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Bremen Institute for Safe Systems, I, FB 3, Universität Bremen, Bremen, Germany

(e-mail: cxl@informatik.uni-bremen.de)

B. WOLFF

Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

(e-mail: bu@informatik.uni-freiburg.de)

Abstract

The design of theorem provers, especially in the LCF-prover family, has strongly profited

from functional programming. This paper attempts to develop a metaphor suited to visualize

the LCF-style prover design, and a methodology for the implementation of graphical user

interfaces for these provers and encapsulations of formal methods. In this problem domain,

particular attention has to be paid to the need to construct a variety of objects, keep track

of their interdependencies and provide support for their reconstruction as a consequence of

changes. We present a prototypical implementation of a generic and open interface system

architecture, and show how it can be instantiated to an interface for Isabelle, called IsaWin,

as well as to a tailored tool for transformational program development, called TAS.

1 Introduction

The story of Graphical User Interfaces (GUI) for theorem provers and formal

method tools as a whole is not exactly a success story so far. There is widespread

scepticism (Merriam and Harrison, 1997) that GUIs adopting techniques from the

field of Human Computer Interaction (HCI) can increase productivity to a similar

extent as they did, say, in the area of office applications. GUIs for widely used tools

like PVS, FDR or Isabelle are still dominated by text-based subwindows, barely

hiding the roots of the underlying tool. We believe this has predominantly historic

reasons.

The history of functional languages, in particular ML, has been deeply intertwined

with the genesis of the LCF theorem prover family, for which it was originally

developed as a meta language. The essential idea in LCF-style provers (like HOL

(Gordon and Melham, 1993) or Isabelle (Paulson, 1994)) is to encapsulate the

logical engine in an abstract datatype, the objects of which can only be constructed

by operations implementing the rules of the underlying logic. This yields the basis

for an open system design allowing user-programmed extensions in a logically sound

way. The flexibility, generality and expressiveness of LCF-style provers makes them
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symbolic programming environments, into which other languages can be logically

embedded, e.g. Haskell (Regensburger, 1994), Java (Nipkow and von Oheimb, 1998),

Z (Bowen and Gordon, 1994; Kolyang, Santen and Wolff, 1996b) or CSP (Tej and

Wolff, 1997). Together with appropriate, customized proof support and a GUI which

hides the details of the embedding, this leads to an implementation technology for

formal method tools which we call encapsulation.

Thus, while the LCF-design has its undoubted advantages, these systems have

inherited a very restricted model of user interaction based on a command line

interface, and not profited as much as possible from recent advances in interface

design (Shneiderman, 1998; Thimbleby, 1990; Dix et al., 1998). As Bornat and Sufrin

(1998) put it, this problem cannot be overcome by “bolting a bit of Tcl/Tk onto a

text-command-driven theorem prover in an afternoon’s work”.

Our contributions towards filling the gap between classical command-line inter-

action and more modern concepts of graphical user interaction are the following.

First, we develop a new metaphor for the visualization of LCF-style provers. The

metaphor serves as a vehicle to make the data structure of the prover accessible to

pervasive direct manipulation. Secondly, the metaphor develops an abstract notion

of user interaction, and is compatible with the need for their systematic replay.

Replaying proofs is a central issue in theorem proving. Thirdly, the metaphor is

implemented in a generic system architecture, based on the structuring mechanisms

of Standard ML, using a functional encapsulation of Tcl/Tk and the theorem prover

Isabelle. Besides a GUI for a theorem prover, this gives an encapsulation technique

for formal methods.

This paper is organized as follows: we first discuss issues relating to the conceptual

design and the metaphor. We then turn to the architecture of the system, introducing

a data model and a process model. This is followed by a section expanding on some

aspects of the implementation, and a section introducing a different instantiation

of the generic system. We close with an evaluation of the proposed work, and a

comparison to related work.

2 Conceptual design issues

Direct manipulation, a term attributed to Shneiderman (1982), is a widely known

technique in HCI and GUI design (Shneiderman, 1998; Thimbleby, 1990; Dix

et al., 1998), characterized by continuous representation of the objects and actions

of interest with a meaningful visual metaphor and incremental, reversible, syntax-free

operations with rapid feedback on all actions. In this section, we introduce the

notepad metaphor, serving as a vehicle to make the internal objects of a theorem

prover accessible for direct manipulation.

2.1 The notepad metaphor

As a motivating example, consider the way we do everyday mathematics and

calculations: one typically uses a piece of paper or a blackboard to write down

intermediate results, calculations or lemmas, but overall in an unstructured way,
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Fig. 1. Introducing the notepad metaphor and manipulation by drag&drop.

adding a column of numbers in one part of the pad, while doing a multiplication in

the lower corner and a difficult diagram-chase in the middle.

A simple instance of this is a small notepad on which we can write down numbers

and arbitrary text. The operations would either be arithmetic (e.g. add two numbers),

or textual (write some new text). Technically, the notepad could be visualized as a

window in which the user can manipulate objects, represented as icons, by drag&drop.

The world of objects on our notepad is structured by an inherent notion of typing

(here, numbers and texts). This typing is crucial when considering the operations,

because an operation taking numbers as arguments is different from an operation

taking texts as arguments. The operations are applied by drag&drop, so if we drop

a number onto a number, we may want to add them up, whereas if we drop a text

onto a text, we may want to concatenate them. Figure 1 illustrates our example: On

the left, we can see objects representing numbers 2, 4 and 5, and two pieces of text.

If we move the number 2 on the number 4 (second from the left), they are added

up, and we obtain a new object: the number 6 appears (third from the left).

This shows the first main principle of a functional GUI: objects represent values,

and hence the interaction of objects produces new objects, rather than changing

existing ones. Dropping an object onto another corresponds to function application.

These functions are called binary operations; passing several objects to a binary

operation is possible by grouping objects via multiple selections. Additionally, unary

operations may be defined for each object type, which take exactly one argument,

and are invoked via a pop-menu (see figure 1 on the right, where the standard

operations Show, Rename and Delete can be seen.)

In practice, the simple typing discipline has proven insufficient, e.g. instead of

adding two numbers, we might as well want to subtract, multiply or divide them.

To this end, we introduce the concept of a mode that an object may have. In our

example, each object of type natural number has four modes: plus, minus, times

and divide. The function applied by drag&drop is determined by the mode of the

object being dropped onto: dropping a number onto another number in times mode

multiplies the two numbers.

At first sight the modes seem to contradict our principle of a functional GUI, since

they allow a form of state. However, the modes only serve to disambiguate or simplify

user interaction. This context information may help the system to provide additional

parameters that had to be provided explicitly otherwise; we do not allow side effects
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when applying operations. As a general rule of interface design(Thimbleby, 1990),

modes should not be hidden, so the icon of an object is determined by both the

mode and the type of the object. This way, the action which will take place is always

transparent to the user. In figure 1, the modes of the numbers are shown by an

additional sign on the upper right corner of the symbol. The user can change the

mode of an object by a pop-up menu (figure 1 on the right).

2.2 Undo, persistence and replay

According to the main principle of a functional GUI, function application can not

change the arguments of the function. This allows an easy implementation of undo:

we just delete the object created by applying the function. Moreover, the functional

approach makes it easy to reconstruct an object value. By recording the operations

which have been applied to construct an object, we can reconstruct the object value

later by replaying the operations. This is needed to implement a persistent state, and

to deal with external objects.

By persistent state, we mean that we want to be able to save the current state

at a given moment, exit the system, and later restart the system in the same state

where we left it. Under the assumption that only operations, but not objects, can

be saved externally, persistence is achieved by recording for every object how it was

constructed, and reconstructing the object by replaying the operations upon restart.

As an example of external objects, suppose that the texts on our notepad are given

as post-it notes stuck to the pad. Their value is the text written on them. We can

concatenate two texts, but if we then write something different on one of the notes,

the value of the concatenation should change accordingly. In our example, suppose

the text objects (like Text1 and Text2 in figure 1) are read from external files. By

dragging Text1 on Text2, we create a new object, say Text3. If now Text1 is reloaded,

the value of the object may change, and consequently the value of Text3 should

change as well. We say Text3 is outdated, which is indicated by shading the icon

of Text3. An outdated object is updated again by replaying its history. Updating

can be invoked manually via the pop-up menu (as in figure 1), or automatically.

In many applications, however, automatic replay is inconvenient since it may take

a long time, and since it may fail, leading to errors which the user has to correct

interactively. This may distract the user from his current task, so we let him postpone

the updating until it is convenient.

Replay is very important in the theorem proving context, because most theorem

provers read declarations and definitions from external files, which are frequently

modified by the user, and have to be reloaded. Yet, systematic replay is to our

knowledge never supported on the level of the GUI.

2.3 Construction objects

For certain objects, manipulation without regard to their internal structure, and

hence their history, is insufficient. For instance, we want to admit editing of text

objects in our simple example. The history of such editing operations will then
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consist of a protocol of operations like delete "javelin" at position 3.12 or

insert "spear" at position 3.12. Navigating forward and backward in this

history corresponds to undoing and replay.

These objects will be called construction objects. They can be opened by double-

clicking, which leads to the creation of two new windows, namely the construction

area and the history navigation window (see figure2). Both windows have a focus, i.e.

a mark on some position in the text, and some position in the history, respectively.

The history focus controls the content of the construction area.

Fig. 2. Construction area and history navigation window.

When closing a construction object, the current value of the construction object

is bound to the object that was opened (i.e. to the icon that was double-clicked).

The reason for this behaviour is that the notepad would hopelessly clutter up if a

new object was created for each step in the history. Objects depending on a closed

construction object are marked as outdated.

Note that the replay of the history may fail. For example, the semantics of the

delete "javelin" operation may be undefined if no "javelin" occurs in the text

as a consequence of an external change and a reload of the object.

There are more forms of interaction between the notepad window and the con-

struction area or the history window. Objects on the notepad may be dragged on

the focus set in the object value field, e.g. replacing the text selected in the focus.

Vice versa, the selected text of the focus may be extracted and form an object on

the notepad.

2.4 IsaWin – a functional GUI for Isabelle

We now explain how theorem proving fits into the concepts described in the previous

sections by describing our GUI IsaWin for the theorem prover Isabelle (Paulson,

1994). Isabelle is just the example at hand; we expect no principal difficulties in

developing analogous interfaces for other LCF-style prover based on SML.

2.4.1 Accommodating basic theorem proving into the notepad

The object types of IsaWin are a subset of those provided by Isabelle, as shown

on the left of figure 3: in the first row two theorems and a theory, in the second

row, two different types of rule sets, called simplifier sets and classical rule sets in

Isabelle parlance, and an ongoing proof, or more precisely the proof script which
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we will identify with a proof throughout this paper. Theorems have four modes:

they can be introduction rules (as in figure 3), elimination rules, destruction rules

and equations (which are not shown).

Fig. 3. The Objects of IsaWin: to the left, basic objects; to the right, tactical objects.

The binary operations in this instance include the forward resolution of two

theorems: unifying the conclusion of one theorem with the hypothesis of another

one. This corresponds to dropping a theorem object onto another theorem. Note

that this may not succeed – the operation is partial. For example, if the theorem

add_0 : 0 + c = c is dropped onto the theorem sym : s = t⇒ t = s, a new theorem

t = 0 + t is produced by forward resolution; but vice versa the operation fails.

Simplifier sets are sets of rewriting rules. If a theorem is dropped on a simplifier

set, a new simplifier set is produced with the theorem included. Classical logics

support another type of rule sets. These classical rule sets come in two modes, safe

and unsafe, since theorems can be added to a classical rule set in two ways (this

distinction makes a difference for a decision procedure of Isabelle, the so-called

classical reasoner). If a theorem is dropped on a classical rule set, depending on the

mode of the rule set, it is either added as a safe rule or as an unsafe rule.

Reloading an external theory file results in outdating all dependent objects, like

included theories or theorems depending on them.

2.4.2 Accommodating tactical programming into the notepad

Contrary to a common prejudice against GUIs for theorem provers, it is quite

straightforward to embed basic tactic script construction into the notepad metaphor.

First, we provide object types corresponding to certain Isabelle types, tac op (for

tactical operations), tactics and tacticals. Secondly, we provide objects of type tac op

corresponding to backward resolution or simplification, basic tactics like proof by

assumption as objects of type tactic, and the usual connectives REPEAT, THEN

and ORELSE on tactics as objects of type tactical. Thirdly, we set up the binary

operations by embedding Isabelle’s tactical algebra into our world of object types,

objects and binary operations. We are now able to construct, for example, an

object corresponding to the Isabelle tactic REPEAT o ((rtac exI) ORELSE’ (rtac

allI)) which by repeated backward resolution with the quantifier introduction

theorems exI and allI will eliminate an arbitrary sequence of outermost quantifiers

on a subgoal. Figure 3 shows the constructed tactic in the lower left corner, together
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with tacticals ORELSE and REPEAT, the tactical operation RTAC and the tactic

Rtac exI.

2.4.3 Accommodating backward proof into construction objects

In LCF-style provers, the main proof method is by backward proof: if we want to

prove a goal φ in this style, a proof state is initialized with the formula φ ⇒ φ.

With a theorem A ⇒ B ⇒ φ, the proof state can be refined to A ⇒ B ⇒ φ by

forward resolution. The premises left from the rightmost implication, here A and B,

are called subgoals. If, as a consequence of further proof steps, no subgoals are left,

the proof state can be converted into the theorem φ.

Fig. 4. IsaWin’s construction area.

It is convenient to declare backward proofs as construction objects and the proof

steps performed by tactical operations as their history. When dragging objects

from the notepad window to the construction area, the GUI will perform tactical

operations, depending on the mode of the dragged object, the settings of the buttons

and the focus set by the user. If a theorem lemma1 has the mode introduction rule,

and the focus is set to the second subgoal, the drag&drop gesture will trigger the

Isabelle operations by(rtac lemma1 2). Further, dragging a simplifier set down

into the construction area will cause Isabelle’s rewriting machine to execute the

rewrites in it. If there are no subgoals left to be proven, the construction area can

be closed to yield a theorem object on the notepad. Figure 4 shows the construction

area of the IsaWin interface. The most prominent part is the display of the subgoals,

and the main goal to be proven.
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3 System design issues

As mentioned in the introduction, we want to provide a family of user interfaces for

different applications, let it be for different theorem provers or different tools built

on them. Hence, our system architecture has to be generic. It depends on an abstract

characterisation of the application; this parameter is discussed in section 3.1 and

leads to the data model described in section 3.2. This view is complemented by the

process model in section 3.3, where the communication of the different components

is presented.

3.1 An abstract view of functional user interfaces

At an abstract level, we consider the theorem prover, or the encoded formal method,

to be an application which is a structure with the following characteristics:

• It has objects, each of which has type. The type determines the possible modes,

and both determine which operations are applicable to this object, and both

were indicated by the object’s icon.

• There are partial operations which can be applied to objects, namely unary

operations which take exactly one argument, and binary operations which take

two arguments. Unary operations are selected from the pop-up menu bound

to each object, whereas binary operations are triggered by drag&drop.

Thus, an application has a set S of types, a set Ω of operations which have

certain arity (i.e. an operation ω ∈ Ω takes exactly one or two arguments of specific

types), a set As of the possible values of objects of type s, and a way to apply

operations ω from Ω to elements of As. In other words, an application is given by

a signature Σ = (S,Ω), and a partial Σ-algebra A. This separation of the syntax of

the application (given by a signature) from its semantics (given by an algebra) is

essential in being able to handle replay, as we will see below.

The modes – and similarly, the settings in the construction area – only serve to

disambiguate which operation ω is going to be applied. Once the operation has been

selected, its evaluation is independent of modes, settings or any other user input.

Technically, we can denote this characterisation by an SML signature APPL_SIG,

making the generic interface an SML functor which when instantiated with an

application yields a graphical user interface for that application; we will elaborate

on this in section 4.2 below.

3.2 The data model

The metaphor developed in the previous section was based on the representation

of values by icons on a notepad, and application of operations on these objects.

Representation on the notepad corresponds to naming an object – the object can be

referred to, and operations can be applied to it.

As an application is given by a signature Σ and a partial Σ-algebra A, the history

of an object is given by composition of operations, or in other words by a term

t from the term algebra TΣ(X), built over a set X of variables (where the rôle
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of the variables is taken by the external identifiers). Then, given a mapping of

the variables to values in As (i.e. a way to evaluate external objects), every term

evaluates to an element of As (MacLane and Birkhoff, 1967). So to be able to replay

the construction of an object, every object is represented internally as a pair (a, t)

with a ∈ As, t ∈ TΣ(X)s, where a is the current optional value of the object (if it

exists), and t is the history.

Since objects can be referred to, a single object can be used more then once. The

data model has to take into account that kind of sharing, since otherwise replay

would become unnecessarily expensive. In proof scripts, this sharing is achieved

by binding the theorem to an identifier. In our data model, it is implemented by

representing all terms representing the history of the objects in a directed acyclic

term graph, representing the global data state of the system.

The vertices of the term graph correspond to the pairs (a, t); every vertex may be

associated to an icon on the notepad. The edges correspond to operations. If the

value a does not exist, the object is called outdated. Recall that outdating can occur

in two ways: an external object is changed (i.e. re-evaluated; for example, a file is

being reread into the system), or an operation is applied to a construction object.

The notion of history used here is linear, like Archer, Conway and Schneider’s

script model (Archer et al., 1984). When we go back in the history, there is a sequence

of operations which can be applied by going forward again (the pending operations).

If, after going back, we apply a different operation, these pending operations are lost

and cannot be referred to anymore. This is a design decision to make navigating the

history easy. With the data model, it would be easy to implement a history which is

not a linear script, but a graph (like Vitter’s US&R model (1984)), where applying

new operations is possible while still pending ones are kept in another branch of

the history.

3.3 The process model

The components of the architecture comprise the notepad and the construction

area which have already been introduced above. Additionally, the application may

provide communicating components such as a file selector, or a theorem chooser;

these typically serve to import external objects into the system. Construction area

and notepad are closely coupled, because they exchange values of objects under con-

struction. The notepad and all other components communicate with each other via

a clipboard, and with an external environment, exchanging external representations

of the history of objects.

Figure 5 shows the process view of the system. M1, . . . ,Mn and NM1, . . . ,NMn

are the application-specific modal and non-modal components. Whenever a modal

component is activated, communication with all other components is refused, while

non-modal components allow interleaved communication. Hence, activation of a

modal component transfers the control flow of the interface to this component, as

indicated by the dotted arrows. Except for the environment and the clipboard, every

component is associated to a widget or a window visualizing its process state in the

GUI (construction area and history navigation have one each for convenience). The
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176 C. Lüth and B. Wolff

...

Environment

Clipboard

M M

Notepad

1 n NM NM1 k... data flow (via events)

optional data flow

control flow

Construction
Area/History

Fig. 5. The process view of the architecture scheme.

components may optionally communicate with the environment (hence the dashed

arrows).

Our design goal of pervasive direct manipulation is reflected by the communication

vertices that connect all components with the clipboard. The arrow pointing into

the clipboard represent drag-events (parameterized with the object), while the arrow

pointing from the clipboard represent drop-events.

Our design goal of persistence is reflected by the arrows connecting the notepad

to the environment. Both of these components have an internal state which we have

to be able to save into the environment, and read back from there. The application-

specific selector components may have an internal state, and thus may need to

communicate with the environment as well.

In figure 5, more than one instantiation of the interface can be connected, by

sharing the same environment, and by connecting the clipboards. This requires

conversion functions between the objects of the different instantiations. This gives

us a way to build Formal Software Development Environments as a consequence

of the genericity of our architecture. A prototypical implementation of this scheme,

centred around tools for the specification language Z, is discussed by Lüth et

al. (1998).

4 Implementation

In this section, we give an overview of the implementation, briefly touching on all

components of the system (figure 6) in turn. The system is implemented entirely

in Standard ML. The instances discussed throughout the paper are based on the

theorem prover Isabelle. Since Isabelle essentially consists of a collection of ML

types for objects such as theorems, proofs and rule sets, and ML functions to

manipulate these objects, organised into a collection of ML structures and functors,

one can conservatively extend Isabelle by writing ML functions, using the abstract

datatypes provided by Isabelle, without corrupting the logical core of Isabelle.

To implement the GUI, we have developed a functional encapsulation of the in-

terface description and command language Tcl/Tk (Ousterhout, 1994) into Standard

ML, called sml tk (Lüth et al., 1996). This package provides abstract ML datatypes
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Standard ML

Application

GenGUI
Isabelle/HOL

sml_tkwish

Fig. 6. Module architecture.

for the Tcl/Tk objects, thus allowing the programmer to use the interface-building

library Tk without having to program the control structures of the application in

the untyped, interpretative language Tcl. Further, the sml tk toolkit library offers

a collection of often-used, customisable standard components, such as text-input

windows or file choosers.

4.1 Direct manipulation of formulas and annotation issues

The problem of representing terms and formulas is ubiquitous in a GUI for a

theorem prover. With few exceptions based on a dag-like representation (Kahl,

1998), terms are represented essentially text-based, enriched by mathematical or

some graphical notation like square roots or sum signs. In a GUI, there is a

potential for novel user interaction such as query-by-pointing (clicking on a subterm

in order to get information like types) or prove-by-pointing (clicking on a subterm

to apply a tactic or rewrite) (Bertot and Théry, 1998). Finally, direct manipulation

is a straightforward idea enabling the user to drag&drop a subterm within a sum,

effecting appropriate applications of associativity and commutativity laws (going

back to the system Theorist; see also (Bertot, 1997a)) which are, at least in Isabelle,

extremely tedious to communicate in command-line style.

In a generic, language independent environment such as Isabelle, a prerequisite of

theses interactions is the generation of term annotations that allow the user to set a

focus in the sense of section 2.3, or to point in the sense above. In this section, we

describe the necessary concepts and their implementation within the Isabelle syntax

engine.

First, a mechanism to attach and manage one or more alternative external rep-

resentations of a syntax to a theory is needed. These paraphrasings allow one to

produce graphical output like ∀x.P instead of the conventional text output !x.P.

(This mechanism also allows the generation of other documentation formats like

LATEX.)

Secondly, for a smooth transition from Isabelle’s text-based output to graphical

output, we implemented a markup-interpreter as a generic component of sml tk. It

provides a generic parser for an SGML-style notation <tag> ... </tag> that binds

attributes or ML functions to the subtext marked by the tags; e.g. the graphical

output above is obtained from the code <FONT SYMBOL>\"</FONT>x. P.

Thirdly, the concept of annotations has to be added. Annotations are constant

symbols with an external representation that is invisible on the screen and whenever
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possible transparent to the Isabelle printing macros and printing translations. They

are used to generate bindings to specific subtexts. For example, the focus mechanism

described above is implemented by surrounding every subterm t with an annotation

<SEL p>t</SEL> where p is a representation of the path to the subterm t. The tag

SEL is bound to a function which, given p, extracts the subterm t from the proofstate.

This annotation has to be transparent to the pretty-printing macros; otherwise, for

instance, the rewriting from the internal representation x :: y :: [] to the external

representation [x,y] will fail. Based on these paths, it is a standard exercise in

tactical programming to provide the necessary operations for query-by-pointing and

prove-by-pointing.

Tags and annotations can be nested. For example, in (∀x. P (x))⇒ P (t), the text x

will be annotated as a part of the subterms x, P (x) and ∀x. P (x). In such a case, the

most specific annotation is selected first, with subsequent clicks cycling through the

less specific ones, so above, the first click on x will select the subterm x, the second

the subterm P (x), and the third the subterm ∀x. P (x).

In summary, a few technical extensions to Isabelle’s pretty-printing and parsing

machinery are sufficient to make Isabelle support graphical mathematical notation

and direct manipulation on terms. These extensions are fully compatible with Is-

abelle’s logical genericity, and fully backwards-compatible with existing syntactic

notations.

4.2 The generic GUI GenGUI

The module GenGUI uses the interface description facilities provided by sml tk to

provide a generic graphical user interface. It is independent of Isabelle, and given

as a functor

functor GenGUI(structure appl: APPL_SIG) : GEN_GUI = ...

which returns a graphical user interface for the application appl. The abstract

characterization of an application has already been introduced in section 3.1 above;

we will now give a sketch of the ML signature APPL_SIG describing them. The real

signature of course is far more elaborate, containing in particular details about the

visual appearance (such as the size of the window, or the particulars of the icons

depicting the objects and their locations).

The ML signature can roughly be divided into four parts: typing of the objects,

operations and applying them, the construction area and external objects.

For the first part, every object has a type given by obj_type; its mode can be

changed within the modes of the object’s type, as given by modes. Objects of type

construction_obj are construction objects, which can be opened and manipulated

in the construction area:

signature APPL_SIG =

sig

type object (* The type of all objects *)

eqtype objtype (* The type of object types *)
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eqtype mode (* The type of modes *)

val obj_type : object -> objtype

val modes : objtype-> mode list

val mode_name : mode-> string

val initial_mode : object-> mode

val construction_obj : objtype

For the second part, there is a type modelling the operations, and an operation with

which to apply it. Application is partial, and so the result of an application is either

a new object (variant OK), or failure (variant Error, the string argument is an error

message to be displayed):

datatype object_result = OK of object | Error of string

type opn

val apply : opn* object list-> object_result

val mon_ops : objtype-> ((object* (opn->unit)-> unit)* string) list

val bin_ops : (objtype* mode)* (objtype* mode)-> opn option

For every object type mon_ops gives the unary operations as a list of pairs of

functions and strings. The string is the name under which the operation will appear

in the pop-up menu; the function implements the operation. It gets passed the actual

object as its first argument, and a continuation which is used to apply operations.

The reason for passing a continuation is that a unary operation may require further

user interaction (e.g. when starting a proof in a theory, we first have to enter some

goal to be proven).

The binary operations are given by bin_ops and come into effect by drag&drop.

For every type and mode of a target object (the one being dropped onto) and type

and mode of objects being dropped, this function gives an option of an operation;

if this option is empty then no operation is available for this drag&drop situation.

The construction area shows the delicate interplay between the application and

GenGUI. Because the generic user interface implements the history and commands

such as undo, the application cannot provide these. But since the layout of the

construction area is given by the application, there needs to be a way to call functions

which navigate the history, in order to bind them to graphical control elements. So

we model the construction area by a functor, which takes the history navigation

functions given by the signature HISTORY_SIG (omitted here), and implements the

following export signature:

functor ConArea (structure H : HISTORY_SIG):

sig val open_area : object*H.history->TkTypes.Widget list

val drop_ops : objtype*mode->object list->(opn->unit)->unit

end

The construction area provides the functions open_area which takes an object, and

its history, and returns a list of widgets making up the construction area. For every

type and mode of an object being dropped from the notepad into the construction

area, drop_obs gives the operation to be applied. Like mon_ops, its arguments are

the objects and a continuation to allow further user interaction.
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The last part of the application deals with external objects. They are referred to

by an identifier of type external_id. Given such such a reference, we may obtain

an object from that by get_external_obj. The prime example here are file names;

get_external_obj loads the contents of the given file. The application may specify

dependencies between external objects (see below).

eqtype external_id

val ext_obj_depends_on : external_id* external_id-> bool

val get_external_obj : external_id-> object_result

end

The export interface shows a representation of the data model introduced in

section 3.2. The type obj_label represents vertices of the term graph. objects is

a representation of the term graph as a list of pairs (l, e), where l is a label and

e an expression, consisting of applied operations, external objects or references to

previous labels.

signature GEN_GUI= sig

type obj_label

datatype obj_hist = External of external_id

| AppliedOp of opn* obj_hist list

| Result of obj_label

type objects = (obj_label* obj_hist) list

type notepad = (obj_label* TkTypes.Coord) list

type gui_state = objects* notepad

val change_external_obj : external_id-> unit

end

The notepad contains representations of vertices in the term graph on the screen,

given as pairs of obj_label and Coord; we only need the coordinates, since the rest

of the visual representation will be computed from other information (the type of

the object etc.). Then the state of the whole system is given by the term graph and

the notepad, and represented by an ML value of type gui_state. Hence we can

use the ML parser to restart the interface in a given state, by generating a string

which when parsed and evaluated is a value of type gui_state corresponding to

the current state of the interface. Further, we do not use the whole of ML but only

a small subset describing variable declarations val x= e and expressions e built

by function application; a parser for this subset (or another language with similar

expressiveness) would not be hard to implement, allowing to parse and evaluate

expressions like above under the control of the interface. This can be used to

exchange single objects (e.g. proofs) between sessions, and to integrate a text-based

interface into the graphical interface.

Incidentally, the state is represented as a global reference; in Haskell it would be

implemented more elegantly as a monad. We do not show the functions used to

control the start and restart of the GenGUI, but importantly there is a function

change_external_id by which an external application can signal that the value

of an external object has changed. GenGUI then reevaluates the corresponding
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external object, and all those external objects which depend on it (as specified by

ext_obj_depends_on), and moreover, outdates all objects constructed from these

external objects.

Note how the functional nature of the interface is reflected in the typing: all

operations, given by mon_ops, bin_ops and drop_ops, can only produce new objects.

The application cannot delete objects.

As a final detail, the clipboard is implemented by sharing a common struc-

ture CLIPBOARD, which exports two functions, get: unit-> obj_hist and put:

obj_hist-> unit; if (and only if) put is called with the history of an object, the

next call to get will return this history.

5 A different instantiation of the generic architecture

In this section we demonstrate how instantiations of our generic architecture can

be used to build a special purpose tool by encapsulating a formal method into

Isabelle. The tool will be the transformation system TAS, similar in spirit to window

inferencing (Grundy, 1991) as realized, for example, in the system TkWinHOL

(L̊angbacka et al., 1995), and related to systems such as Prospectra (Hoffmann and

Krieg-Brückner, 1993).

5.1 Concepts of TAS

In this section, we briefly sketch the basic principles of modelling transformational

program developments in an LCF-style prover, following the lines of Kolyang,

Santen and Wolff (1996a). A transformational development can be described as a

sequence of correctness-preserving refinement steps

SP1  . . . SPn

One can abstractly view the SPi as arbitrary formulae and as a transitive, reflexive

and monotone refinement relation; this can be, for example, the implication from

right to left in the case of refinements based on standard model inclusion, or process

refinement as in CSP. Every development step SPi  SPi+1 is given by applying

transformation rules, ranging from simple logical rules to complex ones that convert

a certain design pattern into an algorithmic scheme, such as Global Search or Divide

& Conquer (Smith and Lowry, 1990).

The basic idea of the Transformation Application System TAS is to separate the

logical core of a transformation from the pragmatics of its application, its tactical

sugar, driving the concrete application in a development context. A logical core

theorem has the following general form

∀P1, . . . , Pn . A⇒ I  O

where P1, . . . , Pn are the parameters of the rule, A the applicability condition, I the

input pattern and O the output pattern. By proving the logical core theorem, a

transformation is proven correct. When applying a transformation, the applicability

https://doi.org/10.1017/S0956796899003421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003421
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Fig. 7. Graphical User Interface of TAS.

conditions result in proof obligations which are proven externally, by other interfaces

to Isabelle (like IsaWin) or by decision procedures or (e.g. model-checkers).

The Transformation Application System is designed to hide this implementation

in the prover from the user. Since the proof obligations can be deferred to a later

stage, the user of a transformation system can concentrate on the main design

decisions of transformational program development: which transformation to apply,

and how to instantiate its parameters.

5.2 TAS as an instantiation of the generic GUI

We show how to set up TAS as an application in the sense of section 3.1 above. We

have to define construction objects, object types, and operations. The construction

objects of TAS will be transformational program developments, corresponding to

Isabelle’s proof state, with a history of the transformation rules which have been ap-

plied. The object types are transformational program developments, transformation

rules with none, some or all of their parameters instantiated, parameter instanti-

ations, texts and theories. Since in realistic transformation rules (such as Global

Search) parameter instantiations are lengthy, instantiations merit an additional ded-

icated object type to avoid retyping, and to allow copying them.

Figure 7 shows a screen shot of TAS with some objects on the notepad, and a

transformational development currently open in the construction area. The oper-

ations include instantiating a transformation rule by dropping an instantiation on
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a transformation rule, and applying a transformation rule by dragging it into the

construction area. Further, two transformation rules can be composed (using the

transitivity of ) by dropping a transformation rule onto another one; if present, the

application conditions of both transformations were conjoined and the parameters

universally quantified again.

6 Evaluation, related work and conclusions

In this final section, we discuss a metric evaluation of IsaWin, briefly review related

work and close with a summary of our results and an outlook on future work.

6.1 Evaluation of IsaWin

Card, Moran and Newell (1983) proposed the goals, operators, methods and selection

rules (GOMS) model and related it to the keystroke-level model (KLM). They

postulate that the users formulate goals (e.g. prove lemma) and subgoals (e.g.

push operator outermost) which they achieve by using methods (press key, move

mouse, recall theorem name, etc.). The selection rules are the control structures for

choosing among several methods available for accomplishing a goal – statistical

assumptions about the deviation of these choices form the basis for a translation

into the keystroke-level model. KLM attempts to predict performance times for

error-free expert performance of tasks by summing up the time for key-stroking,

pointing, drawing, thinking, and waiting for the system. Kieras and Polson (1985)

and Elkerton and Palmiter (1991) refined the approach.

The original model, but to a lesser extent also its successors, “concentrate on expert

users and error-free performance, and place less emphasis on learning, problem

solving, error handling, subjective satisfaction and retention” (Shneiderman, 1998).

Given these fundamental reservations, it is not clear that the GOMS model and its

variants apply to theorem proving. Of course, we can do a rough comparison on

the KLM-level of IsaWin and Isabelle’s command-line interface – for example, the

proof script in figure 4 is generated by 47 elementary user interactions like set focus

or drag object, substantially less than the interaction necessary to produce a proof

script of 233 characters – but one might argue that the fewer interactions required

by a GUI contrast to a larger number of more usual interactions (keystrokes) in

the command-line interface. And even if most Isabelle experts agree that the proof

script shown in figure 4 is typical, the question will remain how costly are untypical

situations, where the expert user can use the full flexibility of ML. Hence, these

metric data ignore factors like subjective satisfaction and usability.

However, we can identify two areas which IsaWin handles better than a command-

line interface: first, proof-by-pointing and query-by-pointing, allowing by a single

mouse-click what in the command-line interface requires the tedious and extremely

error-prone construction of substitutions, and secondly, IsaWin’s replay, allowing a

much finer analysis of which proofs are affected by a change than the conventional

rerunning of scripts which fails at the first problem.

In summary, at present claims like “GUI’s improve productivity over command-
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line interfaces in some formal method” can not be founded on taxonomic data,

although some first studies (Jackson, 1997) suggest this, at least for a particular

prover and GUI. It may actually be the case that a GUI precisely because it is easier

to use does not encourage purposeful planning to the extent which is necessary for

the successful use of a theorem prover (Merriam and Harrison, 1997). Then again, it

may be that a GUI makes the alternatives the user faces clearer and easier to invoke

(Bornat and Sufrin, 1998). The question remains open until more systematic studies

have been conducted; for IsaWin, the prototypical status of the implementation has

until now precluded such studies.

6.2 Related work

6.2.1 Generic architectures and abstract GUI descriptions

Design patterns have recently received a lot of attention in the field of object-oriented

programming (Gamma et al., 1990; Cooper, 1998). Also motivated by reusability,

some techniques (e.g. templates roughly corresponding to functors) are similar to

our generic system architecture. However, important aspects of these patterns are

described completely informally, resulting in a sometimes intransparent mixture of

meta-language, C++ code and pragmatics. In contrast, work on ‘architecture styles’

(Abowd et al., 1993; Allen and Garlan, 1994) aims at a fully formal description

of generic architectures. However, for the moment, the emphasis of this research

lays on foundation, description and analysis and less on implementation. Hence, we

consider this work as complementary.

In the HCI literature, there is a large body of work applying formal methods,

for the modelling of GUIs, based on temporal logic, Z or process algebras; see

(Dix et al., 1998) for a survey. Interface components can be described as processes

exchanging events in a process algebra like CSP (pp 320). A similar modelling in

CSP could be done for our generic system architecture; then even the dialogue

behaviour of the application can be described and specified formally.

6.2.2 GUIs for theorem provers

GUI’s for computer algebra systems such as Maple, Mathematica or MuPad all

offer mathematical editing facilities and some of them even direct manipulation of

formulae (e.g. rewrite by drag&drop). Typically, this kind of direct manipulation is

only available without genericity. These systems are built for a fixed syntax (with

emphasis on arithmetics or differential equations), a fixed logic and on the basis of

a non-generic system architecture. This also holds for the special purpose theorem

prover CADiZ (Toyn, 1996).

In contrast, most recent theorem proving environments are generic, and some also

offer proof support for direct manipulation. Jape (Bornat and Sufrin, 1996) is generic

in the logic and offers an interface with different styles of proof layout, graphical

pretty-printing, and supports proof by direct manipulation, so-called ‘gestures’. It is

a lightweight prover, which has not been used yet to encapsulate a formal method.

Jape’s gestures are similar to CtCoq (Bertot and Bertot, 1996), where they are

https://doi.org/10.1017/S0956796899003421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003421


Functional graphical user interfaces 185

called proof-by-pointing, but the basic idea remains the same. CtCoq is based on a

powerful prover, Coq, which unlike Isabelle is not generic, and moreover supports

graphical output which can be configured by the user at runtime, script-based replay,

and further direct manipulation like rewriting by drag&drop.

CtCoq is actually part of a larger initiative, in spirit similar to ours, to provide

generic interfaces for a family of provers (Bertot and Théry, 1998). The generic

interface is implemented using the Centaur system (Borras et al., 1988). In contrast

to our architecture, the system is distributed (prover and interface can run on different

machines) and heterogeneous (prover and interface need not be implemented in the

same language). This work has been taken up by the Proof General project at the

University of Edinburgh (Bertot et al., 1997), in which a family of interfaces for the

three provers Coq, Lego and Isabelle has been implemented inside XEmacs. In our

view, despite practical advantages, this does not lead to a better system architecture;

and the close interaction between interface and prover possible because both are

implemented in the same language leads to better support of direct manipulation

and, in particular, replay.

6.3 Results

In this paper, we have demonstrated how ideas of functional programming applied

to user interface design gives rise to a new functional visualization metaphor, the

notepad. The metaphor serves as vehicle to make the data structures of these provers

accessible to pervasive direct manipulation.

The notepad allows for abstract manipulation of objects (consisting of construction

history and an optional value) represented by icons. The functional paradigm is a

precondition for systematic replay, based on the recorded construction history of

every object. Objects come in two flavours: while standard objects only admit coarse-

grained user interaction via drag&drop on the notepad, construction objects allow

fine-grained user interaction in the construction area.

All these concepts are implemented in a generic system architecture, based on the

powerful modularization concepts of the typed functional language Standard ML.

We have presented two instantiations of this architecture, the interface IsaWin for

the theorem prover Isabelle, and the transformation system TAS. As a consequence,

we expect that our interface components can be reused for a certain range of similar

applications. In particular, this gives a blueprint for the construction of tools with

a graphical user interface for formal methods encoded into a theorem prover. We

have in turn instantiated TAS with CSP and Z, two prominent formal methods for

which encodings into Isabelle have been developed.

A fundamental design decision in the implementation was to use the Tk toolkit,

encapsulated into Standard ML by sml tk. The encapsulation sml tk helped us

to survive the evolution of Tk in the recent years while taking advantage of its

portability. As Table 1 shows, sml tk is the largest chunk of code. Building on that,

TAS and IsaWin can be kept fairly compact. To put these statistics into context,

pure Isabelle has about 17,500 lines of ML code.

Despite the relatively low bandwidth between the SML process and the wish,
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Table 1. Size of code.

Module Code size (lines of SML)

sml tk 9900

GenGUI 2600

IsaWin 4800

TASa 4500

a TAS and IsaWin share about 1400 lines of code.

response times have proved satisfactory. The problems arising are minor technicali-

ties: for example, sml tk builds widgets on the screen by generating and sending Tcl

code one line at a time. This results in the interface being incrementally built on the

screen, which looks unpleasant, in particular on slower machines. First experiments

with generating and sending the Tcl code in toto suggest this behaviour can be

remedied.

We also have not seen any evidence of Tcl/Tk performance problems, which may

be due to the fact that the Tcl code generated by sml tk is very schematic, with little

data handling and control flow. The memory requirements of the interface itself are

fairly modest (about 10 MB with the Standard ML of New Jersey compiler, on a

Sun UltraSPARC running Solaris 2.6), compared to Isabelle (at least 24 MB, rising

to, for example, 33 MB for the CSP encoding). The wish is even more modest, with

around 800 KB process size.

In a restricted area of interaction with Isabelle, our instantiations seem to sub-

stantially facilitate user interaction. This holds in particular for point-and-query,

point-and-prove interactions and for global replay activities.

6.4 Future work

TAS and IsaWin are prototypical user interfaces that still need work in details. We

would like to allow cut-copy-paste manipulation of the history; in particular the

conversion of selected parts of the history to tactic objects would pave the way

for powerful techniques of interactive reuse. Further, goals and substitutions are

presently read as standard text and parsed via Isabelle’s parsing machinery. This

should be extended by a suitable mixture with structure-oriented editing facilities as

in CtCoq, or mouse-supported input as in Jape.

As text-based interfaces have their advantages as well, a significant potential for

increase in productivity is the integration of a command-line interface into our GUI.

Conceptually, the commands and operations which are evoked by the GUI can be

expressed in a simple functional language, e.g. a subset of ML (see section 4.2).

Hence, a command-line interface offers just a different view of the same underlying

behaviour; we merely need to be able to parse and print commands in this language.

This can be fully integrated with the rest of the interface, e.g. one could edit and
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reevaluate commands from the history, or one could provide a function’s arguments

by dragging their icons down from the notepad.

A far more involved subject is to scale up the systematic replay towards automatic

reuse of former proof attempts. The most evolved replay and reuse techniques we

are aware of are realized in the KIV-system (Reif et al., 1997). KIV also provides

direct manipulation on the history and moreover automatic support of reuse by

detecting unaffected subparts of the proof which can still be used after failed replay.

The authors claim that the productivity of this system is essentially due to its

reuse techniques (Reif and Stenzel, 1992). However, this feature is based on a very

specialized logic. Extending it for a generic theorem prover on the one hand and

embedding it into our generic notion of history will represent a substantial challenge,

but we believe that the deep incorporation of history both on the system level and

on the generic interface level provides a good starting point.
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