
JFP 27, e19, 29 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000107
1

Fair enumeration combinators

MAX S. NEW
Northeastern University

(e-mail: maxnew@ccs.neu.edu)

BURKE FETSCHER and ROBERT BRUCE FINDLER
Northwestern University

(e-mails: burke.fetscher@eecs.northwestern.edu, robby@eecs.northwestern.edu)

JAY MCCARTHY
UMass Lowell

(e-mail: jay@racket-lang.org)

Abstract

Enumerations represented as bijections between the natural numbers and elements of some given
type have recently garnered interest in property-based testing because of their efficiency and flex-
ibility. There are, however, many ways of defining these bijections, some of which are better than
others. This paper offers a new property of enumeration combinators called fairness that identifies
enumeration combinators that are better suited to property-based testing. Intuitively, the result of
a fair combinator indexes into its argument enumerations equally when constructing its result. For
example, extracting the nth element from our enumeration of three-tuples indexes about 3

?
n elements

into each of its components instead of, say, indexing 2
?

n into one and 4
?

n into the other two, as you
would if a three-tuple were built out of nested pairs. Similarly, extracting the nth element from our
enumeration of a three-way union returns an element that is n

3 into one of the argument enumerators.
The paper presents a semantics of enumeration combinators, a theory of fairness, proofs establishing
fairness of our new combinators and that some combinations of fair combinators are not fair. We also
report on an evaluation of fairness for the purpose of finding bugs in programming-language models.
We show that fair enumeration combinators have complementary strengths to an existing, well-tuned
ad hoc random generator (better on short time scales and worse on long time scales) and that using
unfair combinators is worse across the board.

1 Introduction

In the past few years, a number of different libraries have appeared that provide generic
ways to build bijections between data structures and the natural numbers to support
property-based testing. First was Feat for Haskell in 2012,1 then SciFe for Scala in 2014,2

and we released data/enumerate as part of Racket in 2015.3

These libraries are efficient, providing the ability to extract the 2100th element of an enu-
meration of a data structure in milliseconds. What they lack, however, is a mathematically
precise notion of the quality of their combinators. To be concrete, consider the pairing

1 https://hackage.haskell.org/package/testing-feat
2 http://kaptoxic.github.io/SciFe/
3 http://docs.racket-lang.org/data/Enumerations.html

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

2 M. S. New et al.

combinator, which all of the libraries provide. It accepts two enumerations and returns an
enumeration of pairs of its inputs. There are many ways to build such an enumeration,
based on the many ways to write a bijection between the natural numbers and pairs of
natural numbers. One such function is given by λx.λy. 2y ¨ p2x ` 1q ´ 1. This is a bijection
(the inverse simply counts the number of times that 2 is a factor of its input to separate the
x and y parts) that is easy to explain and efficient, taking logarithmic time in the result to
compute in both directions. It is a poor choice for an enumeration library, however, because
it explores x coordinate values much more quickly than the y coordinate. Indeed, in the first
10,000 pairs, the x coordinate has seen 4,999 but the biggest y coordinate seen is 13.

This paper offers a criterion called fairness that classifies enumeration combinators, re-
jecting the one in the previous paragraph as unfair and accepting ones based on the standard
Cantor bijection and many others, including ones whose inverses are easier to compute in
the n-tuple case (as explained later). Intuitively, a combinator is fair if indexing deeply into
the result of the combinator goes equally deeply into all the arguments to the combinator.

The motivation for developing these enumeration libraries is bug-finding. Accordingly,
we tested our concept of fairness via an empirical study of the capability of enumeration
libraries to find bugs in formal models of type systems and operational semantics in Re-
dex (Klein et al., 2012). We used our existing benchmark suite of 50 bugs and compared
the bug/second rate with three different generators. Two of the generators are based on a
bijection between the expressions of the language and the natural numbers: one enumerates
terms in order and the other selects a random (possibly large) natural number and uses that
with the bijection. The third is an existing, ad hoc random generator that’s been tuned for
bug-finding in Redex models for more than a decade.

Our results show that fair in-order enumeration and ad hoc generation have comple-
mentary strengths, and that selecting a random natural number and using it with a fair
enumeration is always slightly worse than one of the other two choices. We also replaced
fair combinators with unfair ones and show that the bug-finding capabilities become sig-
nificantly worse.

In the next two sections, we discuss how testing and enumeration fit together and then in-
troduce enumeration libraries, using the Racket-based library to make the introduction con-
crete. In Section 4, we give an intuition-based definition of fairness and in Section 5 discuss
our n-ary combinators, whose designs are motivated by fairness. Section 6 has a formal
definition of fairness and proofs showing that our combinators are fair and that a commonly
used combinator is unfair. Our evaluation of the different random generation strategies
is discussed in Section 7. The next two sections discuss related work and future work;
Section 10 concludes. Several places in the paper mention supplementary material; it is
included in our submission and is available at https://doi.org/10.1017/S0956796817000107
and also at http://www.eecs.northwestern.edu/„robby/jfp-enum/.

2 Enumeration in property-based testing

Our interest in enumeration is motivated by property-based testing, as popularized by
Quickcheck (Classen and Hughes, 2000). Property-based testing enables programmers to
simply and effectively test their software by supplying a property that a program should
have and then generating a large supply of examples and testing to see if any of them falsify
that property.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 3

To see how bijective enumerations can help with property-based testing, consider this
snippet of Racket (Flatt and PLT, 2010) code that checks to see if a given binary tree is a
binary search tree:

(struct node (n l r) #:transparent)

(struct leaf () #:transparent)

(define (bst? t)

(match t

[(leaf) #true]

[(node n l r)

(and (check-all l (λ (i) (<= i n)))

(check-all r (λ (i) (>= i n)))

(bst? l)

(bst? r))]))

(define (check-all t p?)

(match t

[(leaf) #true]

[(node n l r)

(and (p? n)

(check-all l p?)

(check-all r p?))]))

The first line defines a node struct with three fields (n for the value in the node, l for the left
subtree, and r for the right subtree). The second line defines a nullary struct to represent
leaf nodes. The bst? function recursively checks the tree, ensuring that the value in each
node is larger than all of the values to its left and smaller than’ those to its right.

While this function is correct, the algorithm it uses is inefficient, because it repeatedly
processes subtrees as it recurs over the structure of the tree, running in Opn2q. A better
algorithm would make only a single pass over the tree. The basis for a naive and incorrect
function that makes such a single pass is the false observation that, for each node, if the
root of the left subtree is smaller than the value in the node and the root of the right subtree
is larger, then the tree is a binary search tree.

We can easily write this (incorrect) code, too:

(define (not-quite-bst? t)

(match t

[(leaf) #true]

[(node n l r)

(and (<= (or (root-n l) -inf.0)

n

(or (root-n r) +inf.0))

(not-quite-bst? l)

(not-quite-bst? r))]))

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

4 M. S. New et al.

(define (root-n t)

(match t

[(leaf) #false]

[(node n l r) n]))

To use property-based testing to uncover the difference between these two functions,
we need a source of binary trees and then we can simply compare the results of the two
functions. This is where enumerations come in. They allow us to describe a mapping
between the natural numbers and arbitrary data-structures. Then, we can simply choose
some natural numbers, map them to binary trees and see if we can find a difference between
the two predicates.

Our library allows us to describe binary trees using combinators in the usual way, namely
that a binary tree is either a leaf or a triple of a natural number and two more binary trees.
With that description in hand, we can simply count, supplying each natural number in turn
and checking to see if the corresponding tree differentiates the two predicates.

If we use our fair combinators, we find that the smallest natural that demonstrates the
difference is tiny, namely 345, and it takes only about 1/100th of a second to search
from 0 to the counterexample. If we swap out the fair pairing combinator for an unfair
one based on the bijection discussed in the introduction, then that same tree appears at
a position with 1,234 digits. The smallest index that we know has a counter example
is this 78 digit number: 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,
665,640,564,039,457,584,007,913,129,639,936. That might not be the first counterexam-
ple, but we do know that there are no counterexamples in the first 10 billion naturals.
These are the two trees; the one on the left is the counterexample at position 345 in the fair
enumerator and the one of the right is the smallest known counterexample when using the
unfair combinators.

3 Enumeration combinators

This section introduces the basics of enumeration via a tour of our Racket-based enumera-
tion library. Each enumeration in our library consists of four pieces: a to-nat function that
computes the index of any value in the enumeration, a from-nat function that computes a
value from an index, the size of the enumeration, which can be either a natural number or
positive infinity, and a contract that captures exactly the values in the enumeration. For the
purposes of this paper, it is sufficient to think of the contracts as predicates on values; they
are more general, but that generality is not needed to understand our enumeration library.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 5

Fig. 1. Pairing order.

Each enumeration has the invariant that the to-nat and from-nat functions form a bi-
jection between the natural numbers (up to the size) and the values that satisfy the contract.4

Our most basic enumeration is below/e (by convention, the names of our enumeration
library functions end with /e; the slash is a legal character in Racket identifiers). The
below/e combinator accepts a natural number or +inf.0 and returns an enumeration of
that size. Its to-nat and from-nat functions are both the identity function.

The disjoint union enumeration, or/e, takes two or more enumerations. The result-
ing enumeration alternates between the input enumerations, so that if given n infinite
enumerations, the resulting enumeration will alternate through each of the enumerations
every n positions. For example, the following is the beginning of the disjoint union of an
enumeration of natural numbers and an enumeration of strings:
0 "a" 1 "b" 2 "c" 3 "d"

The or/e enumeration insists that contracts for its arguments be disjoint so that it can
compute the reverse direction of the bijection. Specifically, given a value, it tests the value
to see which argument enumeration it comes from, and then it finds the position in that
enumeration in order to find the position in the union enumeration.

The next combinator is the pairing operator cons/e. It takes two enumerations and
returns an enumeration of pairs of those values. If one of the input enumerations is finite,
the result enumeration loops through the finite enumeration, first pairing all of the elements
of the finite enumeration with the first element from the infinite enumeration. Then, it
continues by pairing the second element of the infinite enumeration with each of the
elements of the finite one, and so on. If both are finite, it loops through the one with lesser
cardinality. This process corresponds to taking the quotient and remainder of the index
with the size of the smaller enumeration.

Pairing infinite enumerations requires more care. If we imagine our sets as being laid
out in an infinite two-dimensional table, cons/e walks along the edge of ever-widening
squares to enumerate all pairs (using Szudzik’s, 2006 bijection), as shown in Figure 1.

4 Our library also supports one-way enumerations as they can be useful in practice, but we do not discuss them
here.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

6 M. S. New et al.

Here is the formula showing the coordinates for the zth element of the enumeration:
A

z ´ t
?

zu
2, t

?
zu

E

if z ´ t
?

zu
2

ă t
?

zu
A

t
?

zu ,z ´ t
?

zu
2

´ t
?

zu

E

if z ´ t
?

zu
2

ě t
?

zu

The n-ary list/e generalizes the binary cons/e. We discuss this in detail in Section 4.
The combinator delay/e facilitates fixed points of enumerations, in order to build re-

cursive enumerations. For example, we can construct an enumeration for lists of numbers:

(define lon/e

(or/e (fin/e null)

(cons/e (below/e +inf.0)

(delay/e lon/e))))

This code says that the lon/e enumeration is a disjoint union of the singleton enumeration
(fin/e null) (an enumeration that contains only null, the empty list) and an enumer-
ation of pairs, where the first component of the pair is a natural number and the second
component of the pair is again lon/e. The delay/e around the latter lon/e is what makes
the fixed point work. It simply delays the construction of the enumeration until the first
time something is indexed from the enumeration. This means that a use of delay/e that
is too eager, e.g.,: (define e (delay/e e)), will cause from-nat to fail to terminate.
Indeed, switching the order of the arguments to or/e above also produces an enumeration
that fails to terminate. Here are the first 12 elements of the correct lon/e:

'() '(0) '(0 0) '(1)

'(1 0) '(0 0 0) '(1 0 0) '(2)

'(2 0) '(2 0 0) '(0 1) '(1 1)

Our combinators rely on knowing the sizes of their arguments as they are constructed,
but in a recursive enumeration this is begging the question. Since it is not possible to
statically know whether a recursive enumeration uses its parameter, we leave it to the caller
to determine the correct size, defaulting to infinite if not specified.

To build up more complex enumerations, it is useful to be able to adjust the elements
of an existing enumeration. We use map/e that composes a bijection between elements of
the contract of a given enumeration and a new contract. Using map/e we can, for example,
construct enumerations of natural numbers that start at some natural i beyond zero. The
function naturals-above/e accepts a natural i and returns such an enumeration:

(define (naturals-above/e i)

(map/e (λ (x) (+ x i))

(λ (x) (- x i))

(below/e +inf.0)

#:contract (and/c natural? (>=/c i))))

The first two arguments to map/e are functions that form a bijection between the values in
the enumeration argument and the contract given as the final argument (#:contract is a
keyword argument specifier, in this case saying that the contract accepts natural numbers
larger than or equal to i). As it is easy to make simple mistakes when building the bijection,

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 7

map/e’s contract randomly checks a few values of the enumeration to make sure they map
back to themselves when passed through the two functions.

We exploit the bidirectionality of our enumerations to define the except/e enumeration.
It accepts an element and an enumeration, and returns an enumeration without the given
element. For example, the first nine elements of (except/e (below/e +inf.0) 4) are
0 1 2 3 5 6 7 8 9

The from-nat function for except/e simply uses the original enumeration’s to-nat on
the given element and then either subtracts one (if it is above the given exception) or simply
passes it along (if it is below). Similarly, the except/e’s to-nat function calls the input
enumeration’s from-nat function.

One important point about the combinators presented so far: the conversion from a
natural to a value takes time that is (a low-order) polynomial in the number of bits in
the number it is given. This means, for example, that it takes only a few milliseconds
to compute the 2100,000th element in the list of natural numbers enumeration given
above.

Our next combinator, cons/de, does not always have this property. It builds enumera-
tions of pairs, but where the enumeration on one side of the pair depends on the element
in the other side of the pair. For example, we can define an enumeration of ordered pairs
(where the first position is smaller than the second) like this:

(cons/de [hd (below/e +inf.0)]

[tl (hd) (naturals-above/e hd)])

It is important to note that cons/de is not a function (like the earlier combinators). It is
a special expression form with two sub-expressions (in this example, (below/e +inf.0)

and (naturals-above/e i)), each of which is named (hd and tl here). And, one of
the expressions may refer to the other’s variable by putting it into parentheses (in this
case, the tl expression can refer to hd; putting the identifiers the other way around would
allow the head position to depend on the tail instead). Here are the first 12 elements of the
enumeration:
'(0 . 0) '(0 . 1) '(1 . 1) '(1 . 2)

'(0 . 2) '(1 . 3) '(2 . 2) '(2 . 3)

'(2 . 4) '(0 . 3) '(1 . 4) '(2 . 5)

The implementation of cons/de has three different cases, depending on the cardinality
of the enumerations it receives. If all of the enumerations are infinite, then it is just like
cons/e, except using the dependent function to build the enumeration to select from for
the second element of the pair. Similarly, if the independent enumeration is finite and the
dependent ones are all infinite, then cons/de can use quotient and remainder to compute
the indices to supply to the given enumerations when decoding. In both of these cases,
cons/de preserves the good algorithmic properties of the previous combinators.

The remaining case is when the dependent enumerations are all finite (our cons/de

enumeration does not support mixed finite and infinite dependent enumerations), and it is
troublesome. In that case, we think of the dependent component of the pair being drawn
from a single enumeration that consists of all of the finite enumerations, one after the

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

8 M. S. New et al.

other. Unfortunately, in this case, calling from-nat on the result of cons/de can take
time proportional to the input index (or possibly even worse if computing the depen-
dent enumerations themselves are costly). We use memoization to avoid repeatedly pay-
ing this cost, but even with memoization this case for cons/de is observably worse in
practice.

Our library has a number of other combinators not discussed here, but these are the most
important ones and give a flavor of the capabilities of enumerations in the library. The rest
are described here: http://docs.racket-lang.org/data/Enumerations.html.

4 Fairness, informally

This section introduces our definition of fairness in a precise but informal way, giving a
rationale for our definitions and some examples to clarify them.

A fair enumeration combinator is one that indexes into its argument enumerations in
equal proportions, instead of indexing deeply into one and shallowly into another one. For
example, imagine we wanted to build an enumeration for lists of length 4. This enumeration
is one way to build it:

(cons/e (below/e +inf.0)

(cons/e (below/e +inf.0)

(cons/e (below/e +inf.0)

(cons/e (below/e +inf.0)

(fin/e null)))))

The 1,000,000,000th element is '(31622 70 11 0) and, as you can see, it has unfairly
indexed far more deeply into the first (below/e +inf.0) than the others. In contrast, if
we balance the cons/e expressions like this:

(cons/e

(cons/e (below/e +inf.0) (below/e +inf.0))

(cons/e (below/e +inf.0) (below/e +inf.0)))

(and then use map/e to adjust the elements of the enumeration to be lists), then the element
at position 1,000,000,000 is '(177 116 70 132), which is much more balanced. This bal-
ance is not specific to just that index in the enumeration, either. Figure 2 shows histograms
for each of the components when using the unfair and the fair four-tuple enumerations.
The upper row of histograms correspond to the fair enumerators and the lower row cor-
responds to the unfair enumerators. Each of the four columns of histograms corresponds
to a particular position in the four-tuple. The x-coordinates of each plot correspond to the
different values that appear in the tuples, and the height of each bar is the number of times
that particular number appears when enumerating the first 1,500 tuples.

For example, the relative height of the leftmost bar in the two leftmost histograms says
that zero appears much less frequently in the first component of the four tuples when using
the unfair enumerator than using the fair one. Similarly, the relative height of the leftmost
bar in the two rightmost histograms says that zero appears much more frequently in the
fourth component of the four tuples when using the unfair enumerator than it does when
using the fair one.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 9

Fig. 2. Histograms of the occurrences of each natural number in fair and unfair tuples.

More generally, all four components have roughly the same set of values for the fair
tupling operation, but the first tuple element is considerably different from the other three
when using the unfair combination.

It is tempting to think of fairness as simply a notion of size, perhaps the number of
bits required to represent the result elements of the enumeration. This is not a helpful
perspective, however, because it leaves open the representation choice and how to count
the number of bits required. Indeed, one could say that the representation of a pair is the
binary representation of the index into some (possibly unfair) enumeration, thus depriving
us of a way to distinguish fair from unfair enumerations.

Also, we cannot simply restrict the combinators to work completely in lock-step on their
argument enumerations, or else we would not admit any pairing operation as fair. After all,
a combinator that builds the pair of (below/e +inf.0) with itself must eventually produce
the pair '(1 . 1000), and that pair must come either before or after the pair '(1000 . 1).
So, if we insist that, at every point in the enumeration, the combinator’s result enumeration
has used all of its argument enumerations equally, then fair pairing would be impossible.

We can take that basic idea and weaken a little bit, however. Instead of insisting they use
their arguments completely in lock-step, we insist that there are infinitely many places in
the result enumeration where they have used their input enumerators equally. We call these
special places equilibrium points. For example, consider the (list/e (below/e +inf.0)

(below/e +inf.0)) enumeration; here are the its first nine elements:
'(0 0) '(0 1) '(1 0) '(1 1) '(0 2)

'(1 2) '(2 0) '(2 1) '(2 2)

At this point in the enumeration, we have seen all of the numbers in the interval r0,2s in
both elements of the pair and we have not seen anything outside that interval. That makes 9
an equilibrium point. The 10th element of the enumeration is '(1 3), and thus 10 is not an
equilibrium point because we have seen the number 3 in one component of the pair, but not
in the other component. In general, (list/e (below/e +inf.0) (below/e +inf.0))

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

10 M. S. New et al.

has an equilibrium point at every perfect square. Similarly, here are the first eight elements
of (list/e (below/e +inf.0) (below/e +inf.0) (below/e +inf.0)) 8:

'(0 0 0) '(0 0 1) '(0 1 0) '(0 1 1)

'(1 0 0) '(1 0 1) '(1 1 0) '(1 1 1)

This is an equilibrium point because we have seen 0 and 1 in every component of the pair,
but no numbers larger than that. In general the that enumeration has equilibrium points at
every perfect cube.

An unfair combinator is one where there are only a finite number of equilibrium points
(or, equivalently, there is a point in the result enumeration after which there are no more
equilibrium points). As an example consider triple/e:

(define (triple/e e_1 e_2 e_3)

(list/e e_1 (list/e e_2 e_3)))

and the first 25 elements of its enumeration:
'(0 (0 0)) '(0 (0 1)) '(1 (0 0)) '(1 (0 1))

'(0 (1 0)) '(1 (1 0)) '(2 (0 0)) '(2 (0 1))

'(2 (1 0)) '(0 (1 1)) '(1 (1 1)) '(2 (1 1))

'(3 (0 0)) '(3 (0 1)) '(3 (1 0)) '(3 (1 1))

'(0 (0 2)) '(1 (0 2)) '(2 (0 2)) '(3 (0 2))

'(4 (0 0)) '(4 (0 1)) '(4 (1 0)) '(4 (1 1))

The first argument enumeration has been called with 3 before the other arguments have
been called with 2, and the first argument is called with 4 before the others are called with
3. This behavior persists for all input indices, so that no matter how far we go into the
enumeration, there will never be another equilibrium point after 0.

We also refine fair combinators, saying that a combinator is f -fair if the nth equilibrium
point is at f pnq. Parameterizing fairness by this function gives us a way to quantify fair
combinators, preferring those that reach equilibrium more often.

5 Fair combinators

Once we know that nesting pairs is not going to be fair in general, how do we define
a fair tupling operation? As we saw in Section 4, we cannot simply nest the pairing
operation because the outermost pair evenly divides the input between its two argument
enumerations, even if there is a nested pair on one side, but not on the other side.

Our approach to fair n-dimensional tuples is to build a biased pairing operation that does
not divide the input evenly, but instead divides it in the ratio 1 : n, in expectation that left-
hand side of the pair will have one sub-enumeration and the right-hand side of the pair will
have n.

In other words, we can view Szudzik’s (2006) enumeration function as enumerating all
pi, jq whose maximum is 0, then 1, then 2, and so on. This is what gives it a square-like
pattern. Since we want to bias the right argument by n, we can enumerate the pairs in a
similar manner, but considering the nth root of the right coordinate, not just its plain value.
We call this the “biased maximum.” More precisely, the biased maximum of the pair pi, jq

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 11

Fig. 3. Ordering for pairs with a bias of 1:2.

is maxpi ` 1,
P

p j ` 1q1{n
T

q, and we first enumerate all pairs where the biased maximum is
1, then 2, then 3, and so on.

Figure 3 shows the first few entries of the enumeration order for pairs that has a 1 : 2 bias.
The diagram is reversed (the y-coordinate is horizontal and the x-coordinate is vertical) so it
fits more easily on the page. The first point p0,0q is the only point where biased maximum
is 1; the next seven points are those where the biased maximum is always 2, etc. With a
pair that has a 1 : 2 bias, the biased maximum will be the same in the interval r3k,3k`1q,
for any value of k. In general, with a 1 : n biased pair enumerator, any pair in the interval
rpn ` 1qk,pn ` 1qk`1q has the same biased maximum, namely k ` 1.

This is the formula for the zth tuple in the enumeration of pairs with bias of 1 : n:
A

r mod q,qn `

Y

r
q

]E

if r ă s

xq,r ´ sy if r ě s

where q “
X

z1{pn`1q
\

r “ z ´ qn`1

s “ ppq ` 1q
n

´ qnq ¨ q

To define a fair n-dimensional tupling function, we can systematically exploit the bias.
Once we have a fair n-dimensional tuple enumeration, we can make a n ` 1-dimensional
fair tuple enumeration by pairing the n-dimensional tuple enumeration with the new enu-
meration for the nth enumeration using a biased 1 : n pairing.

The combinatorially inclined reader may wonder why our tupling operation is based
on Szudzik’s (2006) pairing function and not the classic Cantor pairing function. The two
bijections are similar; they are both quadratic functions with geometric interpretations.
Szudzik’s (2006) traces out the edges of squares and Cantor’s traces out the bottoms of
triangles. Importantly, they are both fair (but with different equilibrium points).

For enumerations, we are primarily concerned with the other direction of the bijection,
since that is the one used to generate terms. In the pairing case, the Cantor function has a
fairly straightforward inverse, but its generalization does not. This is the generalization of
the Cantor pairing function to length k tuples:

cantor tuplepn1,n2, . . . ,nkq “
`k´1`n1`¨¨¨`nk

n

˘

` ¨¨ ¨ `
`1`n1`n2

2

˘

`
`n1

1

˘

We can easily define an inefficient (but correct) way to compute the inverse by system-
atically trying every tuple by using a different untupling function, applying the original
cantor tuple function to see if it was the argument given. Tarau (2012) gives the best
known algorithm that shrinks the search space considerably, but the algorithm there is
still a search procedure, and we found it too slow to use in practice. That said, our library

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

12 M. S. New et al.

implements Tarau’s (2012) algorithm (via a keyword argument to cons/e and list/e), in
case someone finds it useful.

Furthermore, Szudzik’s (2006) pairing function lends itself quite easily to a biased for-
mulation, since enumerating rectangles is a simple modification from enumerating squares.
We leave it to future work to find a biased formulation of the Cantor bijection.

The or/e enumeration’s fairness follows a similar, but much simpler pattern. In partic-
ular, the binary or/e is fair because it alternates between its arguments. As with pairing,
extending or/e to an n-ary combinator via nested calls of the binary combinator is unfair.
Fixing this enumeration is straightforward; divide the index by k and use the remainder to
determine which argument enumeration to use and the quotient to determine what to index
into the enumeration with.

6 Enumeration semantics

Figure 4 shows a formal model of our enumerations. The model differs from our imple-
mentation in the way it handles unions (forcing them to be disjoint via and) and
by having a type system instead of using contracts to describe the sets of values that an
enumeration produces.

The relation defines the semantics of the enumerations. It relates an enumeration and
an index to the value that the enumeration produces at the index. The that follows the
vertical bar is used in the definition of fairness; we explain it after introducing the basics
of the model. The and functions are derived from by treating either the
value or index argument as given and computing the other one.

The contents of Figure 4 are automatically generated from a Redex model and we
also built a Coq model of a subset of this semantics. All of the theorems stated in this
section are proven with respect to the Coq model. The Redex model, Coq model, and our
implementation are all tested against each other.

The upper right of the figure has the simplest rule, the one for ; it is just the
identity. Below the rule is the rule. The combinator in the model is like
delay/e from the implementation, except it provides an explicit name for the enumeration.
The rule uses substitution (the definition of substitution we use is the standard one).

The next two rules, reading straight down the figure, are the rules. The com-
binator is a simplified, functional interface to the cons/de combinator. It accepts an enu-
meration and a function from elements of the first enumeration to new enumerations.
It produces pairs where the first position of the pair comes from the first enumeration
and the second position’s elements come from the enumeration returned by passing the
first element of the pair to the given function. The rule exploits to get two
indices when it deals with infinite enumerations and uses for finite enumerations
(defined at the bottom of Figure 5).

The first rule underneath the boxed grammar is the rule, showing how its bijection
is used. The next four rules govern the combinator. These rules work by alternating
between the two enumerations until one runs out (in the case that it is finite), and then they
just use the other enumeration. The upper two rules cover the case where neither has
yet run out. The lower two cover the situation where of the arguments was finite and the
enumeration has already produced all of those elements. The rules with “l” in the name end

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 13

Fig. 4. Semantics of enumeration combinators.

up producing a value from the left enumeration and the rules with an “r” produce a value
from the right.

The rule uses the function, shown in Figure 5. The function accepts
the sizes of the two enumerations, computed by the size function in the middle of figure 5
(written using double vertical bars), and the index. The function maps indices as discussed
in Section 3.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

14 M. S. New et al.

Fig. 5. Semantics of enumeration combinators, continued.

To the right of the rule are the rules for the combinator, which behaves
as discussed in Section 3, one rule for the situation where the value is below the excepted
value and one for where it is above.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 15

We return to the rule for shortly, and the last rule is an unfair pairing operation
using the bijection from the introduction.

The Coq model is simpler than the model presented here and the model presented here is
simpler than our implementation. The primary difference between the three is in the kinds
of values that are enumerated. In our implementation, any value that can be captured with
a contract in Racket’s contract system can be enumerated. In the model presented here, we
restrict those values to the ones captured by , and in the Coq model restrict that further
by eliminating recursive types, subtraction types, and finite types. The implementation
does not have a type system; the role of types is played by the contract system instead.
Contracts give us additional flexibility that ordinary type systems do not have, allowing
us to maintain the invariant that the contract describes the precise set of values that can
be enumerated, even for enumerations of only positive numbers, or non-empty lists, etc.
Having these precise contracts has proven helpful in practice as we debug programs that
use the enumeration library.

The implementation also has many more combinators than the ones presented here, but
they are either derivable from these or require only straightforward extensions. The Coq
model has the combinators in Figure 4, except for the combinator and the
combinator. There are no other differences between the Coq model and the model in the
paper. In general, the Coq model is designed to be just enough for us to state and prove
some results about fairness whereas the model presented in the paper is designed to provide
a precise explanation of our enumerations.

The typing rules for values are given in the box at the bottom right of Figure 4, and
the function maps enumerators to the type of values that it enumerates. All enumerators
enumerate all of the values of their types.

Before we define fairness, however, we first need to prove that the model actually defines
two functions.

Theorem 1
For all (in the Coq model), , there exists a unique and such that and

, and we can compute and .

Proof
The basic idea is that you can read the value off of the rules recursively, computing
new values of . In some cases there are multiple rules that apply for a given , but the
conditions on in the premises ensure there is exactly one rule to use. Computing the

argument is straightforward. The full proof is given as Enumerates_from_dec_uniq in
the Supplementary material. �
Theorem 2
For all (in the Coq model), , if , then there exists a unique and such that

.

Proof
As before, we recursively process the rules to compute . This is complicated by the fact
that we need inverse functions for the formulas in the premises of the rules to go from the
given to the one to use in the recursive call, but these inverses exist. The full proof is

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

16 M. S. New et al.

given as Enumerates_to_dec_uniq in the Supplementary material, and it includes proofs
of the formula inverses. �

Although we do not prove it formally, the situation where the condition does
not hold in the second theorem corresponds to the situation where the value that we are
attempting to convert to a number does not match the contract in the enumeration in our
implementation (i.e., a runtime error).

We use these two results to connect the Coq code to our implementation. Specifically,
we use Coq’s Eval compute facility to print out values of the enumeration at specific
points and then compare that to what our implementation produces. This is the same
mechanism we use to test our Redex model against the Coq model. The testing code is
in the supplementary material.

To define fairness, we need to be able to trace how an enumeration combinator uses its
arguments, and this is the purpose of the combinator and the component in the
semantics. These two pieces work together to trace where a particular enumeration has
been sampled. Specifically, wrapping an enumeration with means that it should
be tracked and the argument is a label used to identify a portion of the trace. The

component is the current trace; it is a function that maps the arguments in the
expressions to sets of natural numbers indicating which naturals the enumeration has been
used with.

Furthermore, we also need to be able to collect all of the traces for all naturals up to some
given . We call this the “complete trace up to .” So, for some enumeration expression ,
the complete trace up to is the pointwise union of all of the components for ,
for all values and strictly less than .

For example, the complete trace of

up to 256 maps both and to {x:nat | 0 ď x ď 15}, meaning that the two arguments were
explored the same amount, at least for the first 256 elements. The complete trace of

up to 256, however, maps to {x:nat | 0 ď x ď 127} and to {x:nat | 0 ď x ď 8}, where
is the unfair pairing combinator from the introduction. This shows that the

first argument (traced with the) is explored more than the second.
We say that an enumeration combinator ck : enum... Ñ enum of arity k is fair if, for

every natural number m, there exists a natural number M ą m such that in the complete
trace up to M of ck applied to ¨ ¨ ¨ , for any enumerations

to , is a function that maps each number between and to exactly the same set
of numbers. Any other combinator is unfair. In other words, a fair combinator is one where
the traces of its arguments are explored the same amount at an infinite number of points,
namely the values of M. As such, we call the values of M the equilibrium points.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 17

We say that a combinator is f -fair if the nth equilibrium point is at f pnq. The Coq model
contains this definition only for k P t2,3,4u, called Fair2, Fair3, and Fair4.

Theorem 3
is λn. 2n ` 2-fair.

Proof
This can be proved by induction on n. The full proof is SumFair in the Coq
model. �
Concretely, this means that the equilibrium points of are 2, 4, 6, 8, etc. Tracing or/e

up to those points produces the sets {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, etc.

Theorem 4
Using nested or/e to construct a three-way enumeration is unfair.

Proof
We show that after a certain point, there are no equilibria. For n ě 8, there exist natural
numbers m, p such that 2m ď n ă 4p while p ă m. Then a complete trace from 0 to n maps
0 to a set that contains t0, . . . ,mu, but maps 1 (and 2) to subset of t0, . . . , pu. Since p ă m,
these sets are different. Thus, or-three/e is unfair. The full proof is NaiveSum3Unfair in
the Coq model. �
Theorem 5

is λn. pn ` 1q2-fair.

Proof
First, we show that tracing from n2 to pn`1q2 produces a trace that maps 0 and 1 to the set
t0, . . . ,nu. Then, we can prove that tracing from 0 to n2 maps 0 and 1 to t0, . . . ,n ´ 1u and
the result then holds by induction on n. The full proof is PairFair in the Coq model. �
Theorem 6
triple/e from Section 4 is unfair.

Proof
For any natural n ě 16, there exist natural numbers m, p such that m2 ď n ă p4 and p ă

m. Then, a complete trace from 0 to n will map 0 to a set that includes everything in
t0, . . . ,mu, but will map 1 (and 2) to sets that are subsets of t0, . . . , pu. Since p ă m, these
sets are different, so is unfair. The full proof is NaiveTripleUnfair in the Coq
model. �
Theorem 7
The pairing operator , defined using the unfair bijection from the introduction,
is unfair.

Proof
A complete trace from 0 to n contains all of the values from 0 to tn{2`1u in the first compo-
nent and all of the values from 0 to tlog2pnqu`1 in the second component. For any n greater
than 8, the first component will always have more values than the second component and
thus there will be no equilibrium points after 8. The full proof is UnfairPairUnfair in the
Coq model. �

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

18 M. S. New et al.

7 Empirical evaluation

As our motivation for studying enumerations is test case generation, we performed an
empirical evaluation of fair and unfair enumerations described earlier in the paper to try to
understand the impact of using unfair combinators on test case generation. We also used a
mature ad hoc random generator as a baseline for the comparison, to give our results some
context. This section describes our evaluation and its results.

7.1 Setup

We conducted the evaluation in the context of Redex (Matthews et al., 2004; Felleisen
et al., 2009), a domain-specific language for operational semantics, type systems, and their
associated machinery. Redex gives semantics engineers the ability to formulate and check
claims about their semantics, and it includes a random test case generator that can be used
to automatically falsify such claims.

Our evaluation used the Redex benchmark, which consists of a number of models,
including the Racket virtual machine model (Klein et al., 2013), a polymorphic λ-calculus
used for random testing (Pałka et al., 2011; Pałka, 2012), the list machine benchmark
(Appel et al., 2012), and a delimited continuation contract model (Takikawa et al., 2013),
as well as a few models we built ourselves based on our experience with random generation
and to cover typical Redex models.5 Each model comes with a number of buggy variations.
Each model and bug pair is equipped with a property that should hold for every term, but
does not, due to the bug. There are 8 models and 50 bugs in total.

The Redex benchmark comes equipped with a mechanism to add new generators to each
model and bug pair, as well as a built-in ad hoc random generator. We used the enumeration
library described in Section 3 to build two generators based on enumeration, one that just
chooses terms in the order induced by the natural numbers, and one that selects a random
natural and uses that to index into the enumeration.

The ad hoc random generation is Redex’s existing random generator (Klein and Findler,
2009). It generates expressions matching a particular non-terminal by randomly choosing a
production, expanding the non-terminal based on the production chosen, and then repeating
the process until a depth bound is reached. At that point, it limits the random choice to
productions that do not require recursive unfoldings (such productions are guaranteed to
exist or else the original Redex program would have been syntactically ill-formed).

It has been tuned based on experience programming in Redex, but not recently. From
the git logs, the most recent change to it was a bug fix in April 2011 and the most recent
change that affected the generation of random terms was in January 2011, both well before
we started studying enumeration.

For our evaluation, we use the default value of 5 for this depth since that is what Redex
users see without customization. This produces terms of a similar size to those of the
random enumeration method (although the distribution is different).

To pick a random natural number to index into the enumeration, we first pick an
exponent i in base 2 from the geometric distribution and then pick uniformly at random

5 It is available online at: http://docs.racket-lang.org/redex/benchmark.html

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 19

an integer that is between 2i´1 and 2i. We repeat this process three times and then take the
largest – this helps make sure that the numbers are not always small.

We chose this distribution because it does not have a fixed mean. That is, if you take the
mean of some number of samples and then add more samples and take the mean again, the
mean of the new numbers is likely to be larger than the mean of the old. We believe this
is a good property to have when indexing into our enumerations so we avoid biasing our
indices towards a small size.

The random-selection results are sensitive to the probability of picking the zero exponent
from the geometric distribution. Because this method was our worst performing method,
we empirically chose benchmark-specific numbers in an attempt to maximize the success
of the random enumeration method. Even with this artificial help, this method was still
worse, overall, than the others.

We used three variations on the enumeration combinators. The first is the fair combina-
tors described in Section 4. The second uses fair binary pairing and binary alternation
combinators, but that are unfairly generalized via nesting (to create n-tuples or n-way
alternations), which we call “mildly unfair.” The third variation uses the unfair binary
pairing combinator based on the bijection described in the introduction, also unfairly gen-
eralized to n-ary pairing. It uses an analogous unfair alternation combinator that goes
exponentially deep into one argument as compared to the other, also unfairly generalized
to n-ary alternation. The final one we call “brutally unfair.”

For each of the 350 bug and generator combinations, we run a script that repeatedly asks
for terms and checks to see if they falsify the property. As soon as it finds a counterexample
to the property, it reports the amount of time it has been running. We ran the script in two
rounds. The first round ran all 350 bug and generator combinations until either 24 h elapsed
or the standard error in the average became less than 10% of the average. Then, we took
all of the bugs where the 95% confidence interval was greater than 50% of the average
and where at least one counterexample was found and ran each of those for an additional
8 days. All of the final averages have an 95% confidence interval that is less than 50% of
the average.

We used two identical 64 core AMD machines with Opteron 6274s running at 2,200
MHz with a 2MB L2 cache to run the benchmarks. Each machine has 64 gigabytes of
memory. Our script typically runs each model/bug combination sequentially, although we
ran multiple different combinations in parallel and, for the bugs that ran for more than 24
h, we ran tests in parallel. We used version 6.2.0.4 (from git on June 7, 2015) of Racket, of
which Redex is a part.

7.2 Results

The graph in Figure 6 gives a high-level view of which generators are more effective at
finding bugs. There is an edge between two generators if the one above finds all the bugs
that the one below finds and the one below was unable to find at least one bug that the
one above found. By this metric, the ad hoc random generator is a clear winner, the fair
enumerators are second and the unfair ones are third, with the mildly unfair enumerators
usually doing better than the brutally unfair ones.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

20 M. S. New et al.

Mildly Unfair
Uniform Random Selection

Mildly Unfair
In-Order Enumeration

Fair
Uniform Random Selection

Ad Hoc Random Generation

Fair
In-Order Enumeration

Brutally Unfair
Uniform Random Selection

Brutally Unfair
In-Order Enumeration

Fig. 6. Partial order between generators indicating which find more bugs.

Fig. 7. Overview of random testing performance of ad hoc generation and in-order
enumeration.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 21

Fig. 8. Overview of random testing performance of ad hoc generation and random
indexing into an enumeration.

That overview lacks nuance; it does not take into account how long it took for each
generator to find the bugs that it found. The plot in Figure 7 takes time into account,
showing how well each generator is doing as a function of time. Along the x-axis is time
in seconds on a log scale, varying from milliseconds to a few hours. Along the y-axis is the
total number of counterexamples found for each point in time. The lines on each plot show
how the number of counterexamples found changes as time passes.

The thicker, black line shows the number of counterexamples found by the ad hoc ran-
dom generator. The solid red (not thick) line is with fair combinators, the dashed line is with
the mildly unfair combinators, and the dotted line is with the brutally unfair combinators,
all when running in order. This plot shows that the mildly unfair combinators are worse
than the fair ones and the brutally unfair combinators are much worse than either.

That plot also reveals that the ad hoc generator is only better than the best enumeration
strategy after 3 min. Before that time, the fair in-order enumeration strategy is the best
approach.

Figure 8 has a similar plot that uses the same set of combinators, but randomly picks
natural numbers (as described above) and uses those to generate candidates. This plots
shows that that approach is never the best approach, on any time scale.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

22 M. S. New et al.

No strategy was able to find more than 38 of the 50 bugs in the benchmark.
Figure 9 shows a plot of every generator’s performance on each bug. The x-axis has one

entry for each different bug (for which a counterexample was found) and the y-axis shows
the average number of seconds required to find that bug. The chart confirms the conclusion
from Figure 7 showing that the unfair combinators are never significantly below their fair
counterparts and often significantly above.

Our data also shows that, for the most part, bugs that were easy (could be found in
less than a few seconds) for the generator that selected at random from the enumerations
were easy for all three generators. The ad hoc random generator and the fair in-order
enumeration generator each had a number of bugs where they were at least one decimal
order of magnitude faster than all of the other generators (and multiple generators found
the bug). The ad hoc random generator was significantly better on six bugs, and the fair in-
order enumerator was significantly better on (a different) six bugs. The unfair enumerators
were never significantly better on any bug.

We believe the reason that the fair enumerators are better than the unfair ones is that their
more balanced exploration of the space leads to a wider variety of interesting examples
being tested. Figure 10 provides some evidence for this theory. It shows the number of
examples tested per second for each model (the Redex bug benchmark does not cause
our generators or the ad hoc random generator to generate different per-bug examples,
only different per-model examples) under the different generator strategies. The upper plot
shows the in-order generators and the lower plot shows the generators that selected random
natural numbers and used those to generate examples. In every case, the fair enumeration
strategy generates fewer examples per second (except for the list-machine benchmark in
the random generator, where it is only slightly faster). And, yet the fair generators find more
bugs. This suggests that the unfair generators are repeatedly generating simple examples
that can be tested quickly, but that provide little new information about the model. We
believe this is because the unfair generators spend a lot of time exploring programs that
differ only in the names of the variables or have other uninteresting variations.

8 Related work

The related work divides into two categories: papers about enumeration and papers with
studies about random testing.

8.1 Bijective enumeration methods

The SciFe library for Scala (Kuraj and Kuncak 2014; Kuraj et al. 2015) is most similar
to our library, but it has only one half of the bijection so it does not support except/e. It
has fair binary pairing and alternation combinators, but no n-ary fair combinators. Its com-
binators use the same bijections as the mildly unfair combinators discussed in Section 7.
Its pairing operation is based on the Cantor pairing function, meaning that computing the
n-ary fair version of it is expensive, as discussed in Section 4. These differences and the
lack of fairness aside, the technical details of the implementation are very similar and our
library shares all of the strengths and weakness of their library.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 23

Fig. 9. Time taken to find each bug for each generator.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

24 M. S. New et al.

Fig. 10. Examples tested per second for each benchmark model and enumeration-based
generator.

Tarau’s (2013) work on bijective encoding schemes for Prolog terms is also similar to
ours. We differ in three main ways. First, our n-ary enumerations are fair (not just the
binary ones). Second, our enumerations deal with enumeration of finite sets wherever they
appear in the larger structure. This is complicated because it forces our system to deal with
mismatches between the cardinalities of two sides of a pair: for instance, the naive way to
implement pairing is to give odd bits to the left element and even bits to the right element,
but this cannot work if one side of the pair, say the left, can be exhausted as there will be
arbitrarily numbers of bits that do not enumerate more elements on the left. Third, we have
a dependent pairing enumeration that allows the right element of a pair to depend on the

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 25

actual value produced on the left. Like finite sets, this is challenging because of the way
each pairing of an element on the left with a set on the right consumes an unpredictable
number of positions in the enumeration.

Duregård et al.’s (2012) Feat is a system for enumeration that distinguishes itself from
“list” perspectives on enumeration by focusing on the “function” perspective like we do.
Unlike our approach, however, Feat’s enumerations are not just bijective functions directly
on naturals, but instead a sequence of finite bijections that, when strung together, combine
into a bijection on the naturals. In other words, the Feat combinators get more information
from their inputs than ours do, namely a partitioning of the naturals into consecutive finite
subsets. This additional information means that our precise, technical definition of fairness
does not apply directly to Feat’s combinators. The intuition of fairness, however, does
apply and Feat’s pairing combinator is fair in the sense that its output reaches equilibrium
infinitely often. Indeed, it reaches equilibrium at the end of each of the parts in the result.
The code given in the paper for the pairing and alternation combinators are f -fair with
equilibrium points that have the same asympototic complexity as our binary combinators.
In the implementation, however, they use a binary representation, not a unary representa-
tion of naturals, which makes the distance between consecutive equilibrium points double
at each step, making the equilibrium points exponentially far apart.

Kennedy and Vytiniotis (2010) take a different approach to something like enumeration,
viewing the bits of an encoding as a sequence of messages responding to an interactive
question-and-answer game. This method also allows them to define an analogous depen-
dent combinator. However, details of their system show that it is not well suited to using
large indexes. In particular, the strongest proof they have is that if a game is total and
proper, then “every bitstring encodes some value or is the prefix of such a bitstring.” This
means, that even for total, proper games there are some bitstrings that do not encode a
value. As such, it cannot be used efficiently to enumerate all elements of the set being
encoded.

8.2 Testing studies

Our empirical evaluation is focused on the question of fairness, but it also sheds some light
on the relative quality of enumeration and random-based generation strategies.

Even though enumeration-based testing methods have been explored in the literature,
there are a few studies that specifically contain empirical studies comparing random test-
ing and enumeration. One is in Runciman et al.’s (2008) original paper on SmallCheck.
SmallCheck is an enumeration-based testing library for Haskell and the paper contains
a comparison with QuickCheck, a Haskell random testing library. Their study is not as
detailed as ours; the paper does not say, for example, how many errors were found by each
of the techniques or in how much time, only that there were two found by enumeration
that were not found randomly. The paper, however, does conclude that “SmallCheck, Lazy
SmallCheck, and QuickCheck are complementary approaches to property-based testing in
Haskell,” a stance that our experiment also supports (but for Redex).

Bulwahn (2012) compares a single tool that supports both random testing and enu-
meration against a tool that reduces conjectures to Boolean satisfiability and then uses a

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

26 M. S. New et al.

solver. The study concludes that the two techniques complement each other. Neither study
compares selecting randomly from a uniform distribution like ours.

Pałka’s (2012) work is similar in spirit to Redex, as it focuses on testing programming
languages. Pałka builds a specialized random generator for well-typed terms that found
several bugs in GHC, the premier Haskell compiler. Similarly, Yang et al.’s (2011) work
also presents a test-case generator tailored to testing programming languages with complex
well-formedness constraints. Miller et al. (1990) designed a random generator for streams
of characters with various properties (e.g., including nulls or not, to include newline char-
acters at specific points) and used it to find bugs in Unix utilities.

9 Future work

There are two ways in which we believe more work with our definitions and use of fairness
would be productive.

9.1 Enumerations of recursive structures

Our definition of fairness requires (at least) binary combinators. That is, a definition of
enumerations of, for example, lists is not a candidate for our fairness definition because
it accepts only one argument (the enumeration of the elements). There is, however, more
than one way to define an enumeration of lists and some ways seem to more fair than
others. More precisely, the lon/e enumeration from Section 3 tends to bias toward shorter
lists that have bigger numbers at the front of the list in an unfair way. For example,
the 10,000,000,000th element is '(99999 142 17 2 0 0), which seems to suggest that
lon/e is exploring the first element at the expense of exploring longer
lists.

Instead, we can build an enumeration that first selects a length of the list and then uses a
dependent enumeration to build a fair n-tuple of the corresponding length, i.e.,

(or/e (single/e '())

(dep/e (below/e +inf.0)

(λ (len)

(define enums

(for/list ([i (in-range (+ len 1))])

(below/e +inf.0)))

(apply list/e enums))))

This enumeration balances the length of the list with the elements of the list in a way that,
at least intuitively, seems more fair. Concretely, here is a histogram of the lengths of the
lists from the first 500 elements of the two enumerations. The red circles are the lengths
of the lon/e enumeration and the blue stars are the lengths of the enumeration above that
uses the dependent pair.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 27

The idea of using dependent pairing to first select a “shape” for the data structure and
then to stitch it together with enumerations for content of the data-structure is general and
can be used to generate trees of arbitrary shapes. And, this approach seems like it should be
considered fair, but we do not yet have a formal characterization of fairness that captures
the difference between the two approaches to defining data-structure enumerators.

We hope that someday someone is able to capture this notion but there is one other
wrinkle worth mentioning: the seemingly fair enumeration is much slower. Enough that
the built-in list combinator in our enumeration library does not provide that enumeration
strategy by default (although it is an option that is easy to use).

9.2 Intentional unfairness

The second way in which our notion of fairness is incomplete has to do with real-world
testing. Consider, for example, this definition of a grammar for the lambda calculus (written
in Redex’s notation):

(define-language L

(e ::=

x

(e e)

(λ (x) e))

(x ::= variable))

Our implementation translates the e non-terminal into uses of the or/e enumeration
combinator for the productions and the list/e combinator for each production to com-
bine the pieces, as you might expect. Looking at a prefix of the enumeration, however,
clearly suggests that it is not optimal for most bug-finding tasks. In particular, every third
expression generated is simply just a free variable!

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

28 M. S. New et al.

We think that, while fairness is a good guide for combinators, it is important to be able
to selectively bias the enumerations away from fairness (much like the bias used to obtain
fairness, as discussed in Section 5). We have neither explored how to specify these biases
in Redex nor their impact on testing, but believe that a domain-specific language for tuning
the enumerations is worthy of more study.

10 Conclusion

This paper presents a new concept for enumeration libraries that we call fairness, backing it
up with a theoretical development of fair combinators, an implementation, and an empirical
study showing that fair enumeration can support an effective testing tool and that unfair
enumerations cannot.

Indeed, the results of our empirical study have convinced us to modify Redex’s default
random testing functionality. The new default strategy for random testing first tests a prop-
erty using the fair in-order enumeration for 10 s, then alternates between fair enumeration
and the ad hoc random generator for 10 min, and then finally switches over to just random
generation. This provides users with the complementary benefits of in-order and random
enumeration as shown in our results, without the need for any configuration.

Acknowledgments

The authors thank Neil Toronto for helping us find a way to select from the natural numbers
at random, Ben Lerner for proving a square root property that gave us fits, Hai Zhou, Li
Li, Yuankai Chen, and Peng Kang for graciously sharing their compute servers with us,
William H. Temps, Matthias Felleisen, and Ben Greenman for helpful comments on the
writing, and one of the anonymous reviewers at ICFP 2015 for suggesting that we refine
our definition of fairness with a function.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/
10.1017/S0956796817000107

References

Appel, A. W., Dockins, R. & Leroy, X. (2012) A list-machine benchmark for mechanized metatheory.
J. Autom. Reson. 49(3), 453–491.

Bulwahn, L. (2012) The new quickcheck for Isabelle: Random, exhaustive and symbolic testing
under one roof. In Proceedings of the International Conference on Certified Programs and Proofs.

Classen, K. & Hughes, J. (2000) QuickCheck: A lightweight tool for random testing of Haskell
programs. In Proceedings of the International Conference on Functional Programming.

Duregård, J., Jansson, P. & Wang, M. (2012) Feat: Functional enumeration of algebraic types. In
Proceedings of the Haskell Symposium.

Felleisen, M., Findler, R. B. & Flatt, M. (2009) Semantics Engineering with PLT Redex. MIT Press.

Flatt, M. & PLT (2010) Reference: Racket. Technical Report PLT-TR-2010-1. PLT Design Inc.
Available at: https://racket-lang.org/tr1/

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

Fair enumeration combinators 29

Kennedy, A. J. & Vytiniotis, D. (2010) Every bit counts: The binary representation of typed data and
programs. J. Funct. Program. 22(4-5).

Klein, C., Clements, J., Dimoulas, C., Eastlund, C., Felleisen, M., Flatt, M., McCarthy, J. A.,
Rafkind, J., Tobin-Hochstadt, S. & Findler, R. B. (2012) Run your research: On the effectiveness
of lightweight mechanization. In Proceedings of the Symposium on Principles of Programming
Languages.

Klein, C. & Findler, R. B. (2009) Randomized testing in PLT redex. In Proceedings of the Scheme
and Functional Programming, pp. 26–36.

Klein, C., Findler, R. B. & Flatt, M. (2013) The racket virtual machine and randomized testing.
Higher-Order Symbol. Comput.

Kuraj, I. & Kuncak, V. (2014) SciFe: Scala framework for efficient enumeration of data structures
with invariants. In Proceedings of the Scala Workshop.

Kuraj, I., Kuncak, V. & Jackson, D. (2015) Programming with enumerable sets of structures. In
Proceedings of the Object-Oriented Programming, Systems, Languages, and Applications.

Matthews, J., Findler, R. B., Flatt, M. & Felleisen, M. (2004) A visual environment for developing
context-sensitive term rewriting systems. In Proceedings of the International Conference on
Rewriting Techniques and Applications.

Miller, B. P., Fredriksen, L. & So, B. (1990) An empirical study of the reliability of UNIX utilities.
Commun. ACM 33(12).

Pałka, M. H. (2012) Testing an Optimising Compiler by Generating Random Lambda Terms.
Licentiate of Philosophy Dissertation. Chalmers University of Technology and Göteborg
University.

Pałka, M. H., Claessen, K., Russo, A. & Hughes, J. (2011) Testing an optimising compiler by
generating random lambda terms. In Proceedings of the International Workshop on Automation of
Software Test.

Runciman, C., Naylor, M. & Lindblad, F. (2008) SmallCheck and lazy SmallCheck: Automatic
exhaustive testing for small values. In Proceedings of the Haskell Symposium.

Szudzik, M. (2006) An elegant pairing function. Available at: http://szudzik.com/
ElegantPairing.pdf.

Takikawa, A., Strickland, T. S. & Tobin-Hochstadt, S. (2013) Constraining delimited control with
contracts. In Proceedings of the European Symposium on Programming, pp. 229–248.

Tarau, P. (2012) Deriving a fast inverse of the generalized cantor N-tupling bijection. In Proceedings
of the International Conference on Logic Programming.

Tarau, P. (2013) Compact serialization of prolog terms (with Catalan Skeletons, Cantor Tupling and
Gödel Numberings). Theory Pract. Log. Program. 13(4–5).

Yang, X., Chen, Y., Eide, E. & Regehr, J. (2011) Finding and understanding bin C compilers. In
Proceedings of the Programming Language Design and Implementation.

https://doi.org/10.1017/S0956796817000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000107

	Introduction
	Enumeration in Property-based Testing
	Enumeration Combinators
	Fairness, Informally
	Fair Combinators
	Enumeration Semantics
	Empirical Evaluation
	Setup
	Results

	Related Work
	Bijective Enumeration Methods
	Testing Studies

	Future Work
	Enumerations of Recursive Structures
	Intentional Unfairness

	Conclusion
	References

