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Abstract

Mixing rules model how the physical properties of a polymer, such as its relaxation modulus
G(1), depend on the distribution w(m) of its molecular weights m. They are of practical
importance because, among other things, they allow estimates of the molecular weight dis-
tribution (MWD) w(m) of a polymer to be determined from measurements of its physical
properties including the relaxation modulus. The two most common mixing rules are “sin-
gle” and “double” reptation. Various derivations for these rules have been published. In this
paper, a conditional probability formulation is given which identifies that the fundamental
essence of “double” reptation is the discrete binary nature of the “entanglements”, which
are assumed to occur in the corresponding topological model of the underlying polymer
dynamics. In addition, various methods for determining the MWD are reviewed, and the
computation of linear functionals of the MWD motivated and briefly examined.

1. Introduction

In the study of macromolecules, the single most important concept is, from various
practical points of view including molecular characterization, their molecular weight
distributions (MWD) w(m). The key role played by the higher molecular weight
components in determining the properties of synthetic polymers and bio-polymers,
such as grain flour doughs, is well documented (see, for example, Dealy and Wiss-
burn [4], Doi and Edwards [5] and MacRitchie [14]). Three examples are discussed
in Section 2 with the dual purpose of motivating the material examined in this paper
and presenting appropriate background.

In the study of polymer dynamics, there is a strong interplay between theory and
experiment. The nature of the theories developed to date (Larson [12]) is a direct re-
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flection of the constraints imposed by the results obtained from various measurements
performed on different polymers such as single and double step-strain experiments
as well as extensional experiments. From a theoretical perspective, much effort has
been devoted to the formulation of realistic constitutive relationships including the
integral constitutive relationships of Rivlin and Sawyers, K-BKZ, and Wagner (Bird
et al. [2]). From a practical and industrial angle, there is a need to formulate relation-
ships between the measurable physical and mechanical properties of polymers and
their MWD. Because these relationships aim to characterize how the various molecu-
lar weight components in a polymer combine to yield an observed property, they are
commonly referred to as mixing rules.

With the advent of metallocene catalyst technology, it is now possible to economi-
cally produce, in commercial quantities, general-purpose polymers such as polyethy-
lene and polypropylene with precisely controlled MWD. This ability to control the
MWD challenges the rheologist to establish appropriate mixing rules, which can be
exploited to specifically design a polymer’s MWD so that improved processibility and
physical properties are achieved.

The formulation of mixing rules is a fairly controversial matter. All molecular
motions in a condensed phase, such as a polymer melt or concentrated solution,
are necessarily cooperative by virtue of the close packing and strong interaction
between adjacent molecules. This fact potentially makes the construction of mixing
rules a complex process and has spawned the search for simplified models which
characterize the essence of polymer dynamics in a particular context. Idealized
models, such as the tube and reptation concept of de Gennes (Doi and Edwards [5]),
ignore the complexity of local cooperative motion by arguing that these interactions
are unimportant on sufficiently long time scales. In particular, Doi and Edwards [5]
introduced the concept of single (tube) reptation to derive theoretical relationships
between the relaxation modulus G(r) and the MWD for a polymer (where ¢ denotes
time).

Because of the failure of the single reptation theory to adequately predict key exper-
imental data, des Cloiseaux [3] (and, independently, Tsenoglou [17, 18]) formulated
the idea of double reptation. The conceptual differences between single and double
reptation are not well understood because of the ways in which they have been derived.
For example, the derivation given by Tsenoglou is algebraically complex whereas that
of des Cloiseaux is physical and intuitive. In fact, Mead [16] has stated “The fun-
damental essence of “double reptation” is that the “entanglements” are modelled as
discrete binary contacts, though this is not obvious or completely accepted”. Con-
sequently, a formulation for these reptation mixing rules is required which exposes
more explicitly the underlying topological processes of the molecular dynamics being
assumed. This is the primary goal of this paper.

The remainder of the paper is organized in the following way. Three examples of
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the importance of the MWD in applications are examined in Section 2, to provide
motivation as well as present appropriate background. A brief review of various
methodologies for the determination of the MWD of a polymer from a variety of
experimental measurements is given in Section 3, along with a discussion of the
evaluation of linear functionals defined on the MWD. The formulation of the single
and double reptation rules using a conditional probabilistic argument is given in
Section 4.

2. Background and exemplification

2.1. Rheological mixing rules As explained above, a relationship between a mea-
sured mechanical or physical property of a polydisperse polymer (ensemble of macro-
molecules with more than one molecular weight) and its MWD is called a mixing
rule. The mechanical properties are a manifestation of the microscopic composition
of the material. For linear flexible polymer melits, it has been established theoretically
that this composition can be generically characterized by the MWD of the polymer.
Physically, this result derives from the notion that polymers are so much larger than
ordinary molecules that the specific details of the chemical appendages decorating the
chain are averaged out and the dominant feature remaining is the intrinsic topology of
the chain.

In general, it must be assumed that each component of the MWD will contribute
to the observed mechanical properties. So a rheological property is often defined in
terms of the MWD w(im) as a first-kind Fredholm integral equation

g®) = /00 k(m, t)w(m) dm, 1)
0

with the kernel k(m, t) weighting the MWD in a manner which reflects the relative
contribution of each component of the MWD to the property under consideration.
When the measurement corresponds to the relaxation modulus G(t), one obtains for
single reptation the mixing rule

g = GQ), k(m,t) = F(m, 1), (2)
while for double reptation one has

g =vG®), kim,1)=F(m,1), 3

where F(m, t) denotes the normalized relaxation function. For a monodisperse relax-
ation function characterized by a single time constant r (m), one has

F(m, t) = exp(—t/t(m)). 4)
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In a recent paper, Anderssen and Mead [1] generalized the reptation mixing rule
concept through the introduction of a parameter y such that

g =GOV, k(m,1) = [F(m, 0]/, 0<y. &)

The motivation for the introduction of this parameterization was two-fold: it represents
a sensible mathematical expedient, since it includes single and double reptation as the
special cases when y = O and y = 1, respectively; and it can be given, on the basis of
recent research (see, for example, Maier et al. [15]), a strong rheological and physical
justification.

2.2. Molecular weight scaling of rheological properties Numerous authors (such
as Zeichner and Patel [21], Locati and Gargani [13] and Wasserman [19]) have estab-
lished that key rheological properties of synthetic polymers, such as the zero-shear
viscosity and the steady-state recoverable compliance, have natural molecular weight
scalings (MW-scalings). For example, for a variety of polymers, the following MW-
scaling, with parameterization K, p and g, holds for the zero-shear viscosity 7o;
namely,

n0=K(Mw)p(Q)q7 Q=Mw/Mn’

where M, and M, denote, respectively, the weight-averaged and the number-averaged
MWD. In addition, Wasserman [19] has hypothesized the following MW-scaling law

M, (w) ?
Ml(w)z) ’

No = K(Mw)p (
where M, (w) denotes the a-moment of the MWD, namely,
o0
M,(w) = f m*w(m)dm. 6)
0

For various reasons, scaling plays a central role in both experimental and theoretical
polymer science. On the one hand, it indicates how various experimental rheological
data might be modelled. On the other, it represents a way in which to constrain the
choice of theoretical models of polymer dynamics.

By analogy with the definitions of zero-shear viscosity and steady-state recoverable
compliance (Dealy and Wissburn [4]), one can define a rheological parameter as any
algebraic expression which is a function of the moments

Ma(G)=/ t*G(@)de
0
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for various choices of the parameter . Normally, the algebraic expressions will be
simple ratios of such moments as typified by the following formulas for the zero-shear
viscosity 1o and the steady-state recoverable compliance J2:

no = Mo(G), J? = M(G)/(Mo(G)).

It follows naturally from this definition that the problem of the molecular weight

scaling of rheological parameters reduces to an examination of the molecular weight

scaling of the moments M,(G). This has been pursued in some detail in a recent

paper by Anderssen and Mead [1]. However, if necessary, one could extend the above

definition of a rheological parameter to be any algebraic expression which is a function .
of moments of the form

/ood)(t)G(t) dt,
0

for various choices of the function ¢ (). Consequently, in the study of polymer
dynamics, various linear functionals such as M,(G) and M, (w) must be evaluated
from observational data. Ramifications of this fact are examined in Section 3.

2.3. Glutenin sub-units and the breeding of new wheat varieties Experimen-
tal evidence, in terms of correlations, has confirmed that the glutenin proteins in
wheat flour dough play a crucial role in determining baking performance and quality
(MacRitchie [14]). The amount and nature of the glutenin in a dough are determined
by the wheat variety and, hence, the genes which distinguish one variety from an-
other. As far as the glutenin proteins are concerned, the genes control the expression
(production) of the lower and higher molecular weight glutenin monomers (glutenin
sub-units) which, through disulphide (valency) bonding, combine in some unknown
preferential stochastic manner to form the ensemble of glutenin protein polymers
which characterize a given wheat variety. The actual proportion of the glutenin with
respect to the other components within a wheat endosperm, which includes other pro-
teins, starches and lipids, will be a function of the environmental conditions in which
the wheat is grown as well as its genetics. The types of lower and higher molecular
weight glutenin sub-units, as well as the ratios in which they are expressed, change
from one wheat variety to the next. Consequently, if one wishes to breed new strains
of wheat through genetic manipulation, then there is a need to understand (a) which
genes control the types and ratios of the glutenin sub-units, (b) the molecular weights
of the glutenin proteins expressed by a particular set of genes, and (c) the relationship
(correlations) between the MWD of the glutenin present in a given wheat variety and
baking performance. Among other things, this process will require estimates to be
made of the MWD of the glutenin.

However, since the MWD of an ensemble of macromolecules cannot be determined
directly, some appropriate indirect measurement procedure must be applied. A wide
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variety of procedures have been developed, including size exclusion high performance
liquid chromatography (size exclusion HPLC), field flow fractionation (FFF), equilib-
rium sedimentation (through centrifuging) and the inversion of mixing rules. A brief
review of these methods, including their essential mathematical differences, is given
in the next section.

3. MWD inversion methodologies

Though a wide variety of procedures can be applied to recover an estimate of the
MWD of a given polymer, the focus here is on the following four methods: size
exclusion HPLC, field flow fractionation (FFF), equilibrium sedimentation (through
centrifuging) and the inversion of mixing rules which take the form of a first-kind
Fredholm integral equation such as (1). These four methods have been chosen because
they illustrate quite different aspects of the ways in which an MWD can be recovered
from observational data. :

The first three correspond to different implementations of the separation-and-mea-
surement ansatz:

1. The Separation. Develop an accurate separation strategy which allows

(a) the original complex material to be separated into easily characterized com-
ponents in terms of how they are measured; and

(b) the measurements performed on the separated components to be easily and
readily converted to the information required.

2. The Measurement. Formulate a mathematical model which allows the required
information to be defined in terms of the measurements.

Clearly, the success of any separation-and-measurement procedure will depend on the
nature of the trade-off achieved in terms of

(i) the Accuracy (closeness) with which the separated components can be mea-
sured (in terms of the complexity of the mathematical model which defines the
measurements as a function of the required information); and

(i1) the Efficiency (stability) with which the separation can be performed without an
undue loss of information.

Within this context, any measure of the complexity of a mathematical model must re-
flect the extent to which the measurements have smoothed out the specific information
required and, hence, the extent to which the model is improperly posed.

For example, when the mathematical model corresponds to a first-kind integral
equation (such as (1)), the degree to which the model is improperly posed can be
characterised in terms of smoothness of the kernel. Intuitively, the smoother the
kernel the more improperly posed the corresponding integral equation model, since
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the smoothing applied by the kernel to the required information will be greater. In
fact, as is clear from Elliott [6], the first-kind integral equations with Cauchy singular
kernels cease to be improperly posed and behave more like second-kind integral
equations.

The philosophy behind such separation-and-measurement procedures is that the
more accurate the measurement step is in terms of the simplicity of the mathematical
model involved, the less improperly posed will be the underlying formulation relating
the measurements to the phenomenon of interest. Thus, the purpose of the separation
step, assuming that it can be performed efficiently (without any major loss of informa-
tion), is that it yields measurements for which there is a simple and direct relationship
connecting them to the required information.

In both the Size Exclusion HPLC and the FFF techniques, the basic separation pro-
cess is elution (elutriation), though the technical and physical implementation details
vary greatly depending on the type of information being sought. The Encyclopaedia
Britannica [22, p. 161] states

“Elutriation is a method of separation of particles. The particles are placed in a
vertical tube in which water (or other fluid) is flowing slowly upwards. The particles
fall through the water at speeds that vary with their sizes and densities. If the flow rate of
the water is slowly increased, the most slowly sinking particles will be swept upwards
with the fluid flow and removed from the tube. Intermediate particles will remain
stationary, and the largest or densest particles will continue to migrate downwards.
The flow can again be increased to remove the next size of particles. Thus, by careful
control of flow through the tube, particles can be separated according to size.”

Size exclusion HPLC In this type of elution procedure, the “other fluid” is a static
gel, which impedes the downward migration of particles on the basis of their effec-
tive hydrodynamic diameters, which are directly related to their molecular lengths
(weights). Compared with electrophoresis methods, where the largest particles accu-
mulate in bands at the top of the column and the smallest at the bottom, size exclusion
HPLC works in the opposite manner with all particles passing through the column
with the smallest particles exiting last and the largest exiting first. For an ensemble
of particles consisting of separate monodisperse fractions, the size exclusion HPLC
separation yields as measurements the residence times of each of the monodisperse
fraction along with their relative concentrations. Within a cereal chemistry context,
such as a study of the genetics of glutenin sub-units, one is often only interested in the
existence or otherwise of a monomer of a particular molecular weight. Consequently,
the measurement process reduces to one of simply identifying the various peaks in the
observed elution curve. Genetic decision-making is thereby reduced to categorical
process of comparing the HPLC curves corresponding to different wheat varieties.
If some estimate of the molecular weights in the various bands is required, then
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monodisperse standards of known molecular weights can be added which introduce
additional peaks in the observed curves. A qualitative assessment of the molecular
weights of particular monomers can then be inferred from the relative position of the
corresponding bands and the bands produced by the standards. In this situation, the
nature of the information required allows the mathematical modelling involved to be
reduced to comparison and correlation. Here, the accuracy of the method is high if all
that is required for decision-making purposes is a comparative assessment of various
size exclusion HPLC curves, while its efficiency will depend heavily on the design
and manufacture of the gel and the column, and the care with which the experiments
are performed.

Field flow fractionation In this type of elution procedure, the separation is not
achieved through a changing vertical flow, but through a cross-field flow being super-
imposed on a vertical (or horizontal) forward channel flow. The tube is replaced by
a long and wide, but thin, ribbon-like channel. The direction of the forward flow is
along the length of the channel, with the cross-field flow perpendicular to the length
and width of the channel and, therefore, occurring through the thinnest section of the
channel. It is the introduction of this cross-field flow modification by Giddings [11]
which allowed elution separation to be placed on a more quantitative foundation. In
the fluid flowing along the length of the ribbon-like channel, a parabolic-like profile
forms into which the particles to be separated are inserted. Then, because of the
back diffusion of the particles against the cross-field flow, the lower hydrodynamic
diameter and, thus, lower molecular weight particles attain an equilibrium distribution
in the higher velocity sections of the profile, while the larger hydrodynamic diameter
and, thus, larger molecular weight particles attain an equilibrium distribution in the
lower velocity sections of the profile. One then measures the residence times of the
various groups of particles as they exit from the channel. The residence times will
correlate positively with the hydrodynamic diameters and, thus, the molecular weights
of the particles (assumed to be sphere-like). From Stokes law and the Stokes-Einstein
relation, a formula relating the hydrodynamic diameters of the particles to the elution
times can be derived. These hydrodynamic diameters can then be reinterpreted as
molecular weights, either directly through the formulation of appropriate mathemati-
cal models, or indirectly through the use of standards with known molecular weights.
For the determination of an MWD, the accuracy of FFF is encapsulated in the cor-
rectness of the mathematical model which is invoked to convert the residence times to
hydrodynamic diameters and hence to molecular weights, while the efficiency of FFF
depends on the success of the separation in terms of how correctly the residence times
and concentrations represent the polydispersity of the polymer being tested. If all that
is required is some qualitative comparison of the residence times against those for
some standard, then the associated accuracy and efficiency are similar to that for the
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size exclusion HPLC. In an FFF analysis, the efficiency is impaired in situations where
there is not a consistent correlation between the measured hydrodynamic diameters
of the particles and their corresponding molecular weights. Such an inconsistency
can occur when the macromolecules being examined in an FFF experiment have a
confirmation different to the calibration standard, or when comparing two different
MWDs of macromolecules with quite different confirmation properties.

Equilibrium sedimentation In this situation, the separation is achieved through
centrifuging a sample of the polymer in solution. The measurements are the con-
centrations c(£) of the polymer at the positions (distances) & from the centre of the
centrifuge. If it is assumed that the effect of the centrifuging can be modelled as
equilibrium sedimentation, then the resulting relationship (Fujita’s equation) relating
the measurements to the required MWD takes the form [§]

Mmax ) _
f@)=£ Am expUAME) ) mydm, £ (&) = c(€)/co,

1 — exp(—Am)
where
co = the initial concentration of the polymer;
£ = (-0 -1
r = the radial distance from the centre of the centrifuge;
r, := theradial distance to the meniscus;
r, = the radial distance to the bottom;
A = (1= Vp)o®(r} —r?)/(2RT);
w = the angular velocity of the centrifuge;
p = the density of the solution;
V = the partial specific volume of the polymer;
T := the absolute temperature; and
R := the universal gas constant.

Because of the strongly improperly posed nature of Fujita’s equation, this is an
example of a situation where the separation has not achieved much. Even though a
separation has been achieved, one is still left with the need to apply regularization,
or similar techniques, in order to obtain meaningful information about the MWD
of the polymer from the numerical inversion of this equation with respect to given
measurements of f (&) [9]. Here, for the determination of an MWD, the accuracy is
quite poor, while the efficiency is good, because of the quality of modern centrifuge
devices.

Inversion of first-kind Fredholm integral equation mixing rules The alternative
strategy to separation-and-measurement is to focus on a measurement which is rel-
atively easy to perform and for which there is a corresponding mathematical model
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connecting such measurements to the MWD. In the current context, this leads back to
the inversion of mixing rules which take the form of the first-kind Fredholm integral
equation (1). Such an approach involves the following steps: (i) measurement of the
relaxation modulus G(¢); (ii) formulation of the model relating G(z) to w(m) (that is,
the appropriate mixing rule); and (iii) the inversion of this model to recover an estimate
of w(m). However, as indicated above and explained in some detail in Mead [16],
in many practical contexts, it is not w(m) which is required for decision-making pur-
poses, but some linear functional defined on w(m) such as the moments entering the
experimentally derived and hypothesized MW-scalings discussed briefly in Section 2.
A more detailed discussion of the merits of computing appropriate linear functionals
defined on w(m), rather than w(m) itself, can be found in Anderssen and Mead [1].
On the other hand, Wood-Adams and Dealy [20] have examined the limitations asso-
ciated with inverting viscosity measurements in order to obtain estimates of w(m). In
such procedures, the accuracy is marginal, while the efficiency, because of the quality
of modern rheological instruments, is quite high.

The trade-off between a more direct experimental approach and an indirect math-
ematical modelling alternative is aptly illustrated by comparing the separation-and-
measurement procedures with the mixing rule alternatives. In the former, the goal,
where possible, is to obtain measurements which approximate closely (with a high
accuracy) the required solution, so that the mathematical relationship which relates
the measurements to the solution is relatively simple, and therefore quite efficient
to solve computationally more or less as it stands. The challenge is to perform the
measurements with a minimal loss of information, with the design of experiments
and instruments becoming the prime consideration. In the latter, one performs careful
measurements where the loss of information about the phenomenon being examined
is minimal, but where the relationship which relates the measurements to the required
solution is improperly posed because of the smoothing which has been performed
on the solution in order to produce the measurements. The challenge is to invert
the relationship in a way which allows the maximum amount of infermation about
the solution to be recovered from the measurements. Here, the prime consideration
becomes the choice of the stabilization which is applied to invert the relationship in
an efficient (and stable) manner. Consequently, the choice of a preferred methodology
represents a balancing which must be managed between experimental and mathemat-
ical complexity, with respect to the type of measurements being performed and the
solution being sought.

4. A conditional probabilistic derivation for single and double reptation

Initially, it is necessary to recall some background about the single reptation con-
cept. For this purpose, because it relates naturally to the subsequent deliberations
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below, the derivation given by des Cloiseaux [3] is followed. Consider a polydisperse
polymer melt. It will be a mixture of various monodisperse molecular chains A, of
molecular weight m 4 and relaxation times 7,4, with N4 denoting the number of chains
A, and N the total number of chains. For the molecules A, which are assumed to
relax in their individual tubes of influence, the expected proportion of their initial tube
lengths, which has not been renewed after time ¢ (that is, the expected proportion of
the unrelaxed stress remaining after time ¢) is given by (de Gennes {10])

8 & Cn + 1)t
pa(t) = s Z n + 1)2 P[—"_TA—], Ty X mf,. (7)_

n=0

Probabilistically, p4(¢) corresponds to the probability that a randomly chosen point
on the tube is still in its original stress state at time ¢, If it is assumed that the number
of stress contacts (simple (single) “entanglements™) is proportional to the number
of monomers, then the mean fraction of unrelaxed stress, after a time ¢, must be
proportional to

m.(1) =) papalt), ®)
A

where ¢, ~ (N4/N) is the volume fraction of the chains A in the polymer, and
the subscript s stands for “single” reptation. Doi and Edwards [5] assumed that the
(stress) relaxation modulus G(¢) is proportional to m,(¢) and thereby concluded that

G(t) = Gom,(t), Gy = constant. 9

It is now a simple matter to go to the limit of a continuous distribution of molecular
weights for the polydisperse melt, and thereby derive the single reptation model given
above in (1) and (2) with the normalized relaxation function given by the first term in
the expansion (7); namely, (4).

We are now in a position to derive the single and double reptation mixing rules using
purely conditional probabilistic arguments. What is interesting is that the form of m; (¢)
can be derived without the need to invoke any assumptions about the number of stress
contacts being proportional to the number of monomers. In addition, that argument
can be generalized to derive the corresponding mean fraction of unrelaxed stress, after
a time ¢, for double reptation, if it is simply assumed that the “entanglements” are
discrete binary contacts. The consequences of this fact are quite important. Either one
is deriving the correct model but from within a framework which is not valid for the
phenomenon under consideration, or the conditional probability framework yields an
independent basis from which to interpret single and double reptation, and therefore
a natural framework from within which to formalize and generalize the reptation
concept.
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The single and double reptation derivations for mixing rules are based on different
models of the actual “entanglements” occurring in a polymer. It is therefore necessary
to make this distinction clear in the subsequent deliberations. In particular, the single
reptation “entanglements” will be referred to as s-entanglements while the double will
be referred to as d-entanglements.

The single reptation probabilistic derivation The starting point is to simply define
m,(t) to be the probability of an s-entanglement at time ¢; namely,

m(t) = Pr(s-entanglement at time ?).

The only assumptions which are made are that

(Sa) the s-entanglements are mutually exclusive (exactly one occurs) events; and
(Sb) the conditional probability Pr(s-entanglement at time ¢ | chain A) is equal to

pa(®).
On the basis of (Sa), it follows from the Law of Total Probability (Feller [7, p. 116])
that

my(t) = Z Pr(entanglement at time ¢& chains A)
A

and, hence, from the basic formula for conditional probability, that

m(t) = Z Pr(entanglement at time ¢ | chains A) Pr(chains A).
A

However, on applying assumption (Sb) that Pr(entanglement at time ¢ | chains A) =
pa(?) and that Pr(chains A) = N, /N, it follows that

m,(£) =D _ pa(t)(Na/N).
A

The result (8) now follows on recalling that ¢4 ~ N, /N, which, as explained above,
yields the standard single reptation model, on applying the appropriate limiting argu-
ment,

The double reptation probabilistic derivation The starting point is to again define
my(t), the counterpart of m,(z) when discrete binary events between different chains
are assumed to be the basis for the “entanglements”, to be the probability of a d-
entanglement at time #; namely,

m4(t) = Pr(d-entanglement at time ¢).

The only assumptions which are made are that
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(Da) along any polymer chain, the d-entanglements are mutually exclusive events;
and

(Db) each polymer chain operates independently of any other (the occurrence of one
is not influenced by any of the others); from which it follows that

Pr(d-entanglement at time ¢ | chains A& B)
= Pr(d-entanglement at time ¢ | chain A) Pr(d-entanglement at time ¢ | chain B)

and

(Dc) the conditional probability Pr(d-entanglement at time ¢ | chain A) is equal to
pa(t). '
On the basis of (Da), it follows from the Law of Total Probability that

my(t) = Z Pr(d-entanglement at time ¢ between chains A&B)
A.B

and, hence, from the basic formula for conditional probability, that

my(t) = Z + Z Pr(d-entanglement at time ¢ | chains A&B) x Pr(chains A&B).

A#B  A=B

Applying assumptions (Db) and (Dc), it follows that

ma(t) =Y pa(®)ps(Y(Na/NYNs/N) + D pA(ONA(Ns = 1)/N(N = 1).
A=B

A+£B

On recalling that ¢, ~ N4 /N and ¢pp ~ N s/ N, the last expression becomes

ma(t) =) Gabspa(dps(t) = [m (O]
A, B

and, hence, on invoking the assumption that the relaxation modulus will now be
proportional to m4(¢) (the natural counterpart to (9)),
G(1) = Gomy(t) = Go[m, (1))

It is now a simple matter to go to the limit of a continuous distribution of molecular
weights for the polydisperse melt and thereby derive the double reptation model given
above in (1) and (3) with the normalized relaxation function given by (4).

Acknowledgement

In various ways, the structure and content of this paper has benefitted from discus-
sions with Professor Dave Mead and Dr Mike Southan, which the authors acknowledge
with thanks.

https://doi.org/10.1017/51446181100011573 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100011573

(14]

The MWD problem 39

Note added in Proofs

A novel and significant contribution to the analysis of the molecular weight distribu-
tion problem has been made by W. Thimm, C. Friedrich, M. Marth and J. Honerkamp,
“On the Rose spectrum and the determination of the molecular weight distribution
from rheological data”, J. Rheology 44 (2000), 429-438.
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