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ABSTRACT. The release of a dry-snow slab avalanche involves brittle fracture. It is
therefore essentially a non-linear fracture mechanics problem.Traditional snow-stability
evaluation has mainly focused on snow strength measurements. Fracture toughness
describes how well a material can withstand failure. The fracture toughness of snow is
therefore a key parameter to assess fracture propagation propensity, and hence snow slope
stability. Fracture toughness in tension KIc and shear KIIc was determined with notched
cantilever-beam experiments in a cold laboratory. Measurements were performed at
different temperatures and with different snow types of density � ¼ 100^300 kgm^3,
corresponding to typical dry-snow slab properties.The fracture toughness in tension KIc
was found to be larger (by about a factor of 1.4) than in shear KIIc. Typical values of the
fracture toughness were 500^1000 Pam1/2 for the snow types tested. This suggests that
snow is one of themost brittle materials known toman. A power-law relation of toughness
KIc on relative density was found with an exponent of about 2.The fracture toughness in
tensionKIc decreasedwith increasing temperature following an Arrhenius relationbelow
about ^8‡C with an apparent activation energy of about 0.16 eV. Above ^6‡C the fracture
toughness increased with increasing temperature towards the melting point, i.e. the Ar-
rhenius relation broke down. The key property in dry-snow slab avalanche release, the
critical crack size under shear at failure, was estimated to be about 1m.

INTRODUCTION

Dry-snow slab avalanche release starts with damage accu-
mulation at the interface between a weak snow layer and
the overlying slab layer, or alternatively within the (thin)
weak layer below the overlying slab (Schweizer and others,
2003). Initial failure formation and consecutive fracture
propagation depend on the fracture resistance of the snow
layers involved. In linear elastic fracture mechanics
(LEFM), the resistance to fracture is generally called frac-
ture toughness; formally it is described by the critical-stress
intensity factorKc. The stress intensity factorK defines the
crack-tip stress field completely anddepends on loading con-
figuration, crack size, crack configuration and component
geometry; the critical stress intensity factorKc is a material
parameter anddescribes a failure criterion (Anderson,1995).
According to the loading configuration, fracture toughness
in tension (mode I)KIc and in shear (mode II)KIIc are con-
trolling. In reality, however, fracture in mixed mode domi-
nates in most materials. In avalanche formation, the
primary shear fracture is likely determined byKIIc, whereas
the secondary fracture of the slab in tension should be deter-
mined byKIc. In the following, the principles of linear frac-
ture mechanics are applied. There are two limitations that
must be pointed out when applying LEFM to the dry-snow
slab problem. First, in the case of natural release, initial fail-
ure formation is not linear elastic, but ductile or viscoelastic.
Second, the snowpack is not a homogeneous but a layered
material.Therefore, so-called interfacial fracturemechanics
developed for laminated materials should rather be applied
in the future (Hutchinson and others,1987).

McClung (1981) was the first to formally introduce the
fracture toughness KIIc in a model of dry-snow slab ava-
lanche release. There were no attempts to measure this im-
portant quantity till recently (Kirchner and others, 2000).
By performing simple cantilever-beam experiments, Kirch-
ner and others (2000, 2002a, b) successfully made the first
measurements of fracture toughness in tension and shear.
They concluded that snow would be one of the most brittle
materials known to man. Louchet (2001) revisited slab ava-
lanche release, pointed out the importance of fracture
toughness, made attempts tomeasure it anddid discrete-ele-
ment simulations for the experimental set-up (Failletaz and
others, 2002). Bazant and others (2003) expanded the model
of McClung (1979, 1981) and showed that the critical crack
length ac, necessary to drive brittle fracturing, should be of
the order of the slab thickness D. Furthermore, they con-
cluded that the mode II fracture toughness should be pro-
portional to 1.8 power of the slab thickness.

In the present study, we neglect the two above-men-
tioned limitations and focus on simple cantilever-beam ex-
periments to measure the fracture toughness in tension and
shear. The aim is to corroborate and expand the previous
findings byKirchner and others (2000, 2002a, b) and in par-
ticular to determine the temperature dependence of the
fracture toughness.

METHODSMETHODS

Cantilever-beam experiments with snow samples taken
from the natural snowpack were performed in the SLFcold
laboratory atWeissfluhjoch, Davos, Switzerland.The beams
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were l = 50 cm long, with a cross-sectional area of 10 cm �
20 cm (Fig. 1). The samples were taken from the natural
snowpack by introducing a mould of the above size with
the length L parallel to the layering of the snowpack, i.e.
parallel to the snow surface.The aimwas to extract samples
from a single layer that looked more or less homogeneous.
For the experiments, the beams were cantilevered by the
length l.The beamwas then cut at x ¼ Lwith a fishing line
(diameter 50.1mm). The length of cut when the cantilev-
ered part of the beam broke off, ac, was recorded, as well as
the time to break off. The cut was made on average within
2^3 s. At corresponding strain rates, snow is known to be
brittle. To determine KIc the beams were cantilevered by
L ¼ 10^15 cm and cut perpendicular to the length of the
beam (Fig. 1a). Alternatively, to determine KIIc the beams
were cantilevered by L ¼ 25^30 cm and cut parallel to the
length l of the beam (Fig.1b).

The critical-stress intensity factors in tensionKIc and in
shearKIIc were determined as givenbyKirchner and others
(2002a,b):

KIc ¼ Fl
P þG

wb

� �
þ F

6M

w2

� �� � ffiffiffiffiffiffiffi
�ac

p ð1Þ

and

KIIc ¼
3

4
ð�gbþ pÞa2c

b

2

� ��3
2

; ð2Þ

where FI and F are geometrical factors depending on ac=w
(Kirchner and others, 2002a, fig. 5), and M is the moment
created by the weight G of the cantilever. All experiments
in the present study were performed without additional ex-
ternal loading (P ¼ p ¼ 0), but subjected to body forces
only. No mixed mode is considered in these tests.

Equation (1) is for the vertical, as in Figure 1a, and
Equation (2) for the horizontal cut, as in Figure 1b. Both
equations are derived on the level of beam theory, i.e. on
the level of an overall equilibrium of forces and moments.
So far, no finite-element calculations, which would be on
the level of local force equilibrium, have been published.
Such calculations, for finite beam size and body loading,
would presumably show that some combination of fracture
modes is present. In the geometry of Figure1a, some vertical
shear must in principle be present, because the beam is not
infinitely long and the crack plane is not a symmetry plane.
The weight of the snow close to the crack produces shear,
and the snow far away from the crack produces the moment
and tension; the former is neglected in Equation (1). For the
geometry of Figure 1b, Equation (2) merely compares the
elastic energy of two half-beams with the energy of a full
beam.The actual stress distribution around the crack is not
being considered in detail. Nevertheless, since beam theory,

although usually difficult to justify, usually works in struc-
tural mechanics, we proceed on this level. In addition, the
configuration we use for the KIIc measurements corres-
ponds to the double cantilever-beam specimenwhich is cur-
rently the common type of test for interlaminar mode II
fracture toughness measurements (Anderson, 1995, p. 447^
449).

The standard size requirements for a validKIc are as fol-
lows (Anderson,1995, p. 376):

b; a � 2:5
KIc

�s

� �2

0:45 � a=w � 0:55 ; ð3Þ

where �s is the tensile strength. For a snow density of
200 kgm^3, the ratio of toughness to strength in Equation
(3) is about 0.44 (�s � 2 kPa)(Jamieson and Johnston,
1990). Accordingly, the snow beams we used were too small
to fulfil the size requirements. However, the snow beams to
be used according to the standard size requirements would
be too large for feasible experiments, in particular with spe-
cimens from the natural snow cover.

MEASUREMENTS

Seven series (A^G) of experiments were performed
between January 2002 and February 2003 (Table 1). Snow
type was classified according to the International Classifi-
cation for Seasonal Snow on the Ground (ICSSG; Colbeck
and others, 1990). Density was determined by weighing the
part of the beam that broke off. For each series of experi-
ments, the interquartile range of density is given inTable 1.
Occasionally (consistently for series A and B), hardness as
resistance to penetration was determined using a hand-held
force gaugewith a disc-shaped penetrometer (1.17 cm2 cross-

Fig. 1. Geometry of experiments to determine (a) toughness in

mode I, KIc, and (b) toughness in mode II, KIIc. Snow

beams were l = 50 cm long, w = 20 cm wide and b = 10 cm

thick.

Table 1. Summary of number and type of experiments per-

formed of a certain snow type, density range (interquartile

range is given) and snow temperature

Series Number of

experiments

Type of ex-

periment

Snow type Density

range

Snow tem-

perature

N
kgm^3 ‡C

A 26 KIc; KIIc Small rounded, partly
decomposed and frag-
mented, 0.25^0.75mm,

F^4F

200^215 ^9.4

B 10 KIc; KIIc Small rounded, partly
decomposed and frag-
mented, 0.25^0.75mm,

4F

250^260 ^10.0

C 18 KIc Decomposed and frag-
mented, partly new
snow, 0.5^0.8mm, F

70^90 ^9.0

D 12 KIc; KIIc Small rounded, partly
decomposed and frag-
mented, 0.4^0.7mm,

4F^1F

170^200 ^9.2

E 12 KIc; KIIc Small rounded,
0.25^ 0.5mm,1F^

200^220 ^9.3

F 6 KIc; KIIc Small rounded,
0.25^0.4mm,1F

250^260 ^9.5

G 66 KIc Small rounded,
0.25^0.4mm,1F+

270^280 ^18.5 to
^2.2

Note: Snow type is given as grain shape, grain-size and hardness (hand test)
according to ICSSG (Colbeck and others,1990).
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sectional area). Hardness values ranged from 1.1 to 57 kPa.
As samples were taken from the natural snow cover, they
were not homogeneous, but typically included some layer-
ing.Whereas this layering is preferable for mode II experi-
ments where the cut is parallel to the layering, it is a
substantial source of undesirable variation in mode I ex-
periments.The effect of layering was checked in the experi-
ments of series A (see below). After this initial series of
experiments, in all the following experiments the layering
was parallel to the width w = 20 cm of the beams. Accord-
ingly, in the mode I experiments the snow layering did not
substantially affect the results. Snow temperatures at the
time of harvesting were between ^9 and ^13‡C. After
sampling, the beams were either tested the same day or
stored for up to 3 days at ^20‡C in the cold laboratory to
avoid further metamorphism. Snow temperature at the
time of testing was about ^9 to ^10‡C, or varied (series G,
Table 1). In order to further characterize the snow texture,
samples from some beams were preserved in diethyl phthal-
ate and analyzed with the surface section technique
(Good, 1987). Density was determined with image-analysis
procedures.

RESULTSRESULTS

Snow characterization

Sample characterization in the cold laboratory by surface
section analysis supported the traditional classification ac-
cording to the ICSSG (Colbeck and others, 1990). Exemp-
lary surface sections from samples of series C^Fare shown
in Figure 2. Densities of these samples, determined with
image analysis, were: for series C 133 kgm^3; for series D
180 kgm^3; for series E 221kgm^3, and for series F
254 kgm^3.These values agree well with the densities meas-
ured in the cold laboratory, except for series C (Table1). Ser-
ies C consisted of decomposed, fragmented particles of
recently deposited, low-density snow for which the density
is more difficult to determine with image-analysis methods
than for well-consolidated snow.

Effect of stratigraphy and geometryEffect of stratigraphy and geometry

The tests with the beams of series A showed substantial de-
pendence on the orientation of the layering and the test
geometry (Fig.3). In the case when the layering was parallel
to b, the fracture toughness in tensionKIc was much smaller
when the beams were tested upside down (rotated by 180‡),
regardless of whether the beams were cantilevered by L ¼
10 cm or L ¼ 15 cm. This was due to the distinct layering

since it was impossible to have a homogeneous layer of
20 cm thickness within the snowpack. Since the density in-
creased with increasing depth, the orientation of the beams
affected the results. This also explains the different results
due to the orientation of the layering. When the layering
was parallel tow, the toughnessKIc values were lower, since
they represent an average value, thanwhen the layering was
parallel to b. In the latter case, the harder, denser snow to-
wards the bottom of the beam determined the toughness,
since the crack tip was within these layers, when the beam
failed.

Not only the layering but also the geometry, i.e. the
amount of cantilevering, affected the results. Toughness
values for L ¼ 15 cm were substantially larger than for
L ¼ 10 cm. This shows that Equation (1) with the accom-
panying geometrical factors F and FI is only an approxi-
mate solution for the geometry used in our experiments.
This finding is in accordance with preliminary results by
Failletaz and others (2002). Further analysis showed that
the difference was systematic and can be corrected. Values
obtained with L ¼ 15 cm were multiplied by a factor 0.6, so
that they can be compared to values obtained with L ¼
10 cm. In the following, all values given for KIc were
obtained with L ¼10 cm or accordingly adjusted. However,
this also means that ourKIc values represent order-of-mag-
nitude values, and should be used with caution.

Also given in Figure 3 are a few values for the fracture

Fig. 2. Microstructure of snow types tested: series C, D, E and F (left to right). Binarized pictures of surface sections. Black

denotes ice; white is pore space. Scale given is 15 mm. Density given was determined with image-analysis procedures.

Fig. 3. Fracture toughness in tensionKIc and in shearKIIc for

different orientation of layering (parallel to b orw; see Fig. 1)
and for two cantilever lengths L= 10 cm and L= 15 cm (KIc

only). Data from series A and B.

3

Schweizer and others: Fracture toughness of snow

https://doi.org/10.3189/172756404781814906 Published online by Cambridge University Press

https://doi.org/10.3189/172756404781814906


toughness in shearKIIc. Again, the orientation of the layer-
ing affected the results.When the layering was parallel to w,
the orientation that is most realistic for our problem, paral-
lel to the crack plane, the values of the fracture toughness
were smaller than when the layering was perpendicular to
the crack plane.This result is reasonable and reflects the fact
that snow is a layered material which is most susceptible to
failure parallel to the layering.

Fracture toughness in tension and shearFracture toughness in tension and shear

A limited number of beams (N ¼ 15) of series A and B
(Table 1) were tested first under shear, and after the shear
fracture had occurred the remainder of the beamwas tested
under tension. For all beams the layering was parallel to w,
i.e. the cut was made parallel to the layering to determine
KIIc. This series of experiments allows a direct comparison
between the fracture toughness in tension and the fracture
toughness in shear (Fig. 4), both being measured on the
same specimen and thus hardly influenced by snow type.
According to the linear regression shown in Figure 4, the
ratio of KIIc to KIc is 0.73 � 0.05 (coefficient of correlation:
r = 0.86; level of significance: p < 0:001). The fracture
toughness in tension is about 1.4 times larger than the frac-
ture toughness in shear. Density varied between 165 and
265 kgm^3, with an average density of 220 kgm^3.The ratio
of KIc to KIIc was independent of density (level of signifi-
cance: p ¼ 0.78).

Fracture toughness in tension related to densityFracture toughness in tension related to density

Experiments of series A^F were used to determine the
relation of the fracture toughness in tensionKIc to snowden-
sity. Series C^F were specifically chosen to determine the
density dependence. They cover a wide range of snow den-
sity: 80^250 kgm^3, relevant for the snow slab release
problem. All tests were performed at about ^9 to ^10‡C,
with the layering parallel to w. All beams were cantilevered
by L ¼ 10 cm. Series A and B were performed with low-

hardness, medium- to fine-grained snow.The beams of ser-
ies C consisted of low-density, low-hardness medium-
grained snow.The snow in series D^Fexperiments was from
well-consolidated, relatively dense and hard layers of fine-
grained snow. It was expected that the dependence on den-
sity would be affected by the different snow types.The data
are compiled in Figure 5, taking into account the snow type.
Mean hardness values, determinedwith the force gauge, are
also given, showing the increase of hardness with increasing
density independent of snow type. The dependence of frac-
ture toughness on density is non-linear. Although density
alone is not an ideal predictor for any mechanical property
of snow (Shapiro and others,1997), a good fit of mechanical
properties with density has traditionally been obtainedwith
a power-law relation (Perla and others, 1982; Jamieson and
Johnston, 2001):

KIc ¼ A
�

�ice

� �B

; ð4Þ

where �ice is the density of ice (917 kgm
^3) and A and B are

empirical constants that depend on snow type. Kirchner
and others (2000) also used a power-law relation and found
for their data: A = 7.84 kPam1/2 and B = 2.3. Their results
were obtainedwith field tests at temperatures near themelt-
ing point, and with snow types that are not known in detail
but were substantially different from ours.

A power-law fit to series A^C, i.e. to the KIc values
obtained from experiments with rather soft and medium-
to fine-grained snow, revealed (dashed line in Fig. 5):

KIc ¼ A1
�

�ice

� �1:9

: ð5Þ

withA1 ¼ 13:0 kPam1/2. Alternatively, combining series C^
Fresulted in the following density relation representative for

Fig. 4. Comparison of fracture toughness in tension KIc to

fracture toughness in shear KIIc, determined in pairs from

the same beams.The line indicates the linear regression with

a slope of 0.73. Data from series A and B.

Fig. 5. Fracture toughnessKIc in relation to relative snowden-

sity �=�ice for different snow types. Data from series A^F.

For comparison the relationship found by Kirchner and others

(2000) is given (obtained with different snow types at differ-

ent temperature). Two power-law relations are fitted to the

data.The bold straight line is a linear fit to series D^Fand

subsequently used to normalize values of series G. Numbers

indicate snow hardness in kPa determined with a force gauge.
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medium hard and fine-grained snow (short-dashed line in
Fig. 5):

KIc ¼ A2
�

�ice

� �2:1

: ð6Þ

with A2 ¼ 21:6 kPam1/2. The goodness of fit for both rela-
tions is high (coefficient of correlation: r = 0.98). Whereas
the power-law fit is ideal if a wide range of density needs to
be covered, a linear fit for a limited range of density (e.g.
200^300 kgm^3) is sufficient and nearly as good (r = 0.94).
Accordingly, in the following, when analyzing the tempera-
ture effect, a linear relation will be used (bold line in Fig. 5)
to take into account the density dependence:

KIc ¼ A3
�

�ice

� �
þ C0 : ð7Þ

with A3 ¼ 7:63 kPam1/2 and C0 ¼ �0:769 kPam1/2.
The results in Figure 5 suggest a strong dependence on

snow type. In fact, toughness decreases with increasing
grain-size, as about d�1=2

max , with dmax being the upper range
value of grain-size given inTable 1. Accordingly, the density
dependence of our data on fracture toughnessKIc canbe de-
scribed as (r = 0.98):

KIc ¼
A4ffiffiffiffiffiffiffiffi
d

max

p �

�ice

� �1:9

: ð8Þ

with A4 ¼ 0:35 kPam.
To check whether snow hardness, or hardness and den-

sity combined, was a better predictor than density alone,
hardness was measured systematically for series A and B
(N = 24). A multiple linear regression for KIc with density
and hardness as independent variables showed that hard-
ness was of minor importance compared to density (correla-
tion not significant), and accordingly did not improve the
correlation. This is due to the high correlation of density
with hardness. Also, a regression of hardness alone as inde-
pendent variable with toughness revealed a lower coefficient
of correlation than with density alone.

Fracture toughness in tension related to snow tem-
perature

The temperature effect on the fracture toughness is of pri-
mary importance to the avalanche release problem. No at-
tempts have previously been made to experimentally
determine the relation of fracture toughness to snow tem-
perature. At nine temperatures between ^18‡ and ^2‡C a
total of 66 measurements of the fracture toughness in ten-
sion KIc were made (series G). Between 3 and 11 measure-
ments were made at a given snow temperature. Beams
were cantilevered by L = 10 or 15 cm; values obtained with
L = 15 cm were adjusted based on the systematic difference
to values with L = 10 cm (see above). The beams were cut
out of a relatively dense, well-consolidated layer of small
rounded grains with an average density of 277 � 19 kgm^3.
This density variation influenced the temperature effect.
Assuming that the density and temperature effects were in-
dependent, the fracture toughness can be given as:

KIcð�; �Þ ¼ fð�Þ þ gð�Þ : ð9Þ
Using Equation (6) for the density dependence, all fracture
toughness values were normalized to a density of �0 =
275 kgm^3. So, values of the fracture toughness in tension
given below were adjusted to L = 10 cm and normalized to
�0 = 275 kgm^3, and denoted asK�

Ic.

At a given temperature there was an average variation
between the different measurements of about 7% (coeffi-
cient of variation). The coefficients of variation were rela-
tively low compared with other snow mechanical
measurements (e.g. of the shear strength (coefficient of vari-
ation typically 15^20%)) (Jamieson and Johnston, 2001).
The variation increased with increasing temperature. It
was typically 4^5% at the lower temperatures and in-
creased to about 10% at the temperatures near the melting
point.

Figure 6 shows that the fracture toughness K�
Ic clearly

decreased with increasing temperature up to about ^8‡C.
For temperatures higher than about ^6‡C, i.e. towards the
melting point, the fracture toughness K�

Ic increased. For the
temperature range ^18 to ^8‡C the linear decreasing trend
was highly significant (p5 0.0001). The coefficients of the
linear relation K�

Ic ¼ a�þ d were a ¼ ^49.7 kPam1/2 ‡C^1

and d ¼ 1115 kPam1/2. This means that the fracture tough-
ness decreased by about 25% when the temperature in-
creased by about 10‡C. Above ^6‡C, there was a trend to
increasing toughness with increasing temperature that was,
despite large scatter, statistically significant (N ¼ 37,
r ¼ 0:436, p ¼ 0:007). It could not be shown that the frac-
ture toughness eventually decreases again towards the melt-
ing point.

Alternatively, based on the temperature dependence of
the creep of ice, the temperature dependence can be de-
scribed with an Arrhenius relation (Hooke and others,1980):

KIc ¼ C exp
Q

RT

� �
; ð10Þ

where Q is the activation energy for creep and R is the gas
constant. This relation is physically reasonable, but is
known to break down at temperatures above ^8 to ^6‡C.
Accordingly, Figure 7 shows the fracture toughness K�

Ic on
a logarithmic scale vs the inverse of the absolute tempera-
ture T. If a linear relationship is found, the fracture tough-
ness follows the Arrhenius relation, i.e. the slope
corresponds to Q=R. In fact, the data followed Equation
(10) up to about ^8‡C with a slope of 1880� 160K^1 (N =
28, r = 0.91, p50.0001). This corresponds to an apparent

Fig. 6.Temperature dependence of the fracture toughnessK�
Ic

normalized to �0 ¼ 275 kgm^3 and adjusted for cantilever

lengthL ¼10 cm. Bold solid line is a linear fit to data below

^8‡C. Dashed line indicates linear fit to data above ^6‡C.

Data of series G.
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activation energy Q of about 0.16 eV (activation energy
for self-diffusion of ice: about 0.6 eV). Above ^8‡C the
fracture toughness increased, i.e. the Arrhenius relation
breaks down.

DISCUSSIONAND CONCLUSIONS

The measurements of fracture toughness in tension and
shear under controlled conditions in a cold laboratory with
cantilevered snow beams from a natural snowpack showed
that this type of measurement is suited to determine this
highly relevant parameter for the snow slab release
problem. However, despite the experimental simplicity and
good reproducibility of the experiments, some doubts re-
main on the absolute values based on the analysis presented
above, due to the dependence on the cantilever length, the
possible presence of mixed mode fracture and the unful-
filled size requirements. In the absence of finite-element
simulations of the stress distribution in the experimental
set-up, these doubts have to be accepted, and the toughness
values given above must be considered order-of-magnitude
values rather than absolute values.

One of the main problems is that a combination of frac-
ture modes is present. The vertical cut to determine KIc

(Fig. 1a) does not produce tension only, so that Equation (1)
is incomplete in principle. Correspondingly, the same is true
for the horizontal cut (Fig. 1b). Once the critical length ac
has been cut, the cantilever breaks off almost vertically in
the geometry of Figure 1a. If the loading were entirely in
mode I, the fracture surface should be perfectly vertical,
but it is not, indicating some minor presence of mode II. In
the case of the test configuration of Figure 1b to determine
KIIc, once the critical crack length ac hasbeen cut, the crack
should continue horizontally, as it should if mode II were
perfect, before becoming unstable so that here also the
beambreaks off vertically.This instability is due to breaking
of the shear antisymmetry, suggesting that some parasitic
mode I contributes.

Nevertheless, we are confident that our results on the
ratio of tension to shear toughness, the relation to density

and to temperature reflect the true physical behaviour.The
following discussion aims to confirm this.

The ratio of tension to shear toughness, about 1.4, is well
in agreement with the ratio of tensile to shear strength.Ten-
sile strength is about 50^100% larger than shear strength
for a given density range (Jamieson and Johnston, 1990,
2001).This is somewhat different from other materials where
the toughness in tension is usually lower than the toughness
in shear. The high degree of layering in natural snow cover
may be responsible for the relatively low strength and
toughness under shear. This therefore may reflect to a
certain degree a geometrical effect rather than a material
property.

The exponents in the power-law relations of toughness
vs relative density �=�ice, about 2.0, were similar to those
found for other snow mechanical properties, such as the
shear strength (Jamieson andJohnston,2001).They reported
exponents of 1.7 and 2.1depending on snow type. Consider-
ing snow as a foam (Kirchner and others, 2001), it can be
postulated, based on the fundamental work of Gibson and
Ashby (1997) for brittle polymeric foams, that

KIc

KIcice

/ �

�ice

� �1=2 E

Eice

� �1=2

¼ �

�ice

� �3=2

; ð11Þ

thereby assuming that the ratio of the elastic modulus of
snow to the modulus of ice E=Eice should be proportional
to ð�=�iceÞ2. Similarly, again for an ideal open-cell foam,
the strength of snow should show the same behaviour as
the fracture toughness, i.e. be proportional to ð�=�iceÞ3=2.
There is, however, experimental evidence that for Young’s
modulus of snow the exponent is larger than 2, that is about
4 (Kojima,1954; Camponovo and Schweizer, 2001). Accord-
ingly, in Equation (11), the exponent should be about 2.5
rather than 1.5. Our values of the exponent for the fracture
toughness, as well as those byJamieson andJohnston (2001)
for the shear strength, were well within this theoretical
range. Also, assuming an exponent of 2.5 means that the
fracture toughness of snow should be about two orders of
magnitude lower than the fracture toughness of ice. Nixon
and Schulson (1987) tested notched specimens at high strain
rates and found that for ice at ^10‡CKIcice � 0.08MPam1/2.
Accordingly, our values werewell within the range expected
from their results.

The fracture toughness KIc was proportional to maxi-
mal grain-size d1=2max. By including this simple measure of
snow microstructure, a single relation (Equation (8)) could
be found to describe the density dependence and therefore
replaces Equations (5) and (6). The dependence on d

1=2
max

is in agreement with results on ice (Petrenko and
Whitworth,1999).

The fracture toughness in tensionKIc decreasedwith in-
creasing temperature following an Arrhenius relationbelow
about ^8‡C with an apparent activation energy of about
0.16 eV.This behaviour was expected based on the tempera-
ture dependence of the elastic modulus (Schweizer, 1998;
Schweizer and Camponovo, 2002) and the fact that the frac-
ture toughness is closely related to the modulus
(Anderson,1995):

G ¼ K2
Ic

E
; ð12Þ

whereG is the energy release rate. Accordingly, the fracture
toughness is proportional to the square root of the modulus.
Consequently, McClung and Schweizer (1999) proposed

Fig. 7. Fracture toughnessK�
Ic on a semi-logarithmic scale vs

the inverse of the absolute temperatureT (so-called Arrhenius

plot). Apparent linear fit for data below ^8‡C indicates that

the data follow an Arrhenius relation with an apparent acti-

vation energy ofQ ¼ 0.16 eV. Data of series G, as in Figure 6.
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that the fracture toughness should decrease with increasing
temperature, based on the fact that the modulus is strongly
decreasing with increasing temperature. This has in fact
now been observed. However, above about ^6‡C up to the
melting point the modulus strongly decreased with increas-
ing temperature, whereas the fracture toughness no longer
decreased, but increased. This different behaviour might
well have the same roots. In the case of the modulus, the in-
creased deformation towards the melting point is usually as-
sociated with the presence of water in ice, and it may be
related to pre-melting phenomena at the grain boundaries.
In general, however, the interpretation of the deformation
processes acting as the melting point is approached is not
yet well developed (Petrenko andWhitworth, 1999). These
processes increasing the ease of deformation will likely in-
crease the fracture resistance. Also, plastic effects at the
crack tip may start to play amore important role.The above
finding is in agreement with observations on snow slab re-
lease.There is clear experimental evidence that the artificial
triggering of snow slab avalanches by explosives becomes
much more inefficient with increasing snow temperature
(Gubler,1977).

Themodulus has been found to be themost temperature-
dependent mechanical property in the avalanche release
problem (Schweizer,1998). A decrease of the snow tempera-
ture by10‡C increased the modulus by about100%. Accord-
ingly, the fracture toughness, being proportional to the
square root of the modulus, should increase by about 40%.
In fact, our analysis showed that the fracture toughness in-
creased by about 33%, which is in fair agreement.

One of the key questions in slab avalanche release is that
on the critical crack size at failure.This is particularly rele-
vant to assess the effect of snowpack variability on avalanche
formation (Kronholm and Schweizer, 2003). Recently, Ba-
zant and others (2003) have postulated that the critical
crack size ac should be at least as large as the slab thickness
D, but that the ratio ac=D should not bemuch larger than1.
They also provided an expression for the nominal shear
stress � at failure that takes into account the size effect, and
accordingly the critical crack size ac can be derived:

ac ¼
KIIc

ffiffiffi
2

p
D

�
: ð13Þ

For typical values slab density � ¼170 kgm^3, slab thickness
D ¼ 0.5m and slope angle  ¼ 38‡, the shear stress
becomes about 0.5 kPa so that Equation (13) provides a crit-
ical crack size of about1m, assuming a fracture toughness in
shear of 0.5 kPam1/2. This value is slightly larger than what
has been previously proposed (Kirchner and others, 2002a),
but well within the range that has been previously postu-
lated (McClung and Schweizer, 1999; Schweizer, 1999;
Schweizer and Camponovo, 2001). It is also in agreement
with the above finding on the ratio ac=D by Bazant and
others (2003). Equation (13) suggests that for a larger slab
thickness than considered above, and a given fracture
toughness, the critical crack length decreases. However, Ba-
zant and others (2003) concluded that KIIc should be pro-
portional to D1:8 based on Perla’s (1977) field
measurements, since an increase in thickness should go
along with a stronger, denser slab. The above-derived crit-
ical crack length should be considered an estimate at best.
It is expected that the shear toughness for critical weak-
nesses in the snowpack should be lower and that absolute

actual values of the shear toughness might be higher than
those determined from a small specimen.

Summing up, we have for the first time determined the
temperature dependence of the fracture toughness KIc for
snow. The dependence of toughness on density was found
to follow a power-law relation. By including a simple meas-
ure of snow microstructure, the maximal grain-size dmax, a
single relation (Equation (8)) described the density depen-
dence for all the various snow types tested. Finally, the
toughness in shear was found to be smaller than the tough-
ness in tension. Relating our measurements to the critical
crack length at failure, one of the most debated questions in
avalanche formation, reveals that our estimate (ac �1m) is
well in agreement with independent estimates of the critical
crack length. For the future, more sophisticated experi-
ments will be needed, together with finite-element calcula-
tions to corroborate these results. A possible size effect, as
known from concrete, should be addressed, and conse-
quences for avalanche release should be studied, in particu-
lar by applying interfacial fracture mechanics. Eventually,
fracture toughness needs to be incorporated into snow-slab
stability evaluation procedures.
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