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Dunford–Pettis Properties and
Spaces of Operators

Ioana Ghenciu and Paul Lewis

Abstract. J. Elton used an application of Ramsey theory to show that if X is an infinite dimensional

Banach space, then c0 embeds in X, ℓ1 embeds in X, or there is a subspace of X that fails to have the

Dunford–Pettis property. Bessaga and Pelczynski showed that if c0 embeds in X∗, then ℓ∞ embeds in

X∗. Emmanuele and John showed that if c0 embeds in K(X,Y ), then K(X,Y ) is not complemented

in L(X,Y ). Classical results from Schauder basis theory are used in a study of Dunford–Pettis sets and

strong Dunford–Pettis sets to extend each of the preceding theorems. The space Lw∗ (X∗,Y ) of w∗−w

continuous operators is also studied.

1 Introduction

A Banach space X has the Dunford–Pettis property (DPP) provided that every weakly

compact operator T from X to any Banach space Y is completely continuous (i.e.,

a Dunford–Pettis operator), and X is said to have the hereditary Dunford–Pettis

property if every closed linear subspace of X has the DPP. Localizing these ideas, a

bounded subset M of X is said to be a Dunford–Pettis (DP) subset of X if T(M) is

relatively compact in Y whenever T : X → Y is a weakly compact operator, and M

is a strong (or hereditary) DP set if U is a DP subset of the closed linear span [U ] of

U for each non-empty subset U of M. We refer the reader to Diestel [8, 9], Diestel

and Uhl [10], and Andrews [1] for a guide to the extensive classical literature dealing

with the DPP, equivalent formulations of the preceding definitions, and undefined

notation and terminology.

Andrews [1], Bator [2], Emmanulele [15], Ghenciu and Lewis [18], and Lewis

[24] provide insight into the connections between the structure of Banach spaces

and properties of the (strong) DP subsets of these spaces. In particular, the following

result is from [18].

Theorem 1.1 The Banach space X does not contain a copy of c0 if and only if every

strong Dunford–Pettis subset of X is relatively compact.

Theorem 1.1 was used in [18] to give an alternate proof of the following funda-

mental structure theorem due to J. Elton [11].

Theorem 1.2 [8, p. 28] If X is an infinite dimensional Banach space, then c0 embeds

in X, ℓ1 embeds in X, or X has a closed linear subspace which fails to have the DPP.
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In this paper, we continue to study connections between Dunford–Pettis proper-

ties and the structure of Banach spaces. In particular, we present an improvement

of Theorem 1.2, a generalization of a classical result of Bessaga and Pelczynski [5],

and a strengthened version of the principal result of Emmanuele [14] and John [21]

dealing with complemented spaces of operators. We also extend results in [14, 21],

and Kalton [22] to the space Lw∗ (X∗,Y ) of all w∗−w continuous operators from the

dual space X∗ to Y .

2 Dunford–Pettis Sets

We begin this section with an improvement of a classical result in [10]. Proposi-

tion VI.2.4 of [10] showed that if ℓ∞ does not embed in X∗∗ and K is a compact Haus-

dorff space, then every operator (i.e., continuous linear transformation) T : C(K) →
X is weakly compact. Of course, it is well known [5, 9] that ℓ∞ 6 →֒ X∗∗ if and only

if ℓ1 is not complemented in X∗. Theorem 1.1 above and [5] allow us to conclude

that ℓ∞ 6 →֒ X∗∗ if and only if every strong DP subset of X∗∗ is relatively compact.

Furthermore, it is easy to see that every strong DP subset of X is relatively compact if

every strong DP subset of X∗∗ is relatively compact. Moreover, the classical unit vec-

tor basis (en) of c0 is a strong DP set which is not relatively compact. Consequently, if

every strong DP subset of X is relatively compact, then every operator T : Y → X is

unconditionally converging. (Otherwise, T would be an isomorphism on a copy of

c0 [9, p. 54], and the hypothesis on X does not allow this.) Since an unconditionally

converging operator defined on any C(K)-space is weakly compact [6,7], we have the

following result.

Theorem 2.1 If every strong Dunford–Pettis subset of X is relatively compact, then

every operator T : C(K) → X is weakly compact.

Note that James [20] has provided examples of spaces X so that c0 6 →֒ X but ℓ1 is

complemented in X∗. Therefore Theorem 2.1 does indeed extend Proposition VI.2.4

of [10].

Closely associated with the notion of a Dunford–Pettis subset of X are the ideas of

a limited subset of X and an L-subset of X∗. A subset S of X is limited if

lim
n

(sup{|x∗n (x)| : x ∈ S}) = 0

for each w∗-null sequence (x∗n ) in X∗. Note that a limited subset of X is necessarily a

Dunford–Pettis subset of X [1]. The Banach space X has the Gelfand–Phillips prop-

erty if each of its limited sets is relatively compact. A subset S of X∗ is an L-subset of

X∗ if

lim
n

(sup{|x∗(xn)| : x∗ ∈ S}) = 0

for each w-null sequence (xn) in X. See [4] for equivalent formulations of these

definitions.

The following theorem is similar in spirit to Proposition 16 in [15] and an un-

published theorem by Emmanuele.1 Moreover, it sets the stage for corollaries which

1G. Emmanuele, Limited sets and Gelfand-Phillips space. Preprint.
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point out connections between DP properties and complementability questions in-

volving the space K(X,Y ) of compact operators and the space W (X,Y ) of weakly

compact operators in the space L(X,Y ) of all bounded linear transformations from

X to Y .

Theorem 2.2 Suppose that X and Y are Banach spaces.

(i) The following are equivalent:

(a) X has the Gelfand–Phillips property.

(b) If T∗ : X∗ → Y ∗ is a w∗-norm sequentially continuous operator, then

T : Y → X is compact.

(c) Same as (b) with Y = ℓ1.

(ii) The following are equivalent:

(a) |x∗n (xn)| → 0 whenever (xn) is weakly null in X and (x∗n ) is w∗-null in X∗.

(b) If BY∗ is w∗-sequentially compact, then every operator T : X → Y is com-

pletely continuous.

(c) Every operator T : X → c0 is completely continuous.

Proof (i) Note first that if T : Y → X is an operator, then T(BY ) is limited if and

only if T∗ : X∗ → Y ∗ is w∗-norm sequentially continuous. Thus (i)(a) implies (i)(b),

and obviously (i)(b) implies (i)(c).

Now suppose that (i)(c) holds and that S is a limited subset of X which is not

relatively compact. Choose ǫ > 0 and subsequences (ak) and (bk) in S so that

‖ak − bk‖ > ǫ for all k. Using the fact that a limited subset of X is weakly precompact

[1, 26], we assume that (uk) = (ak − bk)
w
→ 0. Define L : X∗ → ℓ∞ by L(x∗) =

(x∗(uk)). Note that L = A∗, where A : ℓ1 → X is defined by A(λ) =

∑

λkuk. Thus L

is an adjoint. Further, if (x∗n )
w∗

→ 0, then limn supk |x
∗

n (uk)| = limn ||L(x∗n )|| = 0 since

U = {uk : k ∈ N} is limited. Consequently, A is compact but U is not compact, and

we have a contradiction.

(ii) Suppose that (ii)(a) holds and let Y be a Banach space so that BY∗ is w∗-

sequentially compact. Let T : X → Y be an operator, and suppose that (xn) is weakly

null and (T(xn)) 6→ 0. Choose (y∗n ) in BY∗ so that y∗n (T(xn)) 6→ 0, and, without loss

of generality, suppose that (y∗n )
w∗

→ y∗. Thus 〈y∗n − y∗, T(xn)〉 → 0 by hypothesis.

Consequently, y∗(T(xn)) 6→ 0, and we obtain a contradiction. Thus (ii)(a) implies

(ii)(b).

It is clear that (ii)(b) implies (ii)(c). Now we assume that every operator

T : X → c0 is completely continuous. Suppose that (xn) is w-null in X, (x∗n ) is w∗-null

in X∗, and define A : X → c0 by A(x) = (x∗n (x)). Since A is completely continuous,

‖A(xn)‖ = sup
i

|x∗i (xn)|
n

−→ 0.

Thus (x∗n (xn)) → 0.

Corollary 2.3 The Banach space X has the Gelfand–Phillips property if and only if

every limited and weakly null sequence in X is norm null.

https://doi.org/10.4153/CMB-2009-024-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-024-5


216 I. Ghenciu and P. Lewis

Proof If T∗ : X∗ → Y ∗ is w∗-norm sequentially continuous, (x∗n )
w∗

→ 0 in X∗, and

(yn) is a sequence from BY , then |x∗n T(yn)| ≤ ‖T∗(x∗n )‖ → 0, and {T(yn) : n ∈ N}
is limited. Thus without loss of generality we may assume that (T(yn+1) − T(yn)) is

weakly null. Hence (T(yn+1)−T(yn)) is norm null, and T is compact. An application

of the preceding theorem finishes one implication, and it is clear that ‖xn‖ → 0 if

(xn)
w
→ 0 and {xn : n ∈ N} is relatively compact.

Corollary 2.4 If X has the Dunford–Pettis property, c0 →֒ Y , and there exists an oper-

ator T : X → c0 which is not completely continuous, then W (X,Y ) is not complemented

in L(X,Y ).

Proof By Theorem 2.2, X contains a weakly null sequence (xn) which is not limited.

Thus X∗ contains a w∗-null sequence which is not w-null. Theorem 4 in [4] gives the

conclusion.

We remark that this corollary contains Theorem 3 in [13].

Corollary 2.5 (i) If X is a C(K)-space, c0 →֒ Y , and there is an operator

T : X → c0 which is not weakly compact, then W (X,Y ) is not complemented

in L(X,Y ).

(ii) If Y is an arbitrary Banach space, then W (C[0, 1],Y ) is complemented in

L(C[0, 1],Y ) if and only if L(C[0, 1],Y ) = W (C[0, 1],Y ).

Proof (i) If T : X → c0 →֒ Y is not weakly compact, then T is not completely

continuous. Apply Corollary 2.4.

(ii) If T : C[0, 1] → Y is not weakly compact, then T is not unconditionally con-

verging, and thus T is an isomorphism on a copy of c0 . Since c0 is complemented in

C[0, 1], another application of Corollary 2.4 finishes the argument.

Theorems 1.1, 1.2, and 2.2 cement firm connections between the Dunford–Pettis

properties of X and/or X∗ and the presence of ℓ1 in X and/or X∗. Additionally, a

direct combination of Theorem 2.2 and results from [12,15], and Bator [2] produces

the following equivalences:

• ℓ1 6 →֒ X;
• X∗ has the weak Radon–Nikodym property;
• Every DP subset of X∗ is relatively compact;
• Every L-subset of X∗ is relatively compact;
• Every completely continuous operator T : X → Y is compact.

An alternate characterization of the DPP will facilitate the extension of Theo-

rem 1.2.

Theorem 2.6 The following are equivalent:

(i) the Banach space X has the DPP;

(ii) every weakly null sequence in X is a DP subset of X;

(iii) every weakly null basic sequence in X is a DP subset of X.

Proof Suppose that the Banach space X has the DPP and (xn) is a weakly null se-

quence in X. If Y is a Banach space and T : X → Y is weakly compact, then T is
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completely continuous and ‖T(xn)‖ → 0. Thus (i) implies (ii), and (ii) certainly

implies (iii).

Conversely, if every weakly null sequence in X is a DP subset of X, T : X → Y is a

weakly compact operator, and (xn)
w
→ 0, then {T(xn) : n ∈ N} is relatively compact.

Thus ‖T(xn)‖ → 0, T is completely continuous, and (ii) implies (i).

Now suppose that (iii) holds, (xn)
w
→ 0, and A = {xn : n ∈ N} is not a DP

subset of X. Let Y be a Banach space and T : X → Y be a weakly compact operator

so that T(A) is not relatively compact. Choose ǫ > 0 and a subsequence (xni
) so

that ‖T(xni
) − T(xn j

)‖ > ǫ if i 6= j. Thus (xni
) is weakly null, and there is a δ > 0

so that ‖xni
− xn j

‖ > δ if i 6= j, and we may assume that (xni
) is weakly null and

seminormalized. Therefore, some subsequence (sk) of (xni
) is basic, and {T(sk) :

k ∈ N} is not relatively compact. Thus {sk : k ∈ N} is not a DP subset of X.

We remark that the sequence (sk) produced in this argument is also not a DP

subset of [sk :k ∈ N].

Corollary 2.7 If X is an infinite dimensional Banach space, then c0 →֒ X, ℓ1 →֒ X,

or there is a seminormalized weakly null basic sequence (yn) in X so that {yn : n ∈ N}
is not a DP subset of Y = [yn :n ∈ N] and thus Y does not have the DPP.

As a result of Theorems 1.1, 2.6, and Rosenthal’s ℓ1-theorem, Corollary 2.7 (or

Theorem 1.2) can be stated in the following equivalent form. If X is an infinite-

dimensional Banach space, then X contains a seminormalized weakly null basic se-

quence (xn) so that {xn : n ∈ N} is a strong DP set, X contains a seminormalized

weakly null basic sequence (yn) so that {yn : n ∈ N} is not a DP subset of [yn :n ∈ N],

or X contains a seminormalized basic sequence (zn) so that no seminormalized basic

sequence in [zn] is weakly null.

3 Spaces of Operators

The complementability of K(X,Y ) and W (X,Y ) has long been of interest to func-

tional analysts; (see, for example, [3,14,17,21,22] and the references therein). Build-

ing on the work of Kalton [22] and Feder [17], Emmanuele [14] and John [21] in-

dependently showed that if X and Y are infinite-dimensional and c0 →֒ K(X,Y ),

then K(X,Y ) is not complemented in L(X,Y ). See also [16]. The next theorem,

which makes fundamental use of the DPP, allows us to use [17, 22] and obtain the

Emmanuele–John theorem as an immediate corollary. The reader should compare

this result with [17, Theorem 1].

Theorem 3.1 Suppose that X and Y are Banach spaces and S is a complemented

subspace of L(X,Y ). If there is a sequence (Ti) in S so that ‖Ti‖ 6→ 0 and
∑

i Ti(x)

converges unconditionally for each x, then ℓ∞ embeds in S.

Proof Suppose that (Ti) and S are as above and P : L(X,Y ) → S is a projection.

Define φ : ℓ∞ → L(X,Y ) by φ(b)(x) =

∑

biTi(x) for b = (bi) ∈ ℓ∞ and x ∈ X.

Note that φ is a continuous linear transformation and φ(ei) = Ti for each i.

Suppose that ℓ∞ 6 →֒ S. Then Pφ : ℓ∞ → S is weakly compact [25]. Since ℓ∞
has the DPP (all C(K) spaces have the DPP), Pφ is completely continuous. Thus

‖Pφ(ei)‖ = ‖Ti‖ → 0, and we have a contradiction.
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Corollary 3.2 If X and Y are infinite dimensional and c0 →֒ K(X,Y ), then K(X,Y )

is not complemented in L(X,Y ).

This corollary follows directly from Theorem 3.1, Lemma 3 of [22] (If X contains

a complemented copy of ℓ1 and Y is infinite dimensional, then K(X,Y ) is uncomple-

mented in L(X,Y )), Theorem 4 of [22] (K(X,Y ) contains a copy of ℓ∞ iff ℓ∞ →֒ X∗

or ℓ∞ →֒ Y ), and Corollary 1 of [17] (If X is infinite dimensional and c0 →֒ Y , then

K(X,Y ) is uncomplemented in L(X,Y )).

We denote by Lw∗(X∗,Y ) the closed linear subspace of L(X∗,Y ) consisting of the

w∗−w continuous operators and by Kw∗(X∗,Y ) the compact members of Lw∗(X∗,Y ).

The reader is encouraged to see Ryan [27] and Emmanuele [15] for an indication of

the relevance of these spaces to the study of Dunford–Pettis properties.

Our next two theorems are analogues of Theorem 4 of [22] and Corollary 1 of

[17]. A series of lemmas, which closely parallels results in the opening section of

[22], will be helpful in establishing these theorems. Let U denote the unit ball of X∗

with the w∗ topology and V denote the unit ball of Y ∗ with the w∗ topology. For T

in Lw∗(X∗,Y ), define χT : U ×V → R by χT(x∗, y∗) = y∗(Tx∗), y∗ ∈ V, x∗ ∈ U .

Lemma 3.3 The mapping T 7→ χT defines a linear isometry of Kw∗(X∗,Y ) onto a

closed subspace of C(U ×V ).

Proof Suppose (x∗α)
w∗

→ x∗ in U , and (y∗α)
w∗

→ y∗ in V . We have

|χT(x∗α, y∗α) − χT(x∗, y∗)| = |y∗α(Tx∗α) − y∗(Tx∗)|

≤ |y∗α(Tx∗α − Tx∗)| + |(y∗α − y∗)(Tx∗)|

≤ ‖Tx∗α − Tx∗‖ + |(y∗α − y∗)(Tx∗)|.

Since T is w∗ − w continuous and compact, T is w∗-norm continuous, and thus

‖Tx∗α−Tx∗‖ → 0. Also, |(y∗α− y∗)(Tx∗)| converges to zero because (y∗α)
w∗

→ y∗ in V .

Thus (χT(x∗α, y∗α)) converges to χT(x∗, y∗) and χT ∈ C(U ×V ). Since ‖χT‖ = ‖T‖
and T 7→ χT is linear, the conclusion follows.

In the next two lemmas let (wot) denote the weak operator topology.

Lemma 3.4 Let A be a subset of Kw∗(X∗,Y ). Then A is weakly compact if and only if

A is (wot)-compact.

Proof Suppose A is wot-compact and let χ(A) be {χT : T ∈ A}. Let (Tα) be a

net in A and (Tβ) be a subnet convergent in the topology wot . If (Tβ) converges to

T in wot , then χTβ
(x∗, y∗) converges to χT(x∗, y∗), for all x∗ ∈ X∗ and y∗ ∈ Y ∗,

and χ(A) is compact in the topology of pointwise convergence on C(U × V ). By a

result of Grothendieck [19], χ(A) is weakly compact in C(U × V ). Thus A is weakly

compact by the preceding result.

The other implication is clear since the topology (wot) is weaker than the weak

topology on Kw∗(X∗,Y ).

Lemma 3.5 Let (Tn) be a sequence of weak∗ − weak continuous compact operators

such that (Tn) → T in (wot), where T is w∗ − w continuous and compact. Then

(Tn) → T weakly.
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Proof Let A = {(Tn), T} and apply the previous lemma to this (wot)-compact set.

Since the restrictions of w∗ − w continuous operators to subspaces certainly need

not be w∗−w continuous, separability hypotheses which were not present in [17,22]

are included in the statements of some of our theorems.

Theorem 3.6 If X∗ is separable, then ℓ∞ embeds isomorphically in Kw∗(X∗,Y ) if and

only if ℓ∞ embeds isomorphically in Y .

Proof Suppose that ℓ∞ →֒ Kw∗(X∗,Y ) and ℓ∞ 6 →֒ Y . Let ϕ : ℓ∞ → Kw∗(X∗,Y ) be

an embedding, and let Ti = ϕ(ei) for each i. For x∗ ∈ X∗, set Ax∗(b) = ϕ(b)(x∗) for

b ∈ ℓ∞; for y∗ ∈ Y ∗, set By∗(b) = ϕ(b)∗(y∗). Since ϕ(b) is w∗−w continuous, ϕ(b)∗

maps Y ∗ into the canonical image of X in X∗∗. Moreover, since ℓ∞ embeds in neither

X nor Y , both Ax∗ and By∗ are weakly compact and unconditionally converging. Thus
∑

biBy∗(ei) and
∑

biAx∗(ei) are unconditionally converging for each b = (bi) ∈ ℓ∞.

Define ρ on ℓ∞ by ρ(b) =

∑

biTi , where the series converges in the strong operator

topology (sot). The unconditional convergence of the series above in X guarantees

that ρ(b) is w∗−w continuous, and it is not difficult to see that ρ : ℓ∞ → Lw∗(X∗,Y )

is a bounded linear transformation.

Now set Y0 = span{ρ(b)(x∗) : b ∈ ℓ∞, x∗ ∈ X∗}, and note that Y0 is separa-

ble. Let J : Y0 → ℓ∞ be a linear isometric embedding, and let A : Y → ℓ∞ be a

continuous linear extension of J. Define D1 : ℓ∞ → Kw∗(X∗, ℓ∞) and D2 : ℓ∞ →
Lw∗(X∗, ℓ∞) by D1(b)(x∗) = Aϕ(b)(x∗) and D2(b)(x∗) = Aρ(b)(x∗). Note that

D1(ei)(x∗) = ATi(x∗) = D2(ei)(x∗) for each i and each x∗.

It is not difficult to check that the w∗−w analogue of Proposition 5 of [22] applies

in our setting. Thus we obtain an infinite subset M of N so that D1(b) = D2(b) for all

b ∈ ℓ∞(M). It follows that ϕ(b) = ρ(b), and ϕ(b) =

∑

biTi(sot) for b ∈ ℓ∞(M).

Lemmas 3.4 and 3.5 allow us to apply the Orlicz–Pettis Theorem and conclude that
∑

i∈M Ti is unconditionally convergent. Of course, this is impossible since ‖Ti‖ 6→ 0.

Thus ℓ∞ →֒ Y .

If τ : ℓ∞ → Y is an isomorphism and x ∈ X, ‖x‖ = 1, then b 7→ x ⊗ τ(b) defines

an isomorphic embedding of ℓ∞ into Kw∗(X∗,Y ).

Theorem 3.7 If X is infinite dimensional, X∗ is separable, and c0 →֒ Y , then

Kw∗(X∗,Y ) is not complemented in Lw∗(X∗,Y ).

Proof Since X∗ is separable, X is not a Schur space. Let (xn) be a normalized weakly

null sequence in X, and consider the sequence (xn ⊗ yn) of w∗ − w continuous oper-

ators from X∗ to Y defined by xn ⊗ yn(x∗) = x∗(xn)yn, where (yn) is a copy of (en)

in Y . In fact,

T =

∞
∑

n=1

xn ⊗ yn(strong operator topology)

is a w∗ − w continuous operator from X∗ to Y . It is important to note that the

preceding series converges unconditionally in the (sot).

Now let Tk =

∑k
n=1 xn ⊗ yn for each k, and note that

Y0 = span
(

{Tk(X∗) : k ∈ N} ∪ T(X∗)
)
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is a separable subspace of of Y . Moreover, Tk and T are w∗ − w continuous as maps

from X∗ to Y . Let J : Y0 → ℓ∞ be a linear isometry, and let A : Y → ℓ∞ be a

continuous linear extension of J.

Next define ϕ : ℓ∞ → L(X∗,Y ) by ϕ(b) =

∑

bixi ⊗ yi , (sot). As in the previous

proof, ϕ(b) is w∗ − w continuous. Thus Aϕ(b) ∈ Lw∗ (X∗, ℓ∞). Now suppose that

Kw∗(X∗,Y ) is complemented and let P be the projection. If b is a finitely supported

member of ℓ∞, then APϕ(b) = Aϕ(b). By the the w∗ − w version of Proposition 5

of [22], we can choose an infinite subset M of N so that Aϕ(b) = APϕ(b) for all

b ∈ ℓ∞(M). Apply the Orlicz–Pettis theorem again and conclude that ‖Aϕ(ei)‖ → 0

for i ∈ M. This is a clear contradiction.

Corollary 3.8 If X and Y are infinite dimensional Banach spaces, X∗ is separable, and

c0 →֒ Kw∗(X∗,Y ), then Kw∗(X∗,Y ) is not complemented in Lw∗(X∗,Y ).

Proof By Theorem 3.7, we may assume that c0 6 →֒ Y . Suppose that Kw∗(X∗,Y ) is

complemented in Lw∗(X∗,Y ). An application of (the proof of) Theorem 3.1 tells us

that ℓ∞ →֒ Kw∗(X∗,Y ), and Theorem 3.6 places a copy of ℓ∞ (and thus c0) in Y .

Bessaga and Pelczynski [5] showed that if c0 →֒ X∗, then ℓ∞ →֒ X∗. This result

was generalized to spaces of operators in [23], i.e., if X is infinite dimensional and

c0 →֒ L(X,Y ), then ℓ∞ →֒ L(X,Y ). In the next theorem, we use the fact that ℓ∞ has

the DPP and give a short proof of a generalization of the result in [5, 23].

Theorem 3.9 Suppose that X and Y are Banach spaces, X is infinite dimensional, and

S is a subspace of L(X,Y ) which is closed with respect to the strong operator topology and

contains each finite rank operator. If c0 →֒ S, then ℓ∞ →֒ S.

Proof Suppose that ℓ∞ 6 →֒ S. We then consider two cases.

Case 1. c0 →֒ Y . Let T : c0 → Y be an isomorphism. Use the Josefson–Nissen-

zweig Theorem and let (x∗n ) be a w∗-null sequence of norm one vectors in X∗. De-

fine L : ℓ∞ → S by L(b)(x) =

∑

bnx∗n (x)T(en), x ∈ X, b = (bn) ∈ ℓ∞. Since

ℓ∞ 6 →֒ S, L is weakly compact and thus completely continuous. Therefore ‖L(ei)‖ =

‖T(ei)‖ → 0, and we have a contradiction.

Case 2. c0 6 →֒ Y . Let T : c0 → S be an isomorphism, let Ti = T(ei), and define

L : ℓ∞ → S by L(b)(x) =

∑

biTi(x). Since c0 6 →֒ Y and this series is weakly uncon-

ditionally convergent, it is unconditionally convergent. Since ℓ∞ 6 →֒ S, we obtain the

same contradiction as in Case 1. Thus ℓ∞ →֒ S.

Of course, neither Kw∗(X∗,Y ) nor Lw∗ (X∗,Y ) is closed with respect to the strong

operator topology. For example, if y ∈ Y, ‖y‖ = 1, then en ⊗ y ∈ Kw∗(ℓ1,Y ) for

each n,
k

∑

n=1

en ⊗ y
k

−→ (1, 1, 1, . . . , 1, . . . ) ⊗ y (sot),

and (1, 1, 1, . . . , 1, . . . ) ⊗ y 6∈ Lw∗(ℓ1,Y ). However, if c0 →֒ Y , then ℓ∞ does embed

in Lw∗(ℓ1,Y ).
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Theorem 3.10 (i) If X is not a Schur space and c0 embeds in Y, then ℓ∞ embeds in

Lw∗(X∗,Y ).

(ii) If c0 embeds in neither X nor Y but c0 does embed in Lw∗(X∗,Y ), then ℓ∞ embeds

in Lw∗ (X∗,Y ).

Proof (i) Let (xn) be a normalized and weakly null sequence in X, and let (yn) be

a copy in Y of (en). Define xn ⊗ yn : X∗ → Y by xn ⊗ yn(x∗) = x∗(xn)yn. Then

xn⊗ yn ∈ Kw∗(X∗,Y ), and (xn⊗ yn) ∼ (en). In fact, if c1 and c2 are positive constants

so that

c1 max
{

|ai | : i = 1, . . . , m} ≤
∥

∥

m
∑

i=1

ai yi

∥

∥ ≤ c2 max
{

|ai | : i = 1, . . . , m
}

,

then

c1 max
{

|ai x
∗(xi)| : i = 1, . . . , m; ‖x∗‖ ≤ 1

}

≤
∥

∥

m
∑

i=1

aixi ⊗ yi

∥

∥

≤ c2 max
{

|aix
∗(xi)| : i = 1, . . . , m; ‖x∗‖ ≤ 1

}

.

Set J(b)(x∗) =

∑

bix
∗(xi)yi , x∗ ∈ X∗, b = (bi) ∈ ℓ∞. Since

∑

|y∗(yi)| < ∞ for

y∗ ∈ Y ∗, one can check that J(b)∗(y∗) =

∑

bi y∗(yi)xi and thus J(b) ∈ Lw∗ (X∗,Y ).

Moreover, c1‖b‖∞ ≤ ‖ J(b)‖ ≤ c2‖b‖∞, and J is an isomorphism.

(ii) Let B : c0 → Lw∗(X∗,Y ) be an embedding, and let Tn = B(en) for each n. Since
∑

Tn is weakly unconditionally convergent,

∑

|〈Tnx∗, y∗〉| =

∑

|〈x∗, T∗

n (y∗)〉| < ∞

for x∗ ∈ X∗ and y∗ ∈ Y ∗. Since c0 6 →֒ X, and c0 6 →֒ Y ,
∑

Tn(x∗) is uncondition-

ally convergent in Y , and
∑

T∗

n (y∗) is unconditionally convergent in X. Certainly

Lw∗(X∗,Y ) is complemented in itself, and an application of the w∗ − w version of

Theorem 3.1 finishes the proof.

The reader should see [22, p. 274 and Theorem 6] for a discussion of uncon-

ditional expansions of the identity. Note that if c0 embeds in X or Y , then c0 →֒
Kw∗(X∗,Y ).

Theorem 3.11 Suppose that X∗ has an unconditional compact expansion of the iden-

tity consisting of w∗ − w∗ continuous operators. If c0 6 →֒ X and c0 6 →֒ Y , then the

following are equivalent:

(i) Kw∗(X∗,Y ) = Lw∗(X∗,Y );

(ii) c0 6 →֒ Kw∗(X∗,Y );

(iii) ℓ∞ 6 →֒ Lw∗(X∗,Y );

(iv) Kw∗(X∗,Y ) is complemented in Lw∗(X∗,Y ).

Proof Since X∗ has an unconditional compact expansion of the identity, X∗ is sepa-

rable. If Kw∗(X∗,Y ) = Lw∗ (X∗,Y ) and ℓ∞ →֒ Lw∗(X∗,Y ), then Theorem 3.6 applies

and ℓ∞ →֒ Y . Thus (i) implies (iii).
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The preceding theorem immediately shows that (iii) implies (ii). Now suppose

that T : X∗ → Y is a non-compact w∗−w continuous operator. Let (Bn) be a w∗−w∗

continuous unconditional compact expansion of the identity. Thus
∑

∞

n=1 TBnx∗

converges unconditionally to Tx∗ for each x∗ ∈ X∗. Let Tn = TBn. An application of

the uniform boundedness principle shows that
∑

Tn is weakly unconditionally con-

vergent. The non-compactness of T certainly shows that
∑

Tn is not unconditionally

convergent. Thus c0 →֒ Kw∗(X∗,Y ), and (ii) yields (i).

Clearly (i) implies (iv). To see that (iv) implies (i), suppose not, argue as in the

preceding paragraph, and apply Theorem 3.1 to obtain (the contradiction) that ℓ∞
embeds in Y .

Emmanuele [15] said that a Banach space X has the DPrcP whenever each Dun-

ford–Pettis subset of X is relatively compact. As noted in the previous section,

Emmanuele [15] and Bator [2] independently showed that if ℓ1 6 →֒ X, then X∗ has the

DPrcP. Note that if ℓ1 66 →֒ X∗, then X and X∗ have the DPrcP. Emmanuele [15, p. 482]

also asked if every Dunford–Pettis subset of Kw∗(X∗,Y ) must be relatively compact

when X and Y have the DPrcP and Kw∗(X∗,Y ) = Lw∗(X∗,Y ). Note that if X and

Y have the DPrcP, then every DP subset of either X or Y is a strong DP set which is

relatively compact.

Theorem 3.12 If every strong DP set in both X and Y is relatively compact, X∗ is

separable, and Kw∗(X∗,Y ) = Lw∗(X∗,Y ), then every strong DP set in Lw∗(X∗,Y ) is

relatively compact.

Proof Suppose there is a strong DP set in Lw∗ (X∗,Y ) which is not relatively compact.

By Theorem 1.1, c0 →֒ Lw∗(X∗,Y ), and c0 embeds in neither X nor Y . Thus, by

Theorem 3.10, ℓ∞ →֒ Lw∗(X∗,Y ). Therefore ℓ∞ →֒ Y , and we have a contradiction.
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