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Abstract

Dietary protein has been shown to increase urinary Ca excretion in randomised controlled trials, and diets high in protein may have

detrimental effects on bone health; however, studies examining the relationship between dietary protein and bone health have conflicting

results. In the present study, we examined the relationship between dietary protein (total, animal and vegetable protein) and lumbar spine

trabecular volumetric bone mineral density (vBMD) among participants enrolled in the Multi-Ethnic Study of Atherosclerosis (n 1658).

Protein intake was assessed using a FFQ obtained at baseline examination (2000–2). Lumbar spine vBMD was measured using quantitative

computed tomography (2002–5), on average 3 years later. Multivariable linear and robust regression techniques were used to examine

the associations between dietary protein and vBMD. Sex and race/ethnicity jointly modified the association of dietary protein with

vBMD (P for interaction¼0·03). Among white women, higher vegetable protein intake was associated with higher vBMD (P for

trend¼0·03), after adjustment for age, BMI, physical activity, alcohol consumption, current smoking, educational level, hormone therapy

use, menopause and additional dietary factors. There were no consistently significant associations for total and animal protein intakes

among white women or other sex and racial/ethnic groups. In conclusion, data from the present large, multi-ethnic, population-

based study suggest that a higher level of protein intake, when substituted for fat, is not associated with poor bone health. Differences

in the relationship between protein source and race/ethnicity of study populations may in part explain the inconsistent findings

reported previously.
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The principal complication of bone loss is fragility fracture.

Approximately 44 million US adults aged 50 years and older

(80 % women) have low bone mass that puts them at risk

for fragility fractures(1). In 2005, more than 2 million new

fragility fractures occurred in the USA, with direct health

care costs totalling more than $17 billion(2). Roughly 50 % of

those with hip fractures will never walk again without assist-

ance and 25 % will require long-term care(3).

Protein-rich foods are often associated with higher levels

of satiety than carbohydrate-rich foods(4). Owing to this

beneficial effect, diets that include protein-rich foods are

often advocated for weight loss and weight maintenance(4).

However, dietary protein has unclear effects on bone

health(5). Short-term intervention studies using purified pro-

tein supplements have shown that 1 mg Ca is, on average,

lost in the urine for every 1 g increase in protein intake(6).

However, high-protein diets appear to increase intestinal Ca

absorption, while low-protein diets decrease it(7).

Observational epidemiological studies are inconsistent

on the subject of dietary protein and the risk of fractures.

*Corresponding author: L. A. Bazzano, fax þ1 504 988 1568, email lbazzano@tulane.edu

Abbreviations: BMD, bone mineral density; CT, computed tomography; MESA, Multi-Ethnic Study of Atherosclerosis; MET, metabolic equivalents; vBMD,

volumetric bone mineral density.

British Journal of Nutrition (2014), 112, 1384–1392 doi:10.1017/S0007114514002220
q The Authors 2014

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114514002220  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114514002220


In ecological studies of animal protein intake and rates of hip

fracture, the highest rates were observed in Western countries

where dietary protein intake, particularly from animal sources,

is also highest(8,9). Consumption of animal proteins, high in

acidifying amino acids such as cysteine and methionine,

could potentially increase the risk of bone loss(10,11). A few

large prospective cohort studies have also associated higher

protein intake (particularly from animal sources) with higher

incidence of hip fracture(12–14), while others have found the

opposite association(15–17), and one found no association(18).

Aside from differences in measurement methods, this inconsis-

tency may be due in part to racial/ethnic differences. Recent

studies have suggested that the association between protein

intake and bone mineral density (BMD) may differ by race

and/or ethnicity(19–24), which could reflect differences in

dietary patterns and sources of protein.

Diagnosis of osteoporosis and clinical guidelines for its

management are often based on BMD of the lumbar spine,

total hip or femoral neck(25,26). Measures of volumetric or

three-dimensional BMD can be obtained from computed

tomography (CT) scans, while traditional dual-energy X-ray

absorptiometry scans provide two-dimensional areal BMD.

Unlike dual-energy X-ray absorptiometry scans, quantitative

CT scans can also provide separate measures for cortical and

trabecular compartments of bone, aspects of geometry and

architecture that may be related to fracture risk(25,27,28).

In the present study, we examined the association

between dietary protein and volumetric bone mineral density

(vBMD) of the lumbar spine obtained from quantitative

CT, specifically the average of lumbar vBMD in the second

through the fourth lumbar vertebrae (primary outcome) and

vBMD Z-score generated by subtracting the mean and dividing

the difference by the standard deviation for each observation

based on sex- and race/ethnicity-specific distributions

(secondary outcome) among participants of the Multi-Ethnic

Study of Atherosclerosis (MESA). We also evaluated whether

relationships differed by source of protein intake (animal

or vegetable), sex and race/ethnicity (non-Hispanic white,

Chinese-American, African-American and Hispanic-American).

Methods

Participants

The methods of the MESA study have been described in detail

elsewhere(29). In brief, the MESA cohort was initially examined

between July 2000 and August 2002 (baseline). Participants

were recruited from six US communities. The study population

consisted of 6814 men and women aged 45–84 years who were

free of CVD at their baseline examination. Approximately 38 %

of the cohort was non-Hispanic white, 11 % Chinese-American,

28 % African-American and 23 % Hispanic-American. We used

data from a subsample of MESA participants who participated

in the MESA Abdominal Aortic Calcium Study. Between

August 2002 and September 2005, participants were recruited

to the MESA Abdominal Aortic Calcium Study during their

follow-up visits in the following five MESA communities:

Chicago, IL; Forsyth County, NC; Los Angeles County, CA;

New York, NY; St Paul, MN. In total, 1967 men and women

who participated in the MESA Abdominal Aortic Calcium

Study completed CT scanning. Of those, data from fourteen

participants were excluded because they lacked data on bone

density of the second through fourth lumbar vertebrae;

235 participants who reported consuming .25 104 kJ/d or

,2510 kJ/d were excluded; and an additional sixty were

excluded because they provided implausible data on physical

activity (.24 h/d). After these exclusions, data from 1658

participants were included in the present analysis. The MESA

study was conducted according to the guidelines of the

Declaration of Helsinki, and all MESA procedures were

approved by the institutional review boards of participating

institutions. Written informed consent was obtained from all

MESA participants during primary data collection. This

secondary data analysis was approved by the institutional

review board of Tulane University.

Bone density measurement

The measurement of vBMD using CT scans of the abdomen in

MESA has been reported in a previous study(30). Scanning was

performed using an electron-beam CT scanner (Chicago, IL;

New York, NY; and Los Angeles, CA, USA; Imatron C-150;

General Electric Medical Systems) or a multi-detector CT

system that utilised helical scanning with reconstruction in

5 mm thick cuts and 350 mm field of view (New York, NY;

Forsyth County, NC; and St Paul, MN field centres, USA;

Siemens, Inc., General Electric Medical system). During the

scanning, CT parameters were directly converted to equivalent

vBMD in mg/cm3(31). Using the Image Analysis QCT 3D PLUS

software program (Image Analysis), vBMD was measured in

a virtual 10 mm-thick slice from each vertebral bone (L2–L4)

using software-directed, automated placement of the region

of interest in the anterior one-half to one-third of the vertebral

body, where it encompassed a large area of trabecular or

cancellous bone, excluded cortical bone, and excluded the

basivertebral plexus. A trained reader adjusted placement of

the reading region and excluded vertebrae if fractures,

metastatic lesions, osteophytes or benign focal lesions were

detected. All scans were brightness adjusted with a standard

phantom. The scans were read by a blinded, experienced

reader at the MESA CT reading centre. Previous studies have

demonstrated the comparability and reproducibility of image

data collected using these scanners(32,33).

Dietary assessment

All participants were asked to complete a 120-item FFQ at

baseline, on average 3 years before the CT scan, to assess

their usual intake of specific foods and beverages over the

past year. The FFQ utilised the Block format and was

patterned after the FFQ used in the Insulin Resistance

Atherosclerosis Study, which has been validated among

non-Hispanic white, African-American and Hispanic-

American, and modified to include Chinese foods(34,35). For

each food item, the consumption frequency (times/d, week

or month) and serving size (small, medium or large) were
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recorded. Frequency options included nine responses ranging

from ‘rare or never’ to ‘ $ 2 times/d’ for each food item(35).

Related line items were combined to form forty-seven

different food groups(35). Daily macronutrient and micro-

nutrient intakes were estimated by multiplying frequency

and serving size (age- and sex-specific and portion-size

gram weights) for each food/beverage consumed by the

nutrient content of that food or beverage (Nutrition Data

Systems for Research; University of Minnesota; Minneapolis).

Dietary protein intake, including total, animal and vegetable

protein, was calculated in g and also as a percentage of total

energy intake (% energy). In studies examining the reproduci-

bility of a single FFQ, correlations ranged between 0·5 and 0·7

for nutrient intakes measured at intervals of 1 to 10 years(36).

Additional variables

Baseline data collection also included amedical history, standar-

dised medical examination, laboratory tests and anthropometric

measurements. Age, sex, race/ethnicity, age at menopause,

educational level, current cigarette smoking and current use

of hormone replacement therapy were collected using inter-

viewer and self-administered questionnaires. We calculated

BMI at baseline as weight (kg) divided by height (m) squared.

Physical activity was assessed as metabolic equivalents (MET),

using a semi-quantitative questionnaire adapted from the

Cross-Cultural Activity Participation Study(37). Leisure-time

physical activity was calculated as the sum of min/week of

moderate to vigorous activities (walking, sports, dance and

conditioning) multiplied by the activity’s individual MET value.

Likewise, a sedentariness score was calculated as the sum of

MET-min/week of sitting, reclining, knitting, sewing, reading,

driving a car and watching television. Estimated glomerular

filtration rate was calculated using the CKD-EPI (Chronic

Kidney Disease Epidemiology Collaboration) equation(38).

Statistical analysis

For each baseline characteristic, the mean value or corres-

ponding percent of study participants was calculated by

quartile of total protein intake as a percentage of total energy.

The statistical significance of differences among quartiles

was examined using x 2 tests for categorical variables and

generalised linear regression analyses for continuous variables.

There was evidence that the association between dietary

protein intake and BMD differed by race/ethnicity and

sex (P for interaction¼0·03 for protein (as % energy) and

P for interaction¼0·02 for protein (in g)). Thus, we cate-

gorised participants into groups based on sex- and race/

ethnicity-specific quartiles of dietary protein intake for analyses.

We used substitution modelling to investigate the associ-

ation of ‘substituting’ an energy equivalent amount of dietary

protein (total, animal and/or vegetable protein) for fat with

lumbar spine vBMD by including dietary protein and dietary

carbohydrate intakes in the same multivariable model with

total energy intake. Tests for linear trend were conducted for

adjusted means of vBMD across the quartiles of energy intake

from dietary protein (for total, animal and vegetable protein).

Adjusted mean vBMD was computed by quartile of sex- and

race/ethnicity-specific protein intake using linear regression

models. In multivariable-adjusted models, a variety of

potential confounders including age (years), BMI (kg/m2),

physical activity (MET-min/week), sedentariness score

(MET-min/week), current smoking (yes/no), educational

level (#high school v. $college), hormone replacement

therapy use, age at menopause (years), and intakes of total

energy (kJ/d), dietary carbohydrate (% energy), Ca (mg),

P (mg), Mg (mg) and alcohol (g/d) were included. We exam-

ined the influence of renal function by including estimated

glomerular filtration rate, and generated a propensity score

to represent Ca, Mg and P intakes as a single covariate. In

order to limit the influence of heteroscedasticity or potential

outliers in the present analysis, robust regression models

were employed to examine the impact of quartile of dietary

protein intake (as % energy), one standard deviation changes

in protein intake (as % energy), and absolute protein intake

(in g) on vBMD Z-score among the different racial/ethnic

groups. We tested for interactions between dietary protein

intake and hormone replacement therapy as well as Ca

intake. All P values were two-sided, and statistical significance

was defined as P,0·05. Multiple comparisons were controlled

by using the false discovery rate method(39). We used SAS

(version 9.2; SAS Institute, Inc.) for all analyses.

Results

The present analysis included 1658 participants, of whom

801 or 48 % were women. Of these women, 317 (39·6 %)

were non-Hispanic white, 104 (13·0 %) were Chinese-American,

173 (21·6 %) were African-American and 207 (25·8 %) were

Hispanic-American. Of men, 375 (43·8 %), 126 (14·7 %),

133 (15·5 %) and 223 (26·0 %) were non-Hispanic white,

Chinese-American, African-American and Hispanic-American,

respectively. The mean age among women was 63 years and

that among men was 62 years. Baseline characteristics are

presented by quartile of dietary intake of total protein in

Table 1. Those in the highest quartile of protein intake were

slightly younger, more often female and less likely to smoke

cigarettes. Non-Hispanic whites and African-Americans tended

to consume less protein, while roughly half of Chinese were in

the highest quartile of protein intake. The amount of vegetable

protein and fat intakes (as % energy) was consistent across the

quartiles, but intake of animal protein was higher and carbo-

hydrate was lower among those with higher total protein intake.

We identified a significant interaction by which race/

ethnicity modified the effect of dietary protein on vBMD;

therefore, race/ethnicity-specific quartiles of protein intake

(% energy) were used to assess the association between

vBMD and protein intake in men and women separately.

These quartiles are presented in Table 2.

No significant relationships were observed among men of

any race/ethnicity (Table 3). For women, there was no

significant interaction between dietary protein and hormone

replacement therapy use or Ca intake, in association with

lumbar spine vBMD. Non-Hispanic white women with

higher vegetable protein intake had a higher mean vBMD
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(P for trend¼0·03), after adjustment for age, BMI, physical

activity, sedentariness score, current smoking, educational

level, hormone therapy use, age at menopause, and intakes

of total energy, dietary carbohydrate, animal protein, Ca, P,

Mg and alcohol (Table 3). The associations with regard to

total and animal protein intakes were not significant among

non-Hispanic white women.

We further examined whether the associations observed

among women could be due to outliers or heterogeneity

by employing robust regression methods. These results

were consistent with the adjusted robust regression analyses

examining the association between protein intake and vBMD

Z-score (Table 4). Compared with the lowest quartile of

vegetable protein intake, non-Hispanic white women in the

highest quartile had significantly greater lumbar spine vBMD

Z-scores after adjusting for potential confounders. Moreover,

this result was also consistent when continuous dietary

vegetable protein intake was used in robust regression

models; a greater intake of vegetable protein was significantly

associated with a higher vBMD (for each 1 % greater protein

intake lumbar spine vBMD Z-score was 3·87 % greater,

P¼0·01) among non-Hispanic white women. In contrast,

there were no consistently significant associations between

dietary protein (total, animal or vegetable protein) intake

and vBMD in other sex and racial/ethnic groups. For example,

Hispanic-American women with higher animal protein intake

had a higher mean vBMD (P for trend¼0·04), and Chinese-

American women with higher animal protein intake had a

lower mean vBMD (P for trend¼0·02) (Table 3). These associ-

ations were no longer significant in robust regression analyses,

regardless of whether the categorical (Table 4) or continuous

(data not shown) dietary intake of animal protein was used

in the models. Additional models without substitution of fat

for protein or the exchange of protein for carbohydrate did

not alter the results (data not shown). Modelling absolute pro-

tein intakes as one standard deviation difference (in g) was

not associated with lumbar spine vBMD (see online supple-

mentary Appendix Table S1), and there was no alteration of

the results after further adjustment for estimated glomerular

filtration rate or propensity score representing Ca, P and Mg

(see online supplementary Appendix Tables S2–S8).

Table 1. Characteristics by quartile (Q) of dietary intake of total protein in 1658 participants of the Multi-Ethnic Study of Atherosclerosis
(MESA) 2000–5

(Mean values and standard deviations or percentages)

Quartile of total protein intake (% of energy intake)*

Q1 Q2 Q3 Q4
P for
trendVariables Mean SD Mean SD Mean SD Mean SD

Participants (n) 414 415 413 416
Age (years) 62·2 9·9 63·4 10 61·5 10·0 62·1 9·3 0·05
Men (%) 54·2 55·5 50·4 46·6 0·03
Race/ethnicity (%)

White 46·1 45·2 39·2 36·5 0·01
Chinese 6·1 8·6 15·3 26·0 ,0·001
Black 21·7 21·3 17·3 12·5 0·002
Hispanic 26·1 24·9 28·2 25·0 0·59

College 64·4 65·3 62·8 66·6 0·48
BMI (kg/m2) 28·2 5·2 28·2 5·0 27·9 5·0 27·8 5·2 0·51
Age at menopause (years) 47·0 6·9 48·4 6·4 47·7 6·3 48·4 5·8 0·08
Physical activity (MET-min/week) 5249 3940 5399 3594 5101 3441 4989 3616 0·40
Sedentariness score

(MET-min/week)
2400 1302 2476 1225 2297 1258 2329 1201 0·17

Baseline diet
Total energy (kJ) 6945 3335 6770 3293 6460 3025 5966 2900 ,0·001
Carbohydrate (%) 55·8 10·4 53·5 7·8 52·1 7·5 49·6 8·2 ,0·001
Fat (%) 30·8 7·9 31·5 6·6 31·4 6·6 30·7 6·9 0·23
Total protein (g) 49·6 24·5 59·2 28·7 64·5 30·4 71·5 35·1 ,0·001
Animal protein (g) 28·2 17·8 36·6 20·1 42·4 22·3 50·6 28·1 ,0·001
Vegetable protein (g) 20·7 10·3 21·8 10·9 21·9 10·7 20·5 11·2 0·14
Ca (mg) 589 379 729 466 794 542 886 659 ,0·001
Mg (mg) 245 110 269 124 272 123 283 150 ,0·001
P (mg) 904 462 1050 549 1109 579 1195 659 ,0·001
Alcohol (g) 10·4 23·3 6·3 13·2 3·87 6·7 2·9 5·3 ,0·001
Cold cereal (servings/d)† 0·26 0·33 0·31 0·38 0·25 0·34 0·22 0·32 0·001
Multivitamin use (%) 63·4 61·4 59·9 65·9 0·32
Whole grain (servings/d) 0·55 0·55 0·63 0·58 0·59 0·57 0·52 0·52 0·03

vBMD (mg/cm3)‡ 115 40 115 38 116 42 112 39 0·88
Current smoker (%) 15·9 12·7 10·7 9·3 0·03
HRT current use (%)§ 37·0 37·3 32·1 31·9 0·53

MET, metabolic equivalents; vBMD, volumetric bone mineral density; HRT, hormone replacement therapy.
* The ranges for the quartiles 1–4 of dietary total protein intake were 6·1–13·6, 13·7–15·7, 15·8–17·9 and 18·0–33·5, respectively.
† Cold cereal is a part of whole grain.
‡ Trabecular vBMD of Lumbar L2–4 vertebrae.
§ Female only.
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We also made adjustment for multiple comparisons to

limit the potential for false-positive findings. After adjustment

for multiple comparisons, the observed associations did not

reach conventional levels of significance.

Discussion

In the present multi-ethnic cohort of middle-aged men and

women from the MESA cohort, sex and race/ethnicity jointly

modified the association of dietary protein with lumbar spine

trabecular vBMD. No detrimental effects of high-protein diets

on vBMD were observed. In contrast, the most consistent

association was that of a higher vegetable protein intake

substituting for fat with a greater lumbar spine vBMD among

non-Hispanic white women, independent of age, BMI, smok-

ing, physical activity, postmenopausal hormone use, age at

menopause, and intakes of total energy, carbohydrate, Ca, P,

Mg and alcohol. However, this association was not statistically

significant after adjustment for multiple comparisons.

It is still unknown whether the relationship between protein

intake and bone health is modified by Ca intake. We did not

observe a significant interaction between dietary Ca and protein

intake in our sample. In a randomised controlled trial among

342 healthy men and women (mean age 71 years; mean total

protein intake 79·1 g/d), Dawson-Hughes & Harris(40) reported

that the association of total protein intake with a 3-year

change in total and femoral neckBMDwas significantly different

between groups with and without Ca/vitamin D supplemen-

tation, but not for lumbar spine BMD. A Ca balance study

among fifteen postmenopausal, mostly white, women (mean

age 61 years) showed that urinary Ca loss or indicators of

bone metabolism did not differ between low-protein (mean

total protein intake 68 g/d) and high-protein (mean total protein

intake 117 g/d) diets(41). In contrast, a prospective cohort study

among 960 older men and women has shown that increasing

protein consumption appeared to be more beneficial to

women with lower Ca intakes (mean age 71 years)(17).

Our findings with regard to total and animal protein intakes

are consistent with several studies that examined this associ-

ation among postmenopausal women(10,22,42). In contrast,

Teegarden et al.(43) and Quintas et al.(44) found a positive

association of total protein intake with lumbar spine BMD

Table 2. Medians of dietary protein intake by type of protein, race/ethnicity and sex

(Medians and interquartile ranges (IQR))

Quartile of protein intake (% of energy intake)

Q1 Q2 Q3 Q4

Median IQR Median IQR Median IQR Median IQR

Women
White (n 317)

TP 12·6 8·3–13·5 14·6 13·6–15·7 16·8 15·8–17·9 19·8 18·0–30·7
AP 7·0 3·0–8·0 8·9 8·1–10·1 11·1 10·2–12·4 14·7 12·5–27·9
VP 4·0 1·8–4·4 4·8 4·5–5·2 5·5 5·3–6·1 7·0 6·2–14·9

Chinese (n 104)
TP 14·6 10·4–15·9 16·9 16·0–18·1 19·3 18·2–20·6 22·0 20·7–30·1
AP 6·4 1·2–8·4 9·9 8·5–11·3 12·6 11·4–13·4 15·3 13·5–25·8
VP 5·6 3·4–6·1 6·6 6·2–7·1 7·4 7·2–7·9 8·6 8·0–13·6

Black (n 173)
TP 12·0 6·0–13·4 14·6 13·5–15·6 16·5 15·7–17·3 18·9 17·4–24·5
AP 6·5 2·5–8·0 9·4 8·1–10·1 11·2 10·2–11·9 13·4 12·0–19·7
VP 3·6 2·5–4·3 4·8 4·4–5·2 5·6 5·3–6·3 6·9 6·4–12·7

Hispanics (n 207)
TP 12·3 8·0–13·5 14·9 13·6–15·8 16·9 15·9–18·1 19·7 18·2–25·0
AP 5·9 2·2–7·7 9·0 7·8–9·8 10·7 9·9–12·4 14·6 12·5–20·9
VP 4·0 2·1–4·6 5·2 4·7–5·6 6·1 5·7–6·8 7·7 6·9–9·8

Men
White (n 375)

TP 11·9 6·4–13·2 14·0 13·3–15·0 16·0 15·1–16·8 18·6 16·9–33·6
AP 6·2 2·1–7·6 8·6 7·7–9·3 10·6 9·4–11·7 13·7 11·8–31·2
VP 3·7 1·5–4·2 4·6 4·3–4·9 5·4 5·0–5·8 6·6 5·9–10·4

Chinese (n 126)
TP 13·4 9·3–15·4 16·2 15·5–17·1 18·2 17·2–18·9 20·4 19·0–28·7
AP 6·3 2·9–7·9 9·5 8·0–10·2 11·0 10·3–12·5 14·5 12·6–23·5
VP 5·1 2·7–5·9 6·3 5·9–6·6 7·2 6·7–7·7 8·4 7·8–15·4

Black (n 133)
TP 11·6 8·3–12·6 13·9 12·7–14·9 15·3 15·0–16·6 18·5 16·7–22·8
AP 6·4 0·1–7·4 8·2 7·5–9·2 10·2 9·3–11·1 13·5 11·2–18·6
VP 3·6 1·4–4·1 4·6 4·2–4·9 5·5 5·0–5·9 7·2 6·0–11·9

Hispanics (n 223)
TP 12·3 7·1–13·6 14·5 13·7–15·6 16·6 15·7–17·6 19·0 17·7–24·3
AP 6·2 2·6–7·5 8·7 7·6–9·7 10·4 9·8–11·7 13·5 11·8–19·9
VP 4·0 1·4–4·4 5·0 4·5–5·4 5·9 5·5–6·4 7·5 6·5–18·7

Q, quartile; TP, total protein; AP, animal protein; VP, vegetable protein.
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Table 3. Adjusted mean lumbar spine trabecular volumetric bone mineral density (in mg/cm3) by race/ethnicity and protein intake at baseline

(Adjusted mean values and 95 % confidence intervals, n 1658)

Quartile of protein intake (% of energy intake)*

Q1 Q2 Q3 Q4

Adjusted mean 95 % CI Adjusted mean 95 % CI Adjusted mean 95 % CI Adjusted mean 95 % CI P for trend†

Women
White

TP‡ 102·0 93·6, 110·4 99·0 91·2, 106·8 96·8 89·3, 104·4 98·3 89·4, 107·2 0·57
AP§ 101·3 92·8, 109·7 100·8 93·1, 108·5 97·5 89·9, 105·1 97·3 87·7, 106·8 0·49
VPk 93·7 85·2, 102·2 97·6 90·1, 105·2 99·0 91·3, 106·7 107·4 98·6, 116·2 0·03

Chinese
TP 118·8 86·7, 150·9 127·9 93·2, 162·6 116·4 82·0, 150·8 109·3 67·7, 150·8 0·38
AP 136·5 102·5, 170·4 127·0 94·7, 159·3 111·3 77·5, 145·0 107·5 68·0, 146·9 0·02
VP 122·4 89·6, 155·2 126·6 93·4, 159·8 136·5 99·9, 173·2 139·4 102·5, 176·2 0·10

Black
TP 119·0 103·1, 134·9 146·4 132·8, 159·9 129·1 116·6, 141·6 137·0 121·7, 152·4 0·30
AP 120·8 106·2, 138·1 136·5 122·3, 150·6 140·1 126·9, 153·4 134·9 117·3, 152·4 0·21
VP 142·0 127·3, 156·8 131·6 117·5, 145·7 129·1 115·2, 143·0 125·8 110·3, 141·4 0·17

Hispanics
TP 105·2 90·7, 119·7 107·2 95·7, 118·7 110·6 98·5, 122·8 115·7 101·8, 129·7 0·25
AP 100·0 86·3, 113·8 105·7 93·6, 117·8 112·6 101·5, 123·8 120·5 105·2, 135·8 0·04
VP 102·6 89·0, 116·1 113·9 101·6, 126·3 106·1 94·4, 117·8 112·8 100·5, 125·2 0·31

Men
White

TP 112·2 103·4, 120·8 113·7 106·3, 121·2 111·5 104·1, 118·8 107·1 98·2, 116·0 0·40
AP 108·0 99·3, 116·7 115·2 107·6, 122·8 110·7 103·3, 118·1 110·3 100·8, 119·7 0·89
VP 106·8 98·9, 114·7 119·1 111·6, 126·5 114·9 107·7, 122·0 105·0 97·1, 112·9 0·53

Chinese
TP 103·9 88·6, 119·1 107·0 95·0, 119·0 121·3 109·7, 133·0 118·8 103·3, 134·3 0·13
AP 102·7 86·3, 119·1 117·1 105·0, 129·2 113·7 101·6, 125·7 115·9 99·5, 132·2 0·35
VP 112·9 98·3, 127·6 107·5 95·4, 119·5 120·1 108·6, 131·6 109·6 94·8, 124·4 0·77

Black
TP 131·0 110·6, 151·5 142·9 127·1, 158·7 141·6 126·7, 156·6 158·6 138·9, 178·2 0·11
AP 116·2 94·3, 138·1 148·9 134·4, 163·4 142·7 127·0, 158·5 155·7 135·3, 176·1 0·06
VP 143·9 125·4, 162·4 139·4 122·8, 156·0 148·3 132·4, 164·1 141·6 122·9, 160·3 0·99

Hispanics
TP 122·1 109·7, 134·6 123·1 114·1, 132·1 129·3 120·5, 138·2 124·3 113·1, 135·4 0·68
AP 116·3 104·4, 128·3 128·8 119·4, 138·1 125·7 117·0, 134·4 128·8 117·3, 140·3 0·27
VP 127·7 116·8, 138·6 124·1 115·3, 133·0 124·8 116·2, 133·3 123·6 112·6, 134·6 0·68

Q, quartile; TP, total protein; AP, animal protein; VP, vegetable protein.
* Upper and lower limits of each race/ethnicity- and sex-specific quartile are shown in Table 2.
† From the trend test for the median of bone mineral density in each quartile.
‡ Adjusted for age, BMI, physical activity, sedentariness score, smoking, educational level, hormone therapy use (if applicable), age at menopause (if applicable), and intakes of total energy, dietary carbohydrate as a percentage of

energy, Ca, P, Mg and alcohol.
§ TP model additionally adjusted for vegetable protein intake as a percentage of energy.
kTP model additionally adjusted for animal protein intake as a percentage of energy.
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among non-Hispanic white women, but their populations

were younger and more physically active. A study conducted

by Whiting et al.(45) has also shown a significant correlation

between total protein intake and BMD in men but did not

control for important potential confounders, such as age and

physical activity. In a cross-sectional survey, Rapuri et al.(46)

reported that women in the highest and second highest quar-

tiles of total protein intake had higher lumbar spine BMD,

compared with their counterparts in the lowest quartile;

however, this association was not significant in their longitudi-

nal analysis. Darling et al.(47) conducted a meta-analysis of

randomised controlled trials and found that participants on

protein supplementation had a slightly higher lumbar spine

areal BMD compared with those on placebo supplementa-

tion, with a weighted mean difference of 0·02 (95 % CI 0·00,

0·04) g/cm2; however, only three small studies (overall n 110)

were included, and sex or racial/ethnic effects were not

evaluated. The present results suggest that BMD is not

adversely affected by high-protein diets, and build on these

prior findings by suggesting that the relationship between

dietary protein and bone density may differ by race/ethnicity

and protein source, which may partially account for conflict-

ing results.

With regard to the initial findings of vegetable protein

intake and bone health in non-Hispanic white women,

a cross-sectional study examining the association among 560

white women enrolled in a managed care organisation has

shown the same trend: women in a higher tertile of vegetable

protein intake had a higher BMD at each skeletal site (P for

trend: 0·03 for hip, 0·10 for lumbar spine and 0·04 for whole

body) than did women consuming less vegetable protein(48).

Among elderly Chinese women, no association between

vegetable protein intake and lumbar spine BMD was identified

in one study(49), while another(24) found that vegetable protein

intake was positively associated with lumbar BMD in postme-

nopausal Taiwanese vegetarian women, a population with

very different dietary characteristics than the present study

population. However, none of the aforementioned results

were adjusted for the number of comparisons. Although the

basis for these ethnic differences is not clear, the findings as

a whole support a neutral or beneficial role of dietary protein

on body mineral density.

Mechanisms by which protein intake may influence bone

health include increasing Ca re-absorption or regulating

plasma insulin-like growth factor-1 that increases bone

formation(5). Isoflavones that are usually contained in plant-

based protein diets may influence bone health, although

their protective effects as dietary supplements have not been

consistently shown in data from randomised controlled

trials(50,51). In contrast, protein intake releases protons

during the oxidation of sulphur-containing amino acids, and

thus lowers pH and increases bone dissolution(10,11,52).

Because animal protein is rich in acidifying amino acids

such as cysteine and methionine, whereas vegetable protein

is not, the effect of protein intake on BMD could be different

by protein source. However, the differences between racial/

ethnic groups could also be due to differences in physiological

characteristics and the amount and duration of protein intake.

The results should be interpreted with caution as con-

clusions from the present study are limited by the following

factors. First, this is an observational study so residual con-

founding cannot be excluded. Second, dietary assessment

methods usually include measurement error that might affect

both accuracy and precision of study results. Measurement

error in the assessment of protein intake is likely to be non-

differential because diet was measured before data collection

of lumbar spine vBMD. Third, the type 2 error rate may be

increased in some sex- and race/ethnicity-specific subgroups

due to reduced sample sizes. However, we conducted

power analysis and found at least 80 % power to detect an

association in each racial/ethnic group with the exception of

76 % power among Chinese-American women. Fourth, we

lacked data on Vitamin D supplementation, medicines for

osteoporosis, vBMD on other bone sites, and biochemical

markers of bone health. Finally, our findings may not be

directly applicable to the elderly because elderly adults

require more protein consumption than those in late middle

age (mean age of the study population 62 years) in order to

maintain N equilibrium, heal wounds or pressure ulcers,

fight infections, or build new tissue to replace normal losses.

Recent evidence suggests that the minimum requirement of

dietary protein is 1·0 g/kg body weight among elders, when

compared with 0·8 g/kg recommended for middle-aged

adults(53). The findings may also not apply to athletes due

mainly to increased requirements for protein with high

levels of physical activity(54).

The present study also has several strengths that lend

confidence to these findings. First, we examined vBMD in a

well-characterised sample of multiple ethnicities, which

enabled us to investigate and compare the association in

Table 4. Adjusted robust regression coefficient for Z-score of lumbar
spine trabecular volumetric bone mineral density among women
(highest quartile v. lowest quartile of protein intake)

(b and 95 % confidence intervals, n 801)

b 95 % CI P*

Total protein†
White 20·06 20·43, 0·31 0·75
Chinese 20·07 20·80, 0·65 0·84
Black 0·35 20·18, 0·88 0·20
Hispanic 0·16 20·36, 0·68 0·55

Animal protein‡
White 20·13 20·52, 0·26 0·51
Chinese 20·65 21·33, 0·03 0·06
Black 0·29 20·34, 0·92 0·37
Hispanic 0·40 20·16, 0·96 0·16

Vegetable protein§
White 0·44 0·07, 0·81 0·02
Chinese 0·22 20·39, 0·82 0·49
Black 20·36 20·88, 0·16 0·27
Hispanic 0·06 20·38, 0·51 0·90

* From adjusted robust regression analyses.
† Adjusted for age, BMI, physical activity, sedentariness score, smoking,

educational level, hormone therapy use, age at menopause, and intakes of total
energy, dietary carbohydrate as a percentage of energy, Ca, P, Mg and alcohol.

‡ Total protein model additionally adjusted for vegetable protein intake as a percen-
tage of energy.

§ Total protein model additionally adjusted for animal protein intake as a percentage
of energy.
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participants of diverse racial and ethnic origins. Second, MESA

followed a stringent protocol, and collected measures using

standardised procedures to increase the measurement validity

and reliability. Third, validated questionnaires were used for

the assessment of habitual dietary intake and confounding

variables. Fourth, we adjusted for multiple comparisons to

better control type 1 error rates. In addition, information on a

variety of potential confounders, including physical activity,

BMI, smoking, alcohol consumption, hormone replacement

therapy and other dietary factors, was available for adjustment.

In summary, data from the present large, multi-ethnic,

population-based study suggest that a higher level of protein

intake, when substituted for fat, is not associated with poor

bone health among late middle-aged men and women. On

the contrary, a higher intake of vegetable protein may be

beneficial for bone health among middle-aged non-Hispanic

white women. Differences in the relationship between protein

source and race/ethnicity of study populations may in part

explain inconsistent findings reported previously. Given the

prevalence of low bone mass among older women, these

results have important public health implications. Additional

studies with more detailed dietary assessments are needed

to confirm these findings and to examine bone formation or

reabsorption markers that may clarify the potential mechan-

isms for racial/ethnic differences in bone health.
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