) , where the norm is the supremum norm as
usual, % forms an open, nonvoid convex cone, and % is another convex
set. Then £ is nonvoid since for any fy € & with 0 < (fy, p) <1 (such
f, must exist since a =0 < 1) we have

8o®) = T (/= ) € %

Moreover, ZNZ =&, Indeed, forany g€ £N¥%, 0 <ming <1 and so
with 6 = fming we have
._ 89
F = 13 e,

and hence 0 = a < (F, p} = —6/(1 — &) < 0, a contradiction. Therefore
we can apply the separation theorem of convex sets (cf. [1, Corollary 2.2.2])
to # and ¥, which furnishes a nontrivial continuous linear functional I
satisfying

(16) I>0>12, Il=1.
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Here Il =1 is a matter of normalization since /.2 >0 and I1 =0 would
imply 17 = 0 and hence I = 0, and therefore I1 > O is guaranteed. The
separation constant can be chosen to be 0 since # is a cone and IZ # 0
implies 1P = (0, o0) or [0, c0) once IZ is bounded from below. Also,
we can suppose that I is even in the sense that

(17) 1) = Y I(f(ex,+-+4%)

2 &5, eg==%1
since we can define a new functional by the right hand side of (17) if it does
not hold for I itself. Applying the representation theorem of F. Riesz (cf.
[1, Theorem 4.10.1]) we obtain a u € BM (Td) which satisfies, according to
(16) and (17),

1
18 I= dp, dp(x) ~1+ 3 b(k)cos(k - x).
() (2::)"/7« #o o dutx) gz:( cos(k -x

We define the index sets
(19) N6={keZ r(k) 0}, M+ MﬂM L+—LnN+,
where the three alternatives (+, 0, —) are to be understood separately Ac-

cordingly, we denote the elements of M_ by m_, elements of M, by m,,
etc. Forany g, €% and a >0

gy+acos(m,-x)€Z, g,—acos(l,-x)€Z,
and hence (16) and (18) give after a — +oo the inequalities
(20) b(my) <0, b(,) >0.
Suppose now that ne M_UL_. Clearly,

g,(x):=1- %n)cos(n-x) €7,
and so (16) and (18) now yield 1 < b(n)/r(n) and

(m)
(21) s: mf{r(n) neM_UL_;>1.
Finally we define for k, n€ N, UN_ the function
1
S n(X) = (k) cos(k - x) — o) cos(n - Xx).

Then (f, ,, p) =0 and for a fixed g, €% and a >0 we have

go—aj;’ne? (keL, ,nel_),
gtaf €& (keM ,neM),
g&taf €% (keM_,nel)),
go—afk,nef (keM_,nelL).

(22)
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Again, we refer to (16), I < 0 and (18) to obtain after a — +co the

inequalities

b(1,) _ b1)  b(m.) _ b(m,)

ry) = @) r(m_) T r(m,)’
(23)

bL,) | b(m,)  b(m) ()

rty) = ormy)’ r(m_) T rQ)
Comparing (23) and (21) we obtain that for a certain real s > 1
(24) %ZSZZ:% (meM_UL_, ke M _UL_).

Now let us define

(25) T:= (1 - %) A+ %y —p, dr(x)~2 Z t(k) cos(k - x).

d
kez!

Then it is easy to check that the constant term in the Fourier-Lebesgue series
of 7 is zero, and (24) along with (20) can be expressed as

(26) tm) <0 (me M), (>0 (lel)
whence
(27) TeEMHN.

Now with t =1—1/s > 0 we infer from u > 0 and (25)-(27) that o :=
T+ p 2> 1tA and so w >t > 0, which completes the proof of our theorem.
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