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Abstract

As artificial intelligence grows, human–robot collaboration becomesmore common for efficient
task completion. Effective communication between humans and AI-assisted robots is crucial for
maximizing collaboration potential. This study explores human–robot interactions, focusing on
the differing mental models used by humans and collaborative robots. Humans communicate
using knowledge, skills, and emotions, while robotic systems rely on algorithms and technology.
This communication disparity can hinder productivity. Integrating emotional intelligence with
cognitive intelligence is key for successful collaboration. To address this, a communication model
tailored for human–robot teams is proposed, incorporating robots’ observation of human emo-
tions to optimizeworkload allocation. Themodel’s efficacy is demonstrated through a case study in
an SAP system. By enhancing understanding and proposing practical solutions, this study
contributes to optimizing teamwork between humans and AI-assisted robots.

Introduction

As artificial intelligence (AI) advances, human–robot collaboration (HRC) is becoming increas-
ingly common, both in personal and professional contexts. With computerized systems expected
to engage in social and work-related activities through reciprocal communication with humans,
adapting human and collaborative robot behaviors to new group norms is essential. This
necessitates a well-established communication structure for advanced human–robot systems
(HRS).

Communication involving machines has been extensively studied, primarily in Machine-to-
Machine communication, while human-involved communication has been explored through
human-centric approaches. While research in human–machine interaction traditionally focuses
on improving machine utility within human–machine systems (HMSs), there is a growing trend
toward exploring machine analysis of human behaviors to enhance machine intelligence in
serving human needs adaptively. In the context of human–robot teams, humans and robots
possess different capabilities and mental models for task completion. It is crucial to maintain
shared understanding among team members, as their behaviors and decisions rely on different
mental models. Communication should be segmented into subchannels, each aligned with
corresponding mental models, facilitating task completion through a shared mental model.

Effective communication in human–robot teams is crucial for maintaining high productivity.
While robots are not subject to emotions or stress, human performance is influenced by stress levels
related to workload, knowledge, skills, and affective states. Optimal human function requires a
certain level of stress, with both low- and high-stress environments reducing performance.
Improved collaboration necessitates partners to communicate while considering each other’s
specific processes and characteristics. Accordingly, creating a human–robot communication
model that identifies and understands the unique characteristics of various communication
channels and guiding tailored actions and solutions to enhance productivity is crucial for improving
communication effectiveness.

This article aims to provide a theoretical mathematical framework for researchers in human–
robot interaction, categorizing communication channels within a human–robot team to address
technological prerequisites.While not focused on quantitative productivity computation, it offers
a qualitative exploration of communication dynamics and productivity between humans and
robots. The communication model draws inspiration from design theories, aiming to meet
project objectives by exploring human–robot communication complexities. Additionally, this
article explores methodologies to measure human stress using an inductive research approach,
offering insights into factors affecting human stress and performance measurement. However,
challenges arise in measuring vague entities such as human stress levels and emotions, limiting
precision and leading to more subjective discussions.

The remainder of this article is structured as follows. In the next section, a brief literature review
that is closely related to human–robot communication files is discussed. In Section “Formulation of
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smart human-robot system as a function of human stress”, the
proposed human–robot communication model is given. In Section
“Case study: task reallocationmanagement for optimizedperformance
in human-SAP collaboration”, a case study that demonstrates the
feasibility of the proposed model is presented. Finally, in Section
“Conclusions and future works”, the conclusions and future works
are summarized.

Literature review

HRC, driven by AI for comprehension, analysis, and cognitive
computing simulating human mental models, has significantly
impacted diverse domains, including resilient factories, autono-
mous vehicles, robotic assembly lines, and more (Sreedevi et al.,
2022; Prasad et al., 2024). Over time, this collaboration has evolved
through several phases, including human–robot coexistence,
human–robot interaction, human–robot cooperation, and human–
robot collaboration, culminating in proactive human–robot collab-
oration (Li et al., 2023).

HRC is sustained through generating data, detecting data
through various sensors (in the robot’s case) and cognitive cues
(in the human case), and eventually converting data into informa-
tion that leads to actions/decisions. In this collaborative framework,
raw data may be collected by robots through analyzing human
behavior and speech using various technologies, including percep-
tual computing or brain–computer interfaces (BCIs; Perrin et al.,
2010; Kanjo et al., 2019; Ji et al., 2021; Lei et al., 2023). Subsequently,
these data undergo processing using AI techniques such asmachine
learning, deep learning, and natural language processing (Gupta
et al., 2022). Techniques such as image and speech recognition,
along with perceptual technologies like facial expression and eye-
gaze recognition, further enhance the understanding of human
interactions with robots (Guo et al., 2018; Fahn et al., 2022). While
robots continuously strive to emulate human intelligence by ana-
lyzing accumulated data, there remains a disparity between com-
puterized intelligence and the organic learning processes of humans
(Yun et al., 2016; di Fiore and Schneider, 2017). The complex
interplay of these dynamics unfolds within the intricate network
of communication channels, a subject that warrants further explor-
ation in subsequent discussions. In their review paper, Soori et al.
(2023) introduce a large spectrum of learning techniques and AI
that are applied in HRC.

Robots, revered as cutting-edge AI collaborators within smart
systems, continually refine their capabilities through meticulous
analysis of accumulated data, striving to replicate the nuanced
facets of human intelligence (di Fiore and Schneider, 2017). The
depth of their intelligence is intricately linked to the breadth and
richness of accessible data sources. These data reservoirs are replen-
ished through diverse channels: robots autonomously glean
insights from human interactions, employing various tools and
techniques, or they tap into the vast expanse of information on
the internet, guided by the ethos of open innovation (di Fiore and
Schneider, 2017). Despite significant strides in AI sophistication
toward emulating human-like cognition, a notable gap persists
between computerized intelligence and the organic learning processes
of humans, as evidenced by autonomous learning (Yun et al., 2016).
This concept encapsulates the essence of human learning: a dynamic
process characterized by the organic assimilation and reconfiguration
of acquired knowledge, diverging from the structured approach of
direct instruction. These intricate dynamics unfold within the multi-
faceted network of communication channels, a realm that warrants

further exploration in subsequent discussions. Accordingly, in the
next three sections, we categorized the literature into three groups:
(i) communication inHRC; (ii) smartHRS; and (iii) human emotions
and intentions from robots’ perspective.

Communication in human–robot collaboration

Claude Elwood Shannon, a foundational figure in information
theory, proposed that communication is essentially a statistical
process, where senders offer multiplemessages for receivers to select
from (Shannon, 1948). Additionally, Shannon and Weaver identi-
fied three levels of communication problems: technical, semantic,
and effectiveness (Shannon and Weaver, 1949). Originally devel-
oped for human-to-human communication, this framework has
been extended to encompass various communication forms. Floridi
(2020) emphasizes that while machines may outperform humans in
certain tasks, they do so through fundamentally different mechan-
isms, highlighting the need for communication theory to adapt to
hybrid environments featuring both human and intelligent compu-
terized systems.

The evolution of communication within HMSs has been exten-
sively studied. Recent advancements necessitate humans to collab-
orate with AI team members akin to human colleagues, despite
humans typically preferring interactions with fellow humans (Nass
et al., 1996). Merritt et al. (2011) found that individuals derive
greater enjoyment from collaborating with presumed human part-
ners, even if they are AI team members, illustrating the nuanced
nature of human-AI interactions. Conversely, Bergman et al. (2019)
suggest that current robotics advancements have yet to fully repli-
cate human physical and cognitive communication abilities.

In exploring AI technology capabilities, scholars have pursued
diverse approaches, ranging from technological advancements to
human-centered strategies. Integrating both perspectives is essen-
tial in understanding the dynamics of hybrid human–robot teams.
McNeese et al. (2021) categorize communication channels into four
distinct types, while Krupitzer et al. (2020) provide a detailed
taxonomy of human–machine interaction components.

Damacharla et al. (2018) conceptualized the human–machine team
as a collaborative endeavor across various disciplines, emphasizing
mutual objectives and performance enhancement. The literature on
human–robot/machine/computer interaction underscores the multi-
faceted nature of modern communication paradigms, with Shannon’s
communication framework applied across diverse channels.

Smart HRS

In the context of smart systems, the major expectation is under-
standing partners without explicit comments. Rather, communi-
cation takes place through observations and experience. In recent
years, presumably self-driving or driver-assisted cars have been
introduced to our highways. Such a car’s interaction with drivers
takes place in two different modes. First, reactive response, where
the car reacts to a certain signal, such as lane changes without
proper lane-change signal. While enabling a car to identify the
concept of the lane and interpreting the notion of violating lane
change rules is an extremely complex process, the car’s reactive
response to a single event may not qualify the process to be
categorized as a smart system. On the other hand, identifying the
current state (or capability) of the driver through observing his/her
driving quality by collecting data from several sensors over a period
and deciding the course of actions including taking over the steer-
ing or auto parking, and so forth may be considered as smart HRS.
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Intelligence in HRC has been a focal point of research, with
scholars exploring various aspects of this dynamic interaction.
Borges et al. (2021) devised a decision-making framework priori-
tizing ergonomic compatibility to mitigate work-related musculo-
skeletal disorders while boosting productivity in HRC scenarios.
Despite the capabilities of collaborative robots in handling physically
demanding tasks, human involvement remains indispensable, par-
ticularly in healthcare settings like intensive care units, as highlighted
by Kosa et al. (2023). Moreover, Kirtay et al. (2023) discussed the
concept of robot trust in humans, suggesting that leveraging human
cognitive load can ease the computational burden on robots, under-
scoring the ongoing necessity of human labor in collaboration with
autonomous systems.

Research efforts have also focused on the technical aspects of
HRC, emphasizing safety and efficiency. Merlo et al. (2023), Lopez-
de-Ipina et al. (2023), Yonga Chuengwa et al. (2023), Zanchettin
et al. (2022), Pereira et al. (2022), Prendergast et al. (2021), and
Darvish et al. (2021) explored robots’ physical support, particularly
in close-proximity assembly operations within smart factories.
Meanwhile, Wei and Ren (2018) concentrated on dynamic autono-
mous path planning to enhance robot adaptability in challenging
environments. Cruz et al. (2021) contributed by developing explain-
able robotic systems that facilitate transparent communication of
robot intentions to human collaborators.

Literature emphasizes the crucial role of human involvement in
integrating robots, preserving the irreplaceable human touch. Yet,
robots offer remarkable swiftness and precision in task execution.
Therefore, it is imperative to cultivate a collaborative ethos and
embrace hybrid teams within future technology-enabled systems.
This approach ensures a harmonious synergy between humans and
robots, promising optimal efficiency and effectiveness in achieving
objectives.

Stress measurement in HRC systems

HRC relies on a deep understanding of human intentions, behav-
iors, and cognitive states to optimize interaction efficiency and
safety. Several studies have explored human behavior in human-
technology interaction, providing insights that contribute to the
development of more intuitive technologies. For example, Huang
et al. (2015) and Orsag et al. (2023) investigated human gaze
patterns and upper body positions, respectively, while Ye et al.
(2022) applied Bayesian learning tomodel human-AI group dynam-
ics. These findings enhance collaborative robotic systems by improv-
ing situational awareness and interaction fluidity.

Expanding on these behavioral insights, researchers have also
examined how to facilitate more effective collaboration in assistive
robotic systems. Carlson and Demiris (2012) developed collabora-
tive control mechanisms for intelligent wheelchairs, while Perrin
et al. (2010) integrated BCI technology to enhance user experience.
More recent advancements include BCI integration with aug-
mented reality interfaces, as demonstrated by Ji et al. (2021). These
efforts underscore the continued importance of interpreting human
intent and behavior in achieving seamless human–robot inter-
action, as highlighted by Varol et al. (2009) and McColl and Nejat
(2014).

In parallel with understanding intent and behavior, researchers
have increasingly recognized the importance of assessing human
stress levels in HRC contexts, given that stress can significantly
influence cognitive performance, attention, and decision-making.
To this end, various physiological and subjective measures have been
explored. Brain signals can be collected usingElectroencephalography

(EEG) (Al-Shargie et al., 2016; Katmah et al., 2021; Perez-Valero et al.,
2021; Attar, 2022; Hemakom et al., 2023). Eye movements and facial
expressions are analyzed through tracking cameras, while heart-
related data are monitored using sensor-based technologies (Bitkina
et al., 2021; Behinaein et al., 2021; Del Carretto Di Ponti E Sessam,
2023; Gazetta et al., 2023; Hemakom et al., 2023; Awada et al., 2024).
Additionally, electrodermal activity (EDA) is measured using wear-
able sensors to capture stress-induced changes in skin conductivity
(Pop-Jordanova and Pop-Jordanov, 2020; Rahma et al., 2022; Dao
et al., 2024). These physiological signals are typically processed
through statistical and machine learning algorithms, often supple-
mented by subjective self-reports to improve validity and robustness.

However, despite the technological advances, the real-world
application of these systems often faces ergonomic and usability
limitations. Addressing this issue, Awada et al. (2024) conducted a
comparative study of physiological data collection methods and
concluded that EDA alone provided the most significant results for
stressmeasurement. In this context, wrist-worn devices – capable of
capturing EDA, skin temperature, blood volume pulse, and triaxial
wrist acceleration – have proven to be both effective and ergonom-
ically suitable for real-world deployment (Gjoreski et al., 2017;Nath
and Thapliyal, 2021; Bello-Orgaz andMenéndez, 2023; Mitro et al.,
2023; Awada et al., 2024).

Nevertheless, an important gap remains in the current literature:
few models adequately account for the dynamic and fluctuating
nature of human mental states during real-time human–robot
communication. To address this, our paper introduces a commu-
nication model for HRC that integrates a smart supervisory con-
troller. This controller is designed to detect and respond to stress
levels in real time, enabling adaptive workload redistribution and
ultimately enhancing the performance and resilience of the collab-
orative system.

Formulation of smart HRS as a function of human stress

Asystem is considered “smart”when its components (in this article,
an AI-supported service provider or robot) evaluate their counter-
parts (in our context, human partners) over time and propose
actionable decisions to regulate functionality or enhance the prod-
uctivity/efficiency of collaborative endeavors. In the context of
HRS, smart collaboration can exist if both parties (robots and
humans) continually assess each other and intervene when needed
to sustain the collective output of the system at the optimum
(or desired) level. As a non-emotional partner in the HRS, the
robot’s performance changes due to limitation of hardware and
software or natural wear-and-tears. Hence, it is the human partners’
or other intelligent systems’ responsibility to monitor robot’s func-
tionalities and take preventive actions when and where it is required.
On the other hand, as an emotional partner of a human–robot team,
human’s performance changes due to several personal and environ-
mental factors. Human’s contribution to a work is subject to per-
ceived workload, human’s knowledge and experience, and the
environment (Nguyen and Zeng, 2012). Even without changing
the workload and the knowledge and experience, human’s perform-
ance deviates significantly due to environmental factors. The impact
of environmental factors on humans may not be observable through
sensors. Therefore, within a human–robot collaborative system,
while human can continually monitor and take preventive actions
to improve the robot’s contribution, the currently available commu-
nication channels do not equip robots to observe the environmental
factors that are contributing to the human’s contribution to
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teamwork. In order to achieve genuinely smart human–robot
collaborative systems, where both humans and robots excel in
their contributions to collaborative work, it is crucial to establish
effective communication channels. These channels should pro-
vide both humans and robots with the tools needed to monitor
each other and propose executive decisions aimed at maximizing
their partner’s contribution to collaborative work.

Modeling of communication channels through axiomatic theory
of design

The environment-based design theory Sun et al. (2011) and Zeng
(2011) suggests that the world is shaped through three interlinked
environments: the human, natural, and built environments. In the
context of HRS, the robot embodies the built environment. The
Axiomatic Theory of Design (Zeng, 2002) breaks down the rela-
tionships formed by human, natural, and built environment
(robots) into interactions, which are called communication chan-
nels as the foundation for communications in collaborative HRS.
Accordingly, possible communications channels that compose of
an HRS can be defined using Zeng’s axiomatic theory of design as
shown in Table 1.

Communication channels described in Table 1 enables us to
formulate an HRS ⊕Sð Þ as a function of the interlinked communica-
tion channels:

⊕S = H∪ H⊗Hð Þ½ �∪ R∪ R⊗Rð Þ½ �∪ N∪ N⊗Nð Þ½ �∪ H⊗Rð Þ∪ R⊗Hð Þ
∪ H⊗Nð Þ∪ N⊗Hð Þ∪ R⊗Nð Þ∪ N⊗Rð Þ∪ H⊗R⊗Nð Þ

(1)

Given that⊕A=A∪ A⊗Að Þ in Axiomatic Theory of Design, Equa-
tion 1 can be simplified as:

⊕S =⊕H∪⊕R∪⊕N∪ H⊗Rð Þ∪ R⊗Hð Þ∪ H⊗Nð Þ∪ N⊗Hð Þ
∪ R⊗Nð Þ∪ N⊗Rð Þ∪ H⊗R⊗Nð Þ (2)

The significance of nature and its impact on an HRS is undeniable.
However, given its inherent complexity, they are dropped from
HRS formulation. Hence, the HRS system studied in this article is
defined as follows:

⊕S = H∪ H⊗Hð Þ½ �∪ R∪ R⊗Rð Þ½ �∪ H⊗Rð Þ∪ R⊗Hð Þ½ � (3)

HRC in smart systems

Collaboration is the notion of working with others to achieve a
common goal, such as making or creating something. When they
are tasked to achieve a common goal, humans and robots are
expected to use their communication tools to ensure the collabor-
ation efforts are optimum at all times. Given that humans are the
emotional partners in such an environment, existing communica-
tion tools do not properly equip robots to understand their human
partners’ needs. According to Nguyen and Zeng (2017), human’s
performance is closely coupled with his/her stress level. It is proven
that human best performs when they are stimulated by a moderate
level of stress. When the stress level is too low or too high, human
creativity or performance is observed to be lower.

Accordingly, the work-associated stress σð Þ is defined as a
function of perceived workload (P), knowledge (K), skills (S), and
affective states (A) (Nguyen and Zeng, 2017; Yang et al., 2021).

σ =
P

KþSð Þ×A (4)

Given that persons’ environment and its impact on the humans’
affective state constantly change, despite constant P , K , and S, the
human stress level will fluctuate. When the stress level is outside the
desired stress level zone in Figure 1, human performance is expected
to be no at its optimum level. Hence, in the context of a smartHRS, it
is the role of robots to monitor human partners’ stress levels and
intervene when the stress level is outside the desired levels.

Before we lay the groundwork for human stress level manage-
ment within HRS, let us formally define the HRS performance ղð Þ.
The system performance consists of three components: human
performance ղHð Þ, robot performance ղRð Þ and their collective
performance ղHRð Þ. Therefore, the system performance is:

ղ = ղH þղRþղHR (5)

where the performance of each participant is formulated as a
function of stress (σ) (in the case of human) and knowledge (K )
and skill (S) (in the case of robot), allocated tasks Wð Þ and their
available capacity and/or time Tð Þ as:

ղH = f σH ,WH ,TH
� �

;ղR = f KR,SR,WR,TR
� �

; and
ղHR = f σH ,KR,SR,WHR,THR

� �
Table 1. Communication channels and their application domains

Communication
channel Definition Traditional application domains

H⊗Hð Þ Human to human
communication

Education, Psychology, Social Sciences, People Management, Project Management, …

R⊗Rð Þ Robot-to-robot
communication

Machine-to-Machine Communication Technology, Wireless Sensor Networks, Computer Technology,…

N⊗Nð Þ Nature-to-nature
communication

Natural Sciences

H⊗Rð Þ∪ R⊗Hð Þ Human–robot communication Perceptual Processing, Behavioral Processing, Embodied Cognition, Artificial Intelligence, Machine
Learning, Natural Language

Processing, Voice Recognition, Image Processing, Cognitive Psychology, …

H⊗Nð Þ∪ N⊗Hð Þ Human–nature
communication

Applied Science, Economics, Business, …

R⊗Nð Þ∪ N⊗Rð Þ Robot–nature communication Applied Science, Business, Manufacturing, …

H⊗R⊗Nð Þ Human–robot–nature
communication

Applied AI
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Assuming that during a given planning period, robot’s know-
ledge and skills do not change significantly and do not face any
mechanical and computational challenges, its performance
would be steady and predictable. On the other hand, the com-
pletion times and the quality of the work for tasks that are
allocated to human (WH ) or jointly with human and robots
(WHR ) will deviate depending on the human’s stress level. In
the remainder of this article, a human–robot communication
system that enables robots to assess human stress and take
corrective measures to keep the human stress within the desired
levels is discussed.

Figure 2 illustrates the correlation between communication
channels and their impact on system performance. Identifying
communication channels during task distribution is essential, as
it enables robots to address the appropriate workload zones, as
shown in Figure 3, to implement necessary adjustments.

Next, we introduce two lemmas to formally define the problem
to solve.

Lemma 1: With N tasks distributed among humans, robots, and a
combination of both, each task assigned to a human contributes to
their stress level. While some tasks may elevate stress, others can
alleviate it. When the human stress level deviates from the desired
range, redistributing tasks among humans and human–robot teams
can help restore the stress level to its desired range.

Proof: In Equation 4, considering a planning horizon too short
for significant knowledge and skill changes, any alterations
in the affective state can be offset by adjusting the perceived
workload.

Lemma 2: Perceived workload is a controllable factor.

Proof: Perceived workload, influenced by assigned tasks, past out-
comes, and available time, can be regulated through task compos-
ition adjustments. By leveraging past experiences and assessing
remaining capacity, modifying the task distribution can effectively
manage perceived workload.

Tasks within a collaborative work environment are distributed
among the team members based on their capabilities (skills and
knowledge) and their available capacities. Therefore, members
(human, robot or human–robot) who are suitable to handle each
task are known. Accordingly, tasks can be categorized in seven
different zones as illustrated in Figure 3.

The intelligent HRS leverages its communication channels to
dynamically regulate task allocation across various zones, as
depicted in Figure 3, to ensure that human team members consist-
ently maintain an optimal level of stress. To achieve this goal, we
propose an eight-step approach outlined below for controlling
human stress levels within desired parameters, thus maximizing
human contributions to collaborative work. Monitoring human
stress entails measurement, as detailed in Section 3, and imple-
menting the algorithm presented in the pseudo-code given below.
Accurately identifying communication channels, fostering collab-
oration, and promptly detecting human stress levels for interven-
tion in HRS reallocation are essential components for ensuring
effective human–machine collaborative environments.

Figure 2. Connection between communication and collaboration.

Figure 3. Possible task distribution map among team members.

Desired Stress 
Level

Desired Stress 
Level

Figure 1. Relationship between stress and creativity/performance.
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An Eight-Step Algorithm for Performance Optimization through
Stress Management in Smart Systems Governed by Robots:

1. Utilize the Axiomatic Theory of Design to deconstruct the
intertwined communication within smart systems.

2. Identify diverse communication channels: ⊕H ,⊕R,and⊕HR.
3. Address each communication channel within the smart system

and specify the related tasks.
4. Define the roles of each system component: roles of human,

robot, and HRC(s).
5. Specify roles that can be performed by multiple components

where applicable.
6. Identify human-involved roles to focus on monitoring human

stress levels.
7. Develop an algorithm for robot systems to detect and measure

human stress levels and adjust human’s stress by redistributing
tasks. Implementation requires a smart supervisory controller,
which can be embedded within robot systems or can be sup-
ported by an external supervisory system, depending on the
robots’ capabilities. The pseudo-code for this algorithm is pro-
vided below.

Task Reallocation Algorithm:

Inputs:
i. Resources: Set of Human h∈Hð Þ ; Set of Robots/Machines

r∈Rð Þ
ii. Set of tasks w∈Wð Þ
iii. Capabilities of Human, Robot and Human–robot team:

Distribute tasks according to resource capabilities as illus-
trated in Figure 2.

Step 0: t = 0 distribute tasks among Human, Robot, and
Human–robot jointly

WH
0 ∈ wZ1,wZ4,wZ5,wZ7

� �
WR

0 ∈ wZ2,wZ4,wZ6,wZ7
� �

WHR
0 ∈ wZ3,wZ5,wZ6,wZ7

� �
Step 1: t = tþ1, assess human stress σ = PH

t

KH ,SHð ÞAH
t

� �
Step 2: Task reallocation:
if σ ≥ σUBð Þ:

Human is over-stressed: Transfer tasks from Human to Robot or
Human to Human–robot team

IfWH
t includes tasks belong to Zone 4! Transfer tasks to Robot

elseif WH
t includes tasks belong to Zone 5 ! Transfer tasks to

Human–robot team
elseif WH

t includes tasks belong to Zone 7 ! Transfer tasks to
Robot or Human–robot team

elseif if σ ≤ σLBð Þ:
Human is under-stressed: Transfer tasks from Robot or Human–
robot team to Human

If WR
t includes tasks belong to Zone 4 ! Transfer tasks to

Human
elseif WHR

t includes tasks belong to Zone 5 ! Transfer tasks
to Human
elseif WR

t orW
HR
t includes tasks belong to Zone 7! Transfer

tasks to Human

Subject to following constraintsX
k∈WH

t

tHk þ
X

k∈WHR
t

tHRk ≤TH (6)

X
k∈WR

t

tRk þ
X

k∈WHR
t

tHRk ≤TR (7)

bPH
t = f

  X
k∈WH

t

f ðtHk KH
k S

H
k Þ

þ
X

k∈WHR
t

f tHRk ,KH
k ,S

H
k ,K

R
k ,S

R
k

� �!
, βHt�1,T

H

!
(8)

bσ = bPH
t

KH ,SH
� �

AH
t

(9)

σLB ≤bσ ≤ σUB (10)

Where:
tHk is the estimated completion time when task k is
completed by a human alone
tRk is the estimated completion time when task k is com-
pleted by a robot alone
tHRk is the estimated task completion time when handled
by Human–robot jointly.
TH is the available time (remaining capacity) and the t is
the current periodbPH
t is the estimated perceived workload at period t

βHt�1 is the performance of human (percentage of successful
completion of tasks) at the t-1
KH ,SH , and AH

t are knowledge, skill, and the affective
state of human at time tibσ is the estimated stress level at period ti
σLB is the lower bound for desired stress level
σUB is the upper bound for desired stress level

else
Continue with the current task assignment

Step 3: Has the job completed?
NO: Go to Step 1
YES: Go to step 4

Step 4: End intervention

Outputs:
i. Updated WH

t , W
R
t , and WHR

t
ii. Optimized Human stress (σLB ≤ σ ≤ σUB)

8. Optimize human stress levels to lead to overall optimization of
smart system performance.

By following the steps above, the aim is to optimally utilize
human and robot capacity along with their collaboration cap-
acity. Controlling this relationship through effective communi-
cation channels allows participants in collaborative work to
sustain the desired human stress level to reach the expected
system productivity level.

As explained previously, human performance (ղH ) is a multifa-
ceted construct contingent upon several variables: the workload
allocated to individuals (WH ), the timeframe available for task
completion (TH), and the impact of human stress (σH). This stress,
in turn, is intricately linked to the perceived workload (PH), individ-
ual knowledge (KH), skills (SH), and affective states (AH). In parallel,
robot performance (ղR) is delineated by factors including the work-
load designated to robots (WR ), their knowledge base (KR ), profi-
ciency in various skills (SR ), and the time required for task
completion (TR). Similarly, collaboration performance (ղHR) hinges
upon the workload assigned to the collaborative effort (WHR ), the
available time for task completion (THR), and the influence of human
stress within collaborative settings (σH ). The stress levels within

6 Rukiye Kirgil-Budakli, Yong Zeng and Ali Akgunduz

https://doi.org/10.1017/S0890060425100073 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100073


collaborative endeavors are directly influenced by the stress experi-
enced by individual humans, which is, in turn, influenced by the
perceived workload allocated to the collaborative group (PHR),
the collective knowledge (KHR ) and skills of the collaborators
(SHR), and the emotional states of individuals during collaborative
interactions (AH).

In collaborative projects, the interplay between humans and
robots complicates dynamics, underscoring the importance of
cohesive team performance. Robots must not only interact with
individuals but also gauge the overall group stress levels. This
enables them to intervene appropriately, such as by reallocating
workload, to optimize performance and foster effective collab-
oration. Consequently, navigating collaboration necessitates
nuanced adjustments, integrating disjoint union logic to illus-
trate the complex interaction among diverse elements. Below, we
outline the performance metrics for human, robot, and HRC,
culminating in the determination of system performance in
scenarios where multiple humans and robots work together
toward a shared goal.

Let ղH
h , ղ

R
r , and ղ

HR
hr be performances of hth human, rth robot,

and hth human and rth robot interactions, respectively.
Accordingly:

ղH
h = f

PH
h

KH
h þ SHh

� �
∗AH

h

;WH
h ;T

H

 !(

j PH
h ,K

H
h , S

H
h ,A

H
h ,W

H
h ,T

H arehumans0 performance parameters
when they work in H⊗Hð Þ collaboration

)
(11)

ղR
r = f WR

r ;K
R
r ; S

R
r ;T

R
� �(

j Wr
r ,K

R
r , S

R
r ,T

R are robots0 performance parameters
when they work in R⊗Rð Þ collaboration

)
(12)

ղHR
hr = f

PH
h

KH
h þ SHh

� �
∗AH

h

;WHR
hr ;K

R
r ; S

R
r ;T

HR

 !8>>><>>>:

j PH
h ,K

H
h , S

H
h ,A

H
h ,W

HR
hr ,K

R
r , S

R
r ,T

HR are
performance parameters of H � Rteams

when they work in
H⊗Rð Þ∪ R⊗Hð ÞCollaboration

9>>>=>>>; (13)

The disjoint union formula for individual sets delineates the per-
formance levels of overall human, robot, and collaboration group
performances as follows:

ղH = ∐
h ∈ H

ղH
h = ⋃

h ∈ H
f

PH
h

KH
h þ SHh

� �
∗AH

h

;WH
h ;T

H

 !
; h

 !(

jPH
h j, jKH

h , , jSHh , , jAH
h , , jWH

h , , jTH , ∈ jH

)
(14)

ղR = ∐
r∈R

ղR
r = ⋃

r∈R
f WR

r ,K
R
r ,S

R
r ,T

R
� �

,r
� �jWR

r ,K
R
r ,S

R
r ,T

R ∈R
� �

(15)

ղHR = ∐
h ∈ H; r ∈ R

ղHR
hr = ⋃

h ∈ H
f

PH
h

KH
h þ SHh

� �
∗AH

h

;WHR
hr ;K

R
r ; S

R
r ;T

HR

 !
; h; r

 !8>>>><>>>>:

j PH
h ,K

H
h , S

H
h ,A

H
h ∈ H

KR
r , S

R
r ∈ R

WHR
hr ,T

HR ∈ H∪R

9>>=>>; (16)

In this article, we adopt a comprehensive approach to measuring
performance, defining it as the ratio of completed tasks to the total
tasks assigned to each system component. This encompasses vari-
ous metrics, such as the monetary value generated by the smart
system, the number of clients effectively served, and the completion
rate of allocated tasks. Under this framework, the collective per-
formance of a human group results from the amalgamation of each
individual’s contribution, while the performance of a group of
robots is the sum of each robot’s individual performance.

To accurately gauge the level of success, it is imperative to
normalize performance levels by dividing them by the total tasks
assigned to all system components, including humans, robots, and
collaboration groups. This normalization ensures a fair comparison
and provides insights into the efficiency and effectiveness of each
entity within the system (Equation 17). The entirety of the eluci-
dated logic is now captured inmathematical formulation as follows:

ղ =
∐
h∈H

ղH
h þ ∐

r∈R
ղR
r þ ∐

h∈H,r∈R
ղHR
hrP

h
WH

h þP
r
WR

r þ
P
h,r
WHR

hr

(17)

Under the prevailing conditions, the assessment of system perform-
ance entails a holistic consideration, incorporating the combined
elements of average human proficiency, average robotic capability,
and the average efficacy of collaborative groups. Central to this
evaluation is the pivotal role of human stress as a barometer for
robots to recognize the equilibrium within system dynamics. Given
that human performance is intricately linked to the stress experi-
enced, robots are tasked with the crucial responsibility of monitor-
ing and fine-tuning the performance of human counterparts. The
ensuing formula encapsulates the qualitativemeasurement of smart
systems’ performance, wherein robots are charged with the dual
mandate of optimizing human stress levels and elevating both
individual human and collaborative performance metrics.

Collaboration relies on everyone being on the same page intellec-
tually, which helps build understanding among collaborators. In the
domain of HRC, the effectiveness of such partnerships is contingent
upon the robots attaining a level of intellectual judgment that aligns
with human cognition. A critical component in rendering robots
intelligent and collaborative is the deployment of a sophisticated super-
visory controller. Notably, the smart supervisory controller facilitates
synchronous information flow, capturing insights from both human
performance and collaborative actions. In this dynamic exchange of
information, the smart supervisory controller assumes the responsibil-
ity of discerning whether a reallocation of workload is warranted,
employing embedded algorithms to make informed decisions. Should
the need arise, this controller orchestrates the redistribution of tasks,
deftly assigning roles to humans or seamlessly taking over certain
responsibilities through a judicious interchange of workload among
the collaborators. The ensuing mechanism is illustrated in Figure 4.
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In the next section, capabilities of the aforementioned HRC
management model are demonstrated through a case study.

Case study: Task reallocation management for optimized
performance in human–SAP collaboration

As part of this case study, the interaction of human and SAP
systems in a real-life setting is analyzed, and the proposed HRC
control model is tested. The study examines the before and after-
effects of implementing SAP transportation management (TM)
software at organizations. Tasks and assignments of tasks in Zones
(see Figure 2) are decided according to SAP functionalities. The
integrated nature of the SAP system enables seamless interaction
with other systems used by organizations for various business tasks.
However, some communication conflicts occur during collaboration
decrease the performance in human–robot (SAP in our case) collab-
oration. Therefore, the focus of this study was to identify the timing
and nature of conflict and interview using task-reallocation options
according to the previously introduced task reallocation algorithm, as
depicted in Figure 4.

Introduction of the system structure

SAP is a complex system composed of many different IT compo-
nents serving various business processes. In our case, eight SAP
modules are considered: S/4 HANA (Cloud ERP); TM; Event Man-
agement; Extended Warehouse Management; Business Network
Global Track and Trace; Business Network for Logistics; External

Geographic Information Systems, and VSR (Vehicle and Routing)
Optimizer. Thesemodules are integrated through various integration
technologies, including IDOC, SOAP, REST, RFC, Proxy, File, EDI,
JDBC, and BAPI. Additionally, there is a specific integrator system
called SAPProcess Integration, developed particularly for integrating
different systems.

In our study, the SAP TM system takes center stage, with a focus
on its collaborators who directly or indirectly influence its oper-
ational mechanisms. The analysis of overall system performance
includes these collaborators. Ensuring the smooth functioning of
SAP TM processes relies on support from complementary systems,
as they provide vital information necessary for its operations. The
remainder of this article introduces a scenario involving an S/4
Hana sidecar, demonstrating how the SAP TM system integrates
with external systems. Lauterbach et al. (2019) provided a compre-
hensive illustration of the continuous integration between SAP TM
and various supporting systems within the context of an S/4 HANA
sidecar scenario (Figure 5). Although the focus of our case study
revolves around the adaptation of logistic service providers to the
SAP LBN (Business Network for Logistics) system, it is imperative
to recognize that SAP TM remains the cornerstone, as it serves as
the primary source of operational data (see Figure 6 for the illus-
tration of information flow in SAP TM centric system).

To facilitate clear identification and understanding of the roles
within the system, robots are denoted by “R” followed by numerical
identifiers (e.g., R1, R2, R3), while human personas, including users,
developers, analysts, consultants, and managers, are represented by
“H”with correspondingnumbers (e.g.,H1,H2,H3).Although current
SAP systems do not possess autonomous intelligence to actively

Figure 4.Workload reallocation between humans, robots, and their collaborations in smart systems (the details of “Identify Intervention Opportunities” are available in Figure 3;
human, robot, human–robot expressions are given in Equations 11–16)
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engage with humans, we anticipate their evolution into sophisticated
smart robots capable of continuous collaboration with their human
counterparts. Furthermore, integration technologies serve as the back-
bone for enabling communication among robots. These facilitative
components are also referred to as robots within the context of system
interactions. Additionally, there are human collaborators responsible
for orchestrating integration processes within SAP PI, known as SAP
PI consultants.

In light of this background, robot systems communicatewith each
other through another robot system, which acts as an integrator,
in the R ⊗ R channel. This integration is supervised by humans in
theH⊗R channel. Each robot systemalso serves its users to facilitate
their interactions. In this case, system users interact with the systems
in theH⊗R channel. Furthermore, humans communicate with each
other in theH⊗Hchannel. Accordingly, the collaborative ecosystem
envisioned for a future smart SAP system is depicted in Figure 7,
encompassing both robotic and human contributors.

Identifying tasks and their corresponding zones

For a thorough examination of HRC, the initial step is to meticu-
lously identify and outline communication channels, as previously
discussed. Rooted in the Axiomatic Theory of Design (Zeng, 2011),
this process necessitates acknowledging three foundational relation-
ship dynamics: human–human, robot–robot, and the pivotal HRC,
which encompasses reciprocal interactions between humans and
robots. Accordingly, possible tasks within an SAP system are iden-
tified, and possible undertakers for these tasks are identified (zones).
As outlinedpreviously in Figure 3, tasks can be categorized into seven
zones depending on the capability of each partner (H, R, or H-R). In
Table 2, identified tasks and their associated zones are given.

Proceed by navigating through each task delineated within the
designated workload zones illustrated in Figure 8. This strategic
navigation empowers the collaborative robot to discern and inter-
vene in tasks where necessary. As per the proposed framework, the
robot or smart supervisory controller is strategically positioned to
identify and intervene solely within the intersecting regions of its
operational zones. These intersecting domains serve as pivotal points
for potential reallocation of system tasks, as they present opportun-
ities for tasks to be seamlessly transitioned between robotic, human,
or collaborative efforts. This shared responsibility framework enables
the robot or smart supervisory controller to dynamically reallocate
tasks, optimizing efficiency by delegating tasks to human counter-
parts or assuming certain responsibilities from them.

It is crucial to note that tasks assigned to workload zones 1, 2, and
3 cannot be reassigned to different system components but can only
be internally transferred, such as redistributing tasks fromone human
worker to another to alleviate stress levels. Our primary objective is to
optimize the stress levels of individual humans or human groups by
initially integrating robots and subsequently implementing internal
workload transfers among similar system components. In that case,
T6,T8,T24,T25,T26,T27, and TAD3 are the tasks that can change
the dynamics of workload allocation by being dependent on the
algorithm introduced through pseudo code previously.

The initial six steps of the proposed procedure have been
diligently executed thus far. The forthcoming section of this case
study delves into the intricacies of detecting human stress levels and
optimizing system performance by maintaining individuals in
optimal emotional states. Through meticulous examination, we
explore strategies to ensure that humans are nurtured in environ-
ments conducive to emotional well-being, thereby enhancing over-
all system efficiency.

Figure 5. Overview of SAP TM integration when not embedded in SAP S/4 HANA (adapted from Lauterbach et al., 2019).
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Task reallocation based on stress/workload

As the assigned workload (WH
t Þ steadily increases, there is a natural

escalation in the perceived workload (PH
t ) experienced by individuals,

compounded by the current stressors (σHt ) they face. The rise in
perceived workload, assuming the task completion time or time-to-
deadline (TD) remains constant, inevitably leads to a decline in human
performance ղHð Þ. This decrement in performance not only impacts
the ongoing emotional and psychological states of individuals (AH

t ), but
also serves as a precursor for the level of stress (σHtþ1) in the next period.
Consequently, this evolving stress level influences how individuals
perceive and respond to the forthcoming workload assigned to them.

Smart supervisory system’s (robot) primary function within this
context is to monitor human stress levels and correlate them with
performance output. Should the estimated stress level deviates from
predetermined thresholds, both below or above the acceptable range
(σLB ≤bσ ≤ σUB ), the robots are tasked with dynamically adjusting
workload allocation. This intervention mechanism is crucial for
maintaining human stress within an optimal range conducive to
efficient performance. In our detailed case study, aforementioned
task reallocation algorithm is applied on the case study as:

Task reallocation algorithm for SAP S/4HANA sidecar scenario
(mathematical representation)

if bσ ≥ σUB :

if T25∨T24∨ T27f g∈WH
t :

TRANSFER T25∨ T24∨ T27f g fromWH
t toWHR

t

if T26∈WH
t :

TRANSFER T26 fromWH
t to WHR

t ∨WR
t

� �
elseif T26∈WHR

t :

TRANSFER T26 fromWHR
t toWR

t

if T6∨ T8∨TAD3f g∈WHR
t :

TRANSFER T6∨ T8∨TAD3f g fromWHR
t toWR

t

elseif bσ ≤ σLB :

if T24∨ T25∨T27f g∈WHR
t :

TRANSFER T24∨T25∨ T27f g fromWHR
t toWH

t

if T26∈WR
t :

TRANSFER T26 fromWR
t to WH

t ∨WHR
t

� �
elseif T26∈WHR

t :

TRANSFER T26 fromWHR
t toWH

t

if T6∨ T8∨TAD3f g∈WR
t :

TRANSFER T6∨ T8∨TAD3f g fromWR
t toW

HR
t

Repeat while σLB ≤bσ ≤ σUB not TRUE

The algorithm outlined above for the case study provides a math-
ematical representation of the proposed logic, inspired by common
problems encountered during the implementation of systems in IT
projects. Below, the details are evaluated and explained verbally:

Figure 6. Illustration of robot–robot communication; systems integration in SAP S/4 HANA sidecar scenario (robots are subsystems such as SAP LBN and SAP S/4 HANA).
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Task reallocation verbal assessment for SAP S/4HANA sidecar scenario:
Inputs:
i. Resources: Set of human h∈Hð Þ; set of robots/machines r∈Rð Þ

Assuming the presented case study involves 19 humans, 13 robots, and
22 human–robot (H-R) teams, representing the collaboration between
systems and their users.
H: {H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H13,
H14, H15, H16, H17, H18, H19}.
R: {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13}.
HR: {H1-R1, H2-R1, H3-R1, H4-R1, H5-R1, H13-R1, H6-R2, H7-R2,
H8-R2, H9-R2, H10-R2, H11-R2, H12-R2, H3-R2, H5-R2, H13-R8,
H14-R3, H15-R4, H16-R7, H17-R5, H18-R9, H19-R13}

ii. Set of tasks w∈Wð Þ
At the start of the project, thework breakdown structure should be clearly
defined for each communication channel. In other words, each task
should be specified along with the corresponding system component capable
of undertaking it. This approach allows robots to first evaluate which
communication channels can facilitate the assigned tasks and map these
ontoworkload zones using aVenn diagram.Once the re-allocatable tasks on
the Venn diagram are identified, the robots can then analyze these tasks to
determine alternative communication channels for possible reassignment.
The tasks to be completed using the SAP LBN system are outlined below:
T: {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16,
T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, TAD1, TAD2,
TAD3, TAD4, TAD5, TAD6, TAD7}

iii. Capabilities of human, robot, and human–robot team: Dis-
tribute tasks according to resource capabilities as illustrated
in Figure 2.

Systems comprising software-based programs and their users must
ensure seamless collaboration. Users should be adequately trained on
the system’s operation and equipped with strategies to resolve potential
blockages effectively. Moreover, computerized systems must be fully
integrated with other digital systems, functioning smoothly even when
users are actively involved in the workflow.

Step 0: t = 0 distribute tasks among human, robot, and human–
robot jointly:

Initially, the tasks were allocated as follows:

WH
0 ∈ wZ1,wZ4,wZ5,wZ7

� �
WH

0 : fT12 ðZ1Þ,T13ðZ1Þ,T22ðZ1Þ,T24ðZ5Þ,T25ðZ5Þ,
T26ðZ7Þ,T27ðZ5Þg

WR
0 ∈ wZ2,wZ4,wZ6,wZ7
� �

WR
0 : T2 Z2ð Þ,T3 Z2ð Þ,T5 Z2ð Þ,T7 Z2ð Þ,T9 Z2ð Þ,T10 Z2ð Þ,f

T14 Z2ð Þ,T16 Z2ð Þ,T18 Z2ð Þ,T20 Z2ð Þ,T21 Z2ð Þ,
TADD2 Z2ð Þ,TADD3 Z6ð Þ,TADD5 Z2ð Þ,TADD7 Z2ð Þg

WHR
0 ∈ wZ3,wZ5,wZ6,wZ7

� �
WHR

0 : T01 Z3ð Þ,T02 Z3ð Þ,T1 Z3ð Þ,T4 Z3ð Þ,T6 Z6ð Þ,T8 Z6ð Þ,f
T11 Z3ð Þ,T13 Z3ð Þ,T15 Z3ð Þ,T17 Z3ð Þ,T19 Z3ð Þ,
TADD1 Z3ð Þ,TADD4 Z3ð Þ,TADD6 Z3ð Þ g

Figure 7. Dynamic collaboration between human–SAP systems (robots): Navigating the smart SAP S/4 HANA sidecar ecosystem with human in the loop.
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Table 2. Possible tasks available for human, robot, human–robot in the LBN (business network for logistics) system of SAP S/4 HANA sidecar scenario

Task number Task details Channel

Tasks that can by

Workload zoneH R HRC

T01 H18 initiates integration between different systems. H⊗Rð Þ∪ R⊗Hð Þ X 3

T02 H19 designs the RFC (remote function call) interface. H⊗Rð Þ∪ R⊗Hð Þ X 3

T1 H4 creates deliveries on R3. H⊗Rð Þ∪ R⊗Hð Þ X 3

T2 Deliveries are sent from R3 to R4 and from R3 to R1. R⊗Rð Þ X 2

T3 Transportation units are automatically created on R4.
(Together with the delivery information, those form the
basis for warehouse planning and execution.)

R⊗Rð Þ X 2

T4 Freight orders are created by H1 or H2 in collaboration
with R1.

H⊗Rð Þ∪ R⊗Hð Þ X 3

T5 The information regarding planned freight orders is sent
from R1 to R2 and R1 to R4.

R⊗Rð Þ X 2

T6 H6 confirms the freight orders through R2 on the Freight
Order Management section, or this process can be
automated.

R⊗Rð Þor H⊗Rð Þ∪ R⊗Hð Þ X X 6

T7 Information regarding freight orders is sent from R2 to R1. R⊗Rð Þ X 2

T8 H15 creates the picking warehouse on R4, or this process
can be automated.

R⊗Rð Þor H⊗Rð Þ∪ R⊗Hð Þ X X 6

T9 Information regarding warehouse task creation is sent
from R4 to R3 and then R3 to R1. (R1 and R3 can be
directly integrated. In this case, information is sent
directly from R4 to R1.)

R⊗Rð Þ X 2

T10 When the freight orders are confirmed on the Freight Order
Management section of R2, they appear on Dock
Appointment Scheduling and Freight Execution
sections of R2.

R⊗Rð Þ X
2

T11 H7 books appointments for the assigned freight orders. H⊗Rð Þ∪ R⊗Hð Þ X 3

T12 The driver(s) pick up the freight(s) from thewarehouse and
transportation(s) start.

H⊗Hð Þ X 1

T13 When the driver(s) pick up the freight(s) from the
warehouse and transportation(s) start, H8 or H9 should
report each stop’s arrival and departure time on the
Freight Execution section of R2.

H⊗Rð Þ∪ R⊗Hð Þ X 3

T14 When reporting is completed on the Freight Execution
section of R2, invoicing information is visible on the
Freight Settlement section of R2.

R⊗Rð Þ X 2

T15 If there is a dispute that should be created for the invoice,
H10 or H11 creates dispute(s) on the Freight Settlement
section of R2.

H⊗Rð Þ∪ R⊗Hð Þ X 3

T16 Information regarding dispute(s) is sent from R2 carrier
tenant to R2 shipper tenant.

R⊗Rð Þ X 2

T17 H5 resolves the dispute indicated by the carrier on the
shipper tenant of R2.

H⊗Rð Þ∪ R⊗Hð Þ X 3

T18 Information regarding dispute resolution is sent from the
shipper tenant of R2 to the carrier tenant of R2.

R⊗Rð Þ X 2

T19 H10 or H11 confirms the invoices finalized on the carrier
tenant of R2 (Freight Settlement section).

H⊗Rð Þ∪ R⊗Hð Þ X 3

T20 Confirmed invoices are sent from R2 to R1. R⊗Rð Þ X 2

T21 Confirmed invoices are sent from R1 to R3. R⊗Rð Þ X 2

T22 R1 users (H1, H2, H3, H4, H5, H13) meet to allocate tasks. H⊗Hð Þ X 1

T23 R2 users (H6, H7, H8, H9, H10, H11, H12) meet to allocate
tasks.

H⊗Hð Þ X 1

T24 R1 users and R2 users meet to resolve the problems
occurred on R2 that lead to setbacks on R1.

H⊗Hð Þor H⊗Rð Þ∪ R⊗Hð Þ X X 5

(Continued)

12 Rukiye Kirgil-Budakli, Yong Zeng and Ali Akgunduz

https://doi.org/10.1017/S0890060425100073 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060425100073


Table 2. (Continued)

Task number Task details Channel

Tasks that can by

Workload zoneH R HRC

T25 H13 meets managers of the other systems to address the
problem(s) occurred on R1, whether it is because of
integration incompatibilities or not.

H⊗Hð Þor H⊗Rð Þ∪ R⊗Hð Þ X X 5

T26 Other systems’ managers meet the consultants,
specialists, and developers to find the root cause of the
problem(s).

H⊗Hð Þor R⊗Rð Þor H⊗Rð Þ∪ R⊗Hð Þ X X X 7

T27 The people in charge of the problematic point(s) of the
system work on the system components in
collaboration.

H⊗Hð Þor H⊗Rð Þ∪ R⊗Hð Þ X X 5

TAD1 H17 reports transportation events in collaboration with
R5.

H⊗Rð Þ∪ R⊗Hð Þ X 3

TAD2 Reported events are sent from R5 to R1 (and R1 to R2 if
needed).

R⊗Rð Þ X 2

TAD3 R6 constantly runs while H1, H2, H3, H4, H5, H13 run the
optimizer on R2.

R⊗Rð Þor H⊗Rð Þ∪ R⊗Hð Þ X X 6

TAD4 H13 reports events regarding orders and shipments on R8. H⊗Rð Þ∪ R⊗Hð Þ X 3

TAD5 Reported events are sent from R8 to R3 and then from R3
to R1 if needed.

R⊗Rð Þ X 2

TAD6 H16 creates a company-specific geographic information
system structure.

H⊗Rð Þ∪ R⊗Hð Þ X 3

TAD7 The information regarding the GIS structure is sent from
R7 to R1.

R⊗Rð Þ X 2

Figure 8. Generating workload zones for human, robot, human–robot in the LBN system of SAP S/4 HANA sidecar scenario.
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Step 1: t = t + 1, assess human stress σ = PH
t

KH ,SHð ÞAH
t

� �
:

After assessing human stress levels, the robot (assumed to be an
intelligent SAP system in our case) determines that human stress is
higher than expected. It also double-checks human performance
outputs, such as whether tasks are completed within the given time
frame, to identify any irregularities. Consequently, the robot reviews
the tasks assigned to the human and analyzes how the workload is
distributed, aiming to reduce stress and optimize performance.

Step 2: Task reallocation:

When the human stress level exceeds the upper limit σ ≥ σUBð Þ, the
robot should take over some tasks from the human. Since perform-
ance is calculated based on group outputs using the disjoint union
formula, the overall performance of the group must be considered
when evaluating an individual human’s performance. Therefore,
communication channels are emphasized here rather than focus-
ing solely on humans, robots, or human–robot teams.
Following the stress analysis and performance check, the robot
detects a blockage caused by systems communication (R ⊗ R)
that is hindering human performance. While humans attempt to
resolve the encountered issues, they lack sufficient knowledge to
overcome them, leading to increased stress levels and higher per-
ceived workload.
The robot identifies that tasks T26(Z7) and T27(Z5), which
belong to zone 7 (representing tasks that can be undertaken by
humans, robots, or through collaboration) and zone 5 (represent-
ing tasks that can be undertaken by humans or through collab-
oration), were initially assigned to the (H ⊗H) communication
channel. Since human involvement remains necessary to address
the issues encountered while collaborating with the robot systems,
these tasks will be reassigned from the (H ⊗H) channel to the (H
⊗ R) channel to reduce human stress.
However, during the second iteration, the robot determines that
this reassignment alone may not sufficiently lower human stress
levels, as humans still retain partial responsibility for these tasks
despite robot involvement. Consequently, the robot further detects
that tasks T6(Z6) and T8(Z6), currently assigned to the (H ⊗ R)
channel, can be fully automated and reassigned to the (R ⊗ R)
channel. As a result, T6(Z6) and T8(Z6) will bemoved from the (H
⊗ R) channel to the (R ⊗ R) channel to further alleviate human
workload and stress.

Step 3: Has the job completed?

NO: Go to Step 1
YES: Go to step 4

Step 4: End intervention

Outputs:

i. Updated WH
t , W

R
t , and WHR

t :

WH
tþ1 : T12 Z1ð Þ,T13 Z1ð Þ,T22 Z1ð Þ,T24 Z5ð Þ,f

T25 Z5ð Þ,T26 Z7ð ÞT27 Z5ð Þg

WR
tþ1 : T2 Z2ð Þ,T3 Z2ð Þ,T5 Z2ð Þ,T6 Z6ð Þ,T7 Z2ð Þ,f

T8 Z6ð Þ,T9 Z2ð Þ,T10 Z2ð Þ,T14 Z2ð Þ,T16 Z2ð Þ,
T18 Z2ð Þ,T20 Z2ð Þ,T21 Z2ð Þ,TADD2 Z2ð Þ,
TADD3 Z6ð Þ,TADD5 Z2ð Þ,TADD7 Z2ð Þg

WHR
tþ1 : T01 Z3ð Þ,T02 Z3ð Þ,T1 Z3ð Þ,T4 Z3ð Þ,T6 Z6ð Þ,T8 Z6ð Þ,f

T11 Z3ð Þ,T13 Z3ð Þ,T15 Z3ð Þ,T17 Z3ð Þ,T19 Z3ð Þ,
T26 Z7ð Þ,T27 Z5ð Þ,TADD1 Z3ð Þ,TADD4 Z3ð Þ,

TADD6 Z3ð Þ g
ii. Optimized human stress (σLB ≤ σ ≤ σUB):

Ultimately, human stress levels are effectively minimized,
leading to enhanced overall performance and productivity.

Upon completion of the robot’s intervention process, wherein it
reallocates the system workload among both humans and robots, the
objective is to sustain human stress levels at levels that lead to optimum
human performances. This approach ensures not only the maximiza-
tion of human capacity but also acknowledges human contributions
within theHRC, particularly in light of the robot’s limitless capabilities.

Results

The analysis of a comprehensive case study illuminates the complex
web of communication channels within modern information sys-
tems, showcasing a diverse array, including human-to-human,
robot-to-robot, and human-to-robot interactions. In our pursuit
to augment human performance as pivotal contributors to the
efficacy of intelligent systems, particular emphasis is placed on
human-to-human and human-to-robot communication channels.
Collaborative robots (robots) or intelligent supervisory controllers
adeptly monitor variations in human stress levels, recognizing their
impact on overall system optimization.

Significantly, it becomes evident in our case study that the inter-
play within robot-to-robot communication channels significantly
influences human performance, presenting challenges beyond
human intervention. Consequently, prolonged waiting periods can
exacerbate the workload on individuals over time, culminating in
heightened stress levels. To mitigate this, the intervention of intelli-
gent supervisory controllers becomes imperative to regulate human
stress levels within acceptable parameters. However, current systems
have yet to attain the level of sophistication required to meet this
demand. Notably, recent initiatives within SAP systems underscore
the integration of AI technologies into their operations, leveraging
large language models to gather insights from extensive historical
data.While this approach signifies a step forward, our vision extends
beyond mere utilization of AI as a tool or integration into business
processes. Instead, we aspire to foster comprehensive collaboration
with AI systems on physical, psychological, and cognitive levels. This
goes beyond simplistic chatbot-like functionalities, aiming to deeply
integrate AI into the fabric of user experiences within systems. By
establishing a symbiotic relationship that transcends conventional
human–machine interactions, we seek to unlock the full potential of
AI as a true partner in advancing productivity, creativity, and innov-
ation within organizational frameworks.

Our ultimate goal is to blur the lines between robots/smart systems
and human counterparts, treating them as equals in a symbiotic
partnership. Thus, our model not only envisages robots/systems as
colleagues but also envisions a future where they seamlessly integrate
into human-centric workflows, enriching interactions and driving
collective success.

Conclusions and future works

We thoroughly examined how communication occurs in human–
robot teamwork, viewing communication channels as platforms for
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collaboration between HRS components. We highlighted how vari-
ations in human stress, influenced by indirect factors, impact
performance. Our research introduced conceptual formulas to
identify factors affecting human stress and performance, address-
ing the absence of emotional intelligence in HRCs.

Our main contribution is an algorithm for collaborative robots to
assess the need for intervention based on human stress levels. When
stress exceeds predefined thresholds, tasks are reallocated between
humans and robots to optimize system performance, creating a
feedback loop for autonomous regulation within smart systems.

In a case study, we demonstrated how tasks in an HRS can be
decomposed and classified based on their characteristics. We also
observed mutual performance impacts in different collaboration
types, suggesting that smart systems should integrate smart robots
alongside humans to leverage their reasoning and emotional intel-
ligence. One limitation is the absence of numerical results on
human stress and performance, hindering precise objective out-
comes. While initially focused on qualitative evaluation, our work
provides a foundation for future quantitative research.

While the proposed framework introduces an innovative
approach to stress-aware HRC, several limitations must be
acknowledged. First, the current implementation focuses on a
single-human, single-robot, single-task scenario. However, in
real-world settings, collaborative environments often involve
multiple humans, robots, and tasks. The absence of simulation
or controlled experimentation in such complex n-human–n-
robot–n-task environments limits the generalizability of our find-
ings. Moreover, although the system is designed to focus on the
task a human is attending to at a specific moment (t), we recognize
that other tasks on the to-do list – although not actively being
addressed – may still influence an individual’s stress levels. We
believe these indirect effects are reflected in the individual’s
affective states (e.g., mood) identified in Equation 4; however,
further research is required to validate this assumption.

Second, the framework currently does not incorporate task reallo-
cation strategies under conditions where multiple simultaneous
reallocations are needed, as a human can only focus on one task at
time t. Therefore, if multiple task reallocations are required at the
samemoment, we assume the presence of multiple humans working
on different tasks. In this case, n-human–n-robot–n-task environ-
ments should again be considered. This limitation stems from the
simplified system design and underscores the need for future work
involving dynamic environments and adaptive task management.

Third, although our case study illustrates the potential of the
system, it lacks quantitative performance metrics such as error rates
and task completion times –measures that are essential for real-world
validation. Additionally, the system’s adaptability to varying levels of
AI sophistication across different robotic systems was not evaluated,
which constrains its applicability across heterogeneous platforms.

Temporal changes in human capability and stress levels over
extended periods were also not explored, highlighting the need for
long-term adaptation mechanisms. This limitation stems from the
absence of a long-term experimental setup, which prevented the
observation and analysis of how human states evolve over time. As a
result, the system’s ability to adapt to these changes remains an
open area for future research.

Finally, while Section Stress measurement in HRC systems
enhances the connection to psychological and ergonomic research,
future work will explicitly align themodel with established theories,
such as the Yerkes-Dodson Law, to strengthen its theoretical foun-
dation. The limitations identified here will serve as the foundation
for future extensions of this research.
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