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Local Shtukas and Divisible Local Anderson
Modules
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Abstract. We develop the analog of crystalline Dieudonné theory for p-divisible groups in the arith-
metic of function fields. In our theory p-divisible groups are replaced by divisible local Anderson
modules, and Dieudonné modules are replaced by local shtukas. We show that the categories of di-
visible local Anderson modules and of effective local shtukas are anti-equivalent over arbitrary base
schemes. We also clarify their relation with formal Lie groups and with global objects like Drinfeld
modules, Anderson’s abelian t-modules and t-motives, and Drinfeld shtukas. Moreover, we discuss
the existence of a Verschiebung map and apply it to deformations of local shtukas and divisible local
Anderson modules. As a tool we use Faltings’s and Abrashkin’s theories of strict modules, which we
review briefly.

1 Introduction

In the arithmetic of number fields, elliptic curves and abelian varieties are important
objects. Their theory has been extensively developed in the last two centuries and
their moduli spaces have played a major role in Faltings’s proof of the Mordell con-
jecture [Fal83,CS86], the proof of Fermat’s Last Theorem by Wiles and Taylor [Wil95,
TW95, CSS97], and the proof of the Langlands correspondence for GL,, over non-
archimedean local fields of characteristic zero by Harris and Taylor [HTO01]. A use-
ful tool for studying abelian varieties and their moduli spaces are p-divisible groups.
More precisely, for an elliptic curve or an abelian variety E over a Z,-algebra R the
p-divisible group E[p=] = lim E[p" ], also called the Barsotti-Tate group, captures the
local p-adic information of E. One reason why E[ p*°] is a useful tool for the study of
E is that the complicated arithmetic data of a p-divisible group over a Z,-algebra R
in which p is nilpotent can be faithfully encoded by an object of semi-linear algebra,
its Dieudonné module.

Elliptic curves and abelian varieties have analogs in the arithmetic of function
fields. Namely, Drinfeld [Dri74, Dri87] invented the notions of elliptic modules (to-
day called Drinfeld modules) and the dual notion of F-sheaves (today called Drinfeld
shtukas). These structures are function field analogs of elliptic curves in the follow-
ing sense. Their endomorphism rings are rings of integers in global function fields
of positive characteristic or orders in central division algebras over the later. On the
other hand, their moduli spaces are varieties over smooth curves over a finite field.
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Through these two aspects in which global function fields of positive characteristic
come into play, Drinfeld shtukas and variants of them proved to be fruitful for estab-
lishing large parts of the Langlands program over local and global function fields of
positive characteristic in works by Drinfeld [Dri74,Dri77,Dri87], Laumon, Rapoport,
and Stuhler [LRS93], L. Lafforgue [Laf02], and V. Lafforgue [Laf18]. Beyond this the
analogy between Drinfeld modules and elliptic curves is abundant.

In this spirit, Anderson [And86] introduced higher dimensional generalizations
of Drinfeld modules, called abelian t-modules. These are group schemes which carry
an action of the polynomial ring F,[¢] over a finite field I, with r elements subject to
certain conditions. Abelian t-modules are the function field analogs of abelian vari-
eties [BH09]. Although Anderson worked over a field, abelian t-modules also exist
naturally over arbitrary F,[¢]-algebras R as base rings (Definition 6.5). They pos-
sess an (anti-)equivalent description by semi-linear algebra objects called t-motives,
which are R[t]-modules together with a Frobenius semi-linear endomorphism (Def-
inition 6.2 and Theorem 6.6) and are a variant and generalization of Drinfeld shtukas.
Through the work of Drinfeld and Anderson it was realized very early on that a Drin-
feld module or abelian t-module over a field is completely described by its t-motive.
The same is true over an arbitrary F, [ ¢]-algebra R, as is shown for example in [Har17].
So in a way the situation in function field arithmetic is much better than in the arith-
metic of abelian varieties; the f-motive is a “global” Dieudonné module that integrates
the “local” Dieudonné modules for every prime in a single object.

Correspondingly it is not difficult to come up with a definition of a Dieudonné
module at a prime p c F,[¢] of an abelian t-module. It should arise as the p-adic
completion of its f-motive; see Example 6.7 (ii) for details. The object one ends up
with is an effective local shtuka. To define these, let p = (z) for a monic irreducible
polynomial z € F,[t] and let Fy = F,[t]/p be the residue field. Then lim F,[¢]/p" =
F4([z]]- Let R be an I, [[z]]-algebra in which the image { of z is nilpotent. An effective
local shtuka over Risapair M = (M, Fjy) consisting of alocally free R[[ z]]-module M
of finite rank and an isomorphism Fj;: U;M[Z%(] = M[Z%(] with Fy (o, M) c¢ M.
Here o is the endomorphism of R[[z]] that extends the g-Frobenius endomorphism
0y = Frobg,r:b > b forb € Rby o, (2) = z,and 0y M := M®g(],0; R[[2]]. Now the
goal of crystalline Dieudonné theory in the arithmetic of function fields is to describe
the analogs of p-divisible groups that correspond to effective local shtukas. In the
present article we call them z-divisible local Anderson modules as in the following
definition, and we develop this theory under the technical assumption that { € R is
nilpotent. This theory was already announced in [Har05,Har09, Har1l,HK19] and was
used in [Harl7].

Definition 7.1 A z-divisible local Anderson module over R is a sheaf of Fy[[z]]-
modules G on the big fppf-site of Spec R such that

(i) G is z-torsion, that is, G = lim G[z"], where G[z"] = ker(z": G — G).
(ii) G is z-divisible, that is, z: G — G is an epimorphism.
(iii) For every n the IF;-module G[z"] is representable by a finite locally free strict
IF4-module scheme over R in the sense of Faltings (Definition 4.7).
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(iv) Locally on Spec R there exists an integer d € Zsg, such that (z - {)? = 0 on wg
where wg := 1<£n wg[zr] and wgpn) = €7 QIG[ for the unit section ¢ of
G[z"] over R.

z"]/ SpecR

Such objects were studied in the special case with d = 1in work by Drinfeld [?],
Genestier [Gen96], Laumon [Lau96], Taguchi [Tag93], and Rosen [Ros03]. General-
izations for d > 1 and their semi-linear algebra description by the analog of Dieudonné
theory were attempted by the first author [Har05, Definition 6.2] and by W. Kim
[Kim09, Definition 7.3.1]. But unfortunately both definitions and the statements about
the analog of Dieudonné theory [Har05, Theorem 7.2] and [Kim09, Theorem 7.3.2] are
wrong. The problem lies in the fact that the strictness assumption from (iii) is miss-
ing. Our above definition corrects this error. It generalizes Anderson’s [And93, §3.4]
definition of formal #-modules that considered the case where the G[z"] are radicial
and G is a formal Iy [[z]]-module in the following sense.

Definition 1.1  In this article we define a formal Fy[[ z]]-module over an [F;-scheme
S to be a formal Lie group G equipped with an action of I, [[z]]. In particular, we do
not impose a condition for the I, [ z]]-action on wg.

The description of z-divisible local Anderson modules by effective local shtukas is
deduced from Abrashkin’s [Abr06] anti-equivalence between finite locally free strict
[F4-module schemes over Spec R and finite I ;-shtukas. The latter are pairs (M, Fa)
consisting of a locally free R-module M of finite rank and an R-module homomor-
phism Fy: 0, M — M. We define finite and local shtukas in Section 2 and we recall
Abrashkin’s results in Section 5. His equivalence is given by Drinfeld’s functor

(M, Far) = Drg(M, Fyr) := Spec( €|>90Sym;’2 M)[(m® - Fy(o;m):m e M),

and its quasi-inverse defined on a finite locally free strict IF ;-module scheme G as
G- M q (G) = HomR—groups,IFq-lin ( G, Gu,R )’

by which we mean the R-module of IF,;-equivariant morphisms of group schemes over
R on which the Frobenius Fy, () is provided by the relative g-Frobenius of the ad-
ditive group scheme G,z over R. Various properties of M are reflected in properties
of Dry(M ) (Theorem 5.2). The functors Dr, and M g are extended to effective local
shtukas M and z-divisible local Anderson modules G by

M > Dry (M) = lim Dry (M /2" M), G = M., (G) i=lim M ,(G[2"]).

n n

Generalizing Anderson [And93, §3.4], who treated the case of formal IF,[[z]]-mod-
ules, we prove the following theorem.

Theorem 8.3 (i) Thetwo contravariant functors Drq and M , are mutually quasi-

inverse anti-equivalences between the category of effective local shtukas over R and the
category of z-divisible local Anderson modules over R.
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(i) Both functors are IF4([z]]-linear, map short exact sequences to short exact se-
quences, and preserve (ind-)étale objects.

(iii) G is a formal IF ([ z]]-module if and only if Fy; is topologically nilpotent, that is
im(Fj;) c zM for an integer n.

(iv) The R[[z]]-modules wpy, (a,F,) and coker Far are canonically isomorphic.

In Section 6 we explain the relation of z-divisible local Anderson modules and
local shtukas to global objects like Drinfeld modules [Dri74], Anderson’s [And86]
abelian t-modules and t-motives, and Drinfeld shtukas [Dri87]. In particular, if E is
a Drinfeld-F,[t]-module or an abelian t-module over R, then the z"-torsion points
E[z"] of E form a finite locally free F,[t]/(z")-module scheme over R. By Exam-
ple 6.7 (ii), the limit G := E[z*] := lim E[z"] in the category of fppf-sheaves of
F4[[z]]-modules on SpecR satisfies G[z"] := ker(z":G — G) = E[z"] and is a
z-divisible local Anderson module over R. Moreover, the associated effective local
shtuka M, (G) from Theorem 8.3 arises as the z-adic completion of the t-motive as-
sociated with E; see Example 6.7 (ii).

In Section 7 we present the above definition of z-divisible local Anderson mod-
ules G and give equivalent definitions. We also introduce truncated z-divisible local
Anderson modules such as G[z"] (Proposition 9.5). In Section 9 we investigate, for
{ = 0 in R, the existence of a zd-Verschiebung V,a ¢ for (truncated) z-divisible lo-
cal Anderson modules G, respectively for local shtukas, with V4 g o F; ¢ = Z4 - idg
and Fyg o Vyug = 2% - idys G, where Fg g is the relative g-Frobenius of G over R.
We use the z¢-Verschiebung in Theorem 9.8 to prove that lifting a z-divisible local
Anderson module from R/I to R, when I? = (0), is equivalent to lifting the Hodge
filtration on its de Rham cohomology. In Section 10 we use the z¢-Verschiebung to
clarify the relation between z-divisible local Anderson modules G and formal F,[[z]]-
modules. Following the approach of Messing [Mes72], who treated the analogous sit-
uation of p-divisible groups and formal Lie groups, we show that a z-divisible local
Anderson module is formally smooth (Theorem 10.4) and how to associate a formal
[F4[[z]]-module with it (Theorem 10.7). We also discuss conditions under which it
is an extension of an (ind-)étale z-divisible local Anderson module by a z-divisible
formal F; [[z]]-module (Proposition 10.16) and we prove the following corollary.

Corollary 10.12  There is an equivalence of categories between that of z-divisible local
Anderson modules over R with G[z] radicial, and the category of z-divisible formal
F4([z]]-modules G with G[z] representable by a finite locally free group scheme, such
that locally on Spec R there is an integer d with (z — {)® = 0 on wg.

In Section 4 we explain Faltings’s notion of strict IF;-module schemes and give
details additional to the treatments of Faltings [Fal02] and Abrashkin [Abr06]. This
notion is based on certain deformations of finite locally free group schemes and the
associated cotangent complex, which we review in Section 3. There is an equivalent
description of finite locally free strict F,-module schemes by Poguntke [Pogl7] (Re-
mark 5.3).
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Notation 1.2 Let IF, be a finite field with g elements and characteristic p. For a
scheme S over SpeclF; and a positive integer # € N, we denote by

ogn = Frobgs g:§ — §

its absolute q"-Frobenius endomorphism which acts as the identity on points and as
the q"-power map b — b?" on the structure sheaf. For an S-scheme X, respectively,
an Og-module M, we write 0 X =X X500 Ss respectively, oM =M ®Os,0';y, Os,
for the pullback under o,». For m € M, we also write g, (m)=m®1le ognM and
note that o7, (bm) =bm®1=m ® b = b1 ~gymforbeOgand me M.

Let z be an indeterminant over Fy. Let Og[[z]] be the sheaf on S of formal power
series in z. That is, T(U, Og[[z]]) = T(U, Og)[[2]] for open U c S with the obvi-
ous restriction maps. This is indeed a sheaf being the countable direct product of
Os. Let { be an indeterminant over F; and let F,[[{]] be the ring of formal power
series in { over Fy. Let Nilpg ;) be the category of F4[[{]]-schemes on which
is locally nilpotent. For S € Nilqu[[ ar let Os((2)) be the sheaf of Og-algebras on S
associated with the presheaf U ~ I'(U,Oy)[[2]][+]. If U is quasi-compact, then
Os(z)(U) = (U, Os[[z]])[%] Since ( is locally nilpotent on S, the sheaf Og((z))
equals the sheaf associated with the presheaf U — T(U, Os[[z]])[z%(] We denote
by o, the endomorphism of O [[z]] and Og((2)) that acts as the identity on z and as
b — b1 on local sections b € Og. For a sheaf M of Og[[z]]-modules on S, we let
oM := M ®o,[[2],0; Os[[#]] and

1

M[ﬁ

1
] =M Osﬁz]] OS[[Z]][ ﬁ] -M Os(%[)z]] 05

be the tensor product sheaves. Also for a section m € M we write o;m = m®1 €
0y M. Note that by [HV11, Proposition 2.3], a sheaf M of Os[[ z]]-modules which fpqc-
locally on S is isomorphic to Og[[z]]®" is already Zariski-locally on S isomorphic to
Os[[z]]®". We therefore call such a sheaf simply a locally free sheaf of Os[[ z]]-modules
of rank r.

2 Local and Finite Shtukas

Let S be a scheme in Nilp]Fq[[ ar

Definition 2.1 A local shtuka of rank (or height) r over S is a pair M = (M, Fy)
consisting of a locally free sheaf M of Os[[z]]-modules of rank r, and an isomorphism
FM:J‘;M[Z%(] — M[Z%[]

A morphism of local shtukas f: (M, Fy;) — (M', Farr) over S is a morphism of the
underlying sheaves f: M — M’ that satisfies Frr 0 0 f = f o Fa.

A quasi-isogeny between local shtukas f: (M, Fy) — (M, Fyp) over S is an iso-
morphism of Os((z))-modules f: M ®¢ .7 Os(2)) S M ®0s[z] Os(2) with Fapr o
0y (f) = f o Fy. A morphism that is a quasi-isogeny is called an isogeny.
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For any local shtuka (M, Fy) over S € Nilqu[[ ¢ the homomorphism

M—>M[Z%(]

is injective by the flatness of M and the following lemma.

Lemma 2.2 Let R be an F;[[(]]-algebra in which { is nilpotent. Then the sequence of
R[[z]]-modules

0 R[[z]]

is exact. In particular R[[z]] c R[[z]] [Z%(]

R[[z]] R 0

1—z—-( z(

Proof If ¥, b;z' lies in the kernel of the first map, that is, 0 = (z - {)(; b;z') =
i(bisy — (b;)Z', then b; = (b;yy = ("b;,, for all n. Since ( is nilpotent, all b; are
zero. Also due to the nilpotency of {, the second map is well defined and surjective.
For exactness in the middle note that 3, b;{' = 0 implies 3; b;z' = ¥; b;(z' - (),
which is a multiple of z — (. u

For a morphism f:§" — S in Nilpg, ¢y we can pull back a local shtuka (M, Fu)
over S to the local shtuka (M ® .7 Os/[[2]], Fu ® id) over S

We define the tensor product of two local shtukas (M, Fa) and (N, Fy) over S as
the local shtuka (M ®os[z) N> Fm ® FN). The local shtuka

1(0) := (Os[[]l, Fio) = ido ey 0 Os[l2]] = Os[[2]] — Os[[z]])
is a unit object for the tensor product. The dual (M ", F, v ) of alocal shtuka (M, Fy)
over S is defined as the sheaf M = Home, [ ( M, 05[[z]]) together with

BT BTV | .

FypeioiM [;(] M [;{],f»foFﬂ,}.
Also there is a natural definition of internal Hom, given by Hom(M,N) =M ®N.
This makes the category of local shtukas over S into an I, [[z]]-linear, additive, rigid
tensor category. It is an exact category in the sense of Quillen [Qui73, §2], provided
one calls a short sequence of local shtukas exact when the underlying sequence of
sheaves of Og[[z]]-modules is exact.

Lemma 2.3 Let (M, Fy) be a local shtuka over S. Then locally on S there are e,

¢/,N € Z such that (z - {)*' M < Fy(0; M) c (z - {)*M and zVM c Fy (o} M).

For any such e the map Fy: 0; M — (z = {)™° M is injective, and the quotient
(z2=0)"*M[Fy(oy M)

is a locally free Os-module of finite rank.

Proof We work locally on SpecR c § and assume that ;M and M are free

Os[[z]]-modules. Applying Fy to a basis of 04 M, respectively, F,/ to a basis of M,

proves the existence of e, respectively, e’. If N > e is an integer that is a power of p
such that (N =0in R, then zZ"M = (2N - (MM = (z- )NM c Fu(og M).
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We prove that the quotient K := (z ~ {)~*M/Fu(o; M) is a locally free R-module
of finite rank. This was already proved in [HV1l, Lemma 4.3], but the argument given
there only works if R is noetherian, because it uses the fact that R[[z]] is flat over R.
We now give a proof in the non-noetherian case. Since

K = coker(Fy mod (2 )0 M/(z={)*** 07 M — (2~ {)"*M/(z - {)* M),
it is of finite presentation over R. Since R[[z]] c R[[z]] [Z%{] is a subring by Lemma 2.2
and M is locally free, the map Fa: 0, M — (z - {)™°M is injective. Let m c Rbea
maximal ideal and set k = R/m. In the exact sequence
0 — Tor, V(K k[[2]]) — oM ® k[[z]] — (z- ()™M ® k[z]
R[[z]] R[[=]]

— K ® k[[z]] —0,
&M

we have isomorphisms o M ®gpr.7) k[[2]] = k[[z]] (z = ()M ®pp.y kll2]].
Moreover, { = 0 in k and hence z°*¢' K ®r[z] kl[z]] = 0. Since k[[z]] is a PID,
the map oy M Qg k[[z]] — (2 - {)™*M @[ k[[2]] is injective by the ele-
mentary divisor theorem, and hence 0 = Torf[[z]] (K, k[[z]]). To relate this to
Torf (K, k) = Torfz L0/ =0y (K, k[[2]]/(2°*¢")) we use the change of rings spectral

sequence [Rot09, Theorem 10.71] and the induced epimorphism (from its associated
5-term sequence of low degrees, see [Rot09, Theorem 10.31])

&rk M

112

- Tor T (i K[e)) — Tor B0 (K k[[2])/(2+)) — o.
It follows that Tor} (K, k) = 0 and from Nakayama’s lemma we conclude that K is

locally free over R of finite rank; compare [Eis95, Exercise 6.2]. ]

Definition 2.4  Alocal shtuka M = (M, Fy) over S is called effective if F) is actually
amorphism Fy: 05 M = M. Let (M, Fyr) be effective of rank r = rk M . We say that

(i) (M, Far) has dimension d if coker Fy; is locally free of rank d as an Og-module.
(ii) (M, Fy) is étale if Fy: o M 5 M is an isomorphism.
(iii) Fyu is topologically nilpotent if locally on S there is an integer # such that

im(Fy;) c zM,

where Fy; := Fpy 0 at;FM 0--0 aq*n,lFM:a;nM - M.

Example 2.5 We define the Tate objects in the category of local shtukas over S as
L(n) = (Os[lz]], Fm : 1= (2= 0)").

By Lemma 2.3 every local shtuka over a quasi-compact scheme S becomes effective
after tensoring with a suitable Tate object.

More generally, now let S be an arbitrary IF;-scheme.
Definition 2.6 A finite IF4-shtuka over S is a pair M = (M, Fj) consisting of a lo-

cally free Og-module M on S of finite rank denoted rk M , and an Og-module homo-
morphism Fy: 0y M — M. A morphism f: (M, Fy) — (M’, Fyr) of finite Fg-shtukas
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is an Os-module homomorphism f: M — M’ satisfying f o Fy = Fyr 0 0 f. We de-
note the category of finite F;-shtukas over S by IF;-Sht.

A finite IF;-shtuka over S is called étale if Fy is an isomorphism. We say that Fj
is nilpotent if there is an integer #n such that F}; := Fjs o a{; Fpyo---0 a;,l,l Fp = 0.

Finite IF ;-shtukas were studied at various places in the literature. They were called
(finite) @-sheaves by Drinfeld [Dri87, §2], Taguchi and Wan [Tag95,TW96] and Dieu-
donné I ;-modules by Laumon [Lau96]. Finite I ,-shtukas over a field admit a canon-
ical decomposition.

Proposition 2.7 ([Lau96, Lemma B.3.10])  IfS is the spectrum of a field L, every finite
[Fg-shtuka M = (M, Fyp) is canonically an extension of finite F ,-shtukas

0 — (Mg, Fer) — (M, Far) — (Myit, Fait) — 0,

where F is an isomorphism and Fyy is nilpotent, and M ., = (Mg, Fe.) is the largest
étale finite IF ;-sub-shtuka of M and equals im(Flr;M )- If L is perfect, this extension
splits canonically.

Proof This was proved by Laumon [Lau96, Lemma B.3.10] for perfect L. In gen-
eral one considers the descending sequence --- > im(F%,) > im(Fj') o -+ of L-
subspaces of M that stabilizes at some finite n. If im(Fj;") = im(F};), then

Fyioy (im Fjy) - im Fy' = im Fjy

is surjective, hence bijective, and therefore im(F}\’J) = im(Fjy;) for all n’ > n. So
the sequence stabilizes already for some n < rkM and My = im(Fer;M). If Lis

perfect, My; is isomorphic to the submodule U,»q ker(Fj; o oM -~ M ) of M;

see [Lau96, Lemma B.3.10]. [ |

Example 2.8 Every effective local shtuka (M, Fyr) of rank r over S yields for every
n € N a finite Fy-shtuka (M/z" M, Fy; mod z") of rank rn, and (M, Fy;) equals the
projective limit of these finite IF;-shtukas.

Thus from Proposition 2.7 we obtain the following result.

Proposition 2.9 If S is the spectrum of a field L in Nilpmq[[(]], every effective local
shtuka (M, Fyy) is canonically an extension of effective local shtukas

0—>(MétrFét)—>(M:FM)—> (Mnil:Fnil)_)0>

where Fg is an isomorphism, Fy; is topologically nilpotent, and (Mg, Fst) is the largest
étale effective local sub-shtuka of (M, Fy). If L is perfect, this extension splits canoni-
cally. [ |

3 Review of Deformations of Finite Locally Free Group Schemes

For a commutative group scheme G over S, we denote by ¢g:S — G its unit sec-
tion and by wg = & QIG/S its co-Lie module. It is a sheaf of Os-modules. In order
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to describe which group objects are classified by finite IF;-shtukas, we need to re-
view the definition of a strict IF;-module scheme in the next two sections. We follow
Faltings [Fal02] and Abrashkin [Abr06]. We begin this section with a review of defor-
mations of finite locally free group schemes. Recall that a group scheme G over § is
called finite locally free over S if on every open affine Spec R c S the scheme G is of the
form Spec A for a finite locally free R-module A. By [EGA, Iy, Proposition 6.2.10]
this is equivalent to G being finite flat and of finite presentation over S. The rank of
the R-module A is called the order of G and is denoted ord G. It is a locally constant
function on S. The following facts will be used throughout.

Remark 3.1 (a) A morphism G’ — G of finite locally free group schemes is a
monomorphism (of schemes, or equivalently of fppf-sheaves on S) if and only if it is
a closed immersion by [EGA, IV, Corollaire 18.12.6], because it is proper.

(b) Let G and G" be group schemes over S that are finite and of finite presentation,
and assume that G is flat over S. Then a morphism G — G” is an epimorphism of fppf-
sheaves on § if and only if it is faithfully flat; compare the proof of [Mes72, Chapter I,
Lemma 1.5(b)].

(c) A sequence 0 > G’ - G - G" — 0 of finite locally free group schemes over
S is called exact if it is exact when viewed as a sequence of fppf-sheaves on S. By
the above this is equivalent to the conditions that G — G” is faithfully flat, and that
G’ — G is a closed immersion that equals the kernel of G - G’

(d) If G = G is a closed immersion of finite locally free group schemes over S,
then the quotient G/G’ exists as a finitely presented group scheme over S by [SGA
3, Théoréme V.4.1 and Proposition V.9.1], which is flat by [EGA, IV, Corollaire 11.3.11].
It is integral over S and hence finite, because O/ ¢ Og. In particular, G/G’ is finite
locally free over S.

In the following we will work locally on S and assume that S = SpecR is affine.
Let G = Spec A be a finite locally free group scheme over S. Then G is a relative
complete intersection by [SGA 3, Proposition II1.4.15]. This means that locally on S
we can take A = R[ X, ..., X,,|/I where the ideal I is generated by a regular sequence
(fi>-. ., fn) of length n, cf. [EGA, IV 4, Proposition 19.3.7]. The unit section eg: S - G
defines an augmentation €4 := £5;: A - R of the R-algebra A, that is, €4 is a section of
the structure morphism 14: R — A. Faltings [Fal02] and Abrashkin [Abr06] defined
deformations of augmented R-algebras as follows. For every augmented R-algebra
(A,e4:A > R) set I := kere,. For the polynomial ring R[X ]| = R[Xi,..., X, ] set
Igix] = (X15..., X,,) and egx1: R[X ] - R, X, + 0. Abrashkin [Abr06, §SL1, 1.2]
made the following definition.

Definition 3.2  The category DSchg has as objects all triples H = (H, H’, i), where
H = Spec A for an augmented R-algebra A that is finite locally free as an R-module,
where H’ = Spec A’ for an augmented R-algebra A, and where igc: H — H' is a
closed immersion given by an epimorphism i4: A" - A of augmented R-algebras,
such that locally on Spec R there is a polynomial ring R[X | = R[Xj, ..., X, ] and an
epimorphism of augmented R-algebras j: R[X ] - A’ satisfying the properties that
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(i) theidealI :=ker(ig4 o) is generated by elements of a regular sequence of length
ninR[X],
(ii) kerj=1-Ig[x],andhence A=R[X]/Iand A" = R[X]/(I-Ipx))-
In particular, H is a relative complete intersection. We write A = (A, A", is) and
3 = Spec.A. A morphism Spec(A, A", i7) — Spec(A, A", i ) in DSchg is given by
morphisms f:A - A and f*: A® - A’ of augmented R-algebras such that f o iy =
igof b, Sometimes igc and i4 are omitted.

For an object H = Spec(A, A®,i4) of DSchg, define the two R-modules Ng¢ =
kerig and t5; = Iz /I4,, where I is the kernel of the augmentation e4:: A” > R.
After choosing an epimorphism j: R[X] — A"’ locally on SpecR, we have I, =

x1/(I - Ig[x]), which implies N3¢ = I/(I-Ig[x]) and t5 = Ip[x /I . Both
are ﬁnlte locally free R-modules of the same rank. Thls is obvious for £, tes and for Ny¢
a proof can be found in [HS, Lemma 3.3]. Also note that I, - kerig = 0, because
kerig = I/(I-Ig[x]). We write n = ng;: Na¢ — A’ for the natural inclusion and
=1y = (id =164 ) mod I3,: A" - 15 If H = (A, A") and J( = Spec(A, A"), ev-
ery morphism (f, f*): (A, A") - (A, A") in Hompse, (F, ) induces morphisms
of R-modules Ny: N3¢ — Ng; and t;:t;c — t;'c with f* o nge = ng o Ny and
5% Ofb = t} O TT9¢.
Let H = Spec(A, A*,iq) and J = Spec(A, A’,i7) be objects in DSchs and let
f:A - Abeamorphism of augmented R-algebras. Faltings [Fal02, §2] noted that the
set

L= {f*: A* - A?, morphisms of augmented R-algebras for which
(f> f") € Hompsen, (3, 30) }

is non-empty and is a principal homogeneous space under Hompg (¢5, N5;). That is,
forany f* € £ the map Homg (¢}, N5z ) = £, h > f*+ngohoms 1sab1Ject10n For
a proof, see [HS, Lemma 3.4] in the expanded version of this article on arXiv [HS].

The category DSchg possesses direct products. If H = Spec(A, A®,i,) and H =
Spec(A, A, i7), then the product H xg H is given by Spec(A @z A, (A ®g A)’, k),
where

(A%K)b = (A %Xb)/(ker in@A + A @keriz) (Ip @A +A'®I5)
and « is the natural epimorphism (A ® A)" - A ®y A. After choosing locally on

Spec R presentations A = R[X]/I, A" = R[X]/(I - Iz(x]), and A = R[X ]/I, A
RIX]/(I-1I, (X1)> We can write

(A%K)":R[X®1,1®X]/(I®R[X]+R[ 1@1)-(Irx]®R[X ]+ R[X |®I457)-

Definition 3.3 Let DGrg be the category of group objects in DSchg. If § = Spec A €
DGrs, then its group structure is given via the comultiplication A: A - A ®g A and
A" A* » (A®RA)’, the counit e: A - Rand e’: A* — R, and the coinversion [-1]: A —
Aand [-1]": A’ — A, which satisfy the usual axioms. In particular, we require the
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counit axiom (idy ®&") o A’ = idy = (¢ ® idy) o A", and that e and & are the
augmentation maps. The morphisms in DGrg are morphisms of group objects.

If G = (G, G") € DGrs, note that G = Spec A is a finite locally free group scheme
over R with the comultiplication A, the counit ¢, and the coinversion [-1]. But, in gen-
eral, G’ is not a group scheme over S when the comultiplication A*: A* — (A ® A)"
does not lift to A® ® A’. Faltings and Abrashkin [Abr06, §1.2] made the following
remarks.

(a) If G = Spec(A, A", iq) € DSchg and G = Spec A is a finite locally free group
scheme over R, then there exists a unique structure of a group object on G that is
compatible with that of G. It satisfies A’ (x) ~x ® 1 - 1®x € I ® I forall x € I 5.

(b) If G, H e DGrs are group objects and (f, f*) € Hompsen (G, H) such that
f:G — H is a morphism of group schemes, then (f, f*) € Hompg;, (G, }).

See [HS, p. 10] for a proof.

Let § = (G,G’, ig) € DGrs. Faltings defined the co-Lie complex of G over S =
SpecR (that is, the fiber at the unit section of G of the cotangent complex) as the
complex of finite locally free R-modules

. d .
tg)s0 0—Ng —tg—0

concentrated in degrees —1 and 0 with differential d := 7g o ng. Recall that the
co-Lie complex of G/S and more generally the cotangent complex of a morphism
were defined by Illusie [I1171,11172] generalizing earlier work of Lichtenbaum and Sch-
lessinger [LS67]. If G = Spec A for A = R[X ]/I, where I is generated by a regular
sequence, then the cotangent complex of Illusie [I1171, I1.1.2.3] is quasi-isomorphic to
the complex of finite locally free A-modules

: . 2 4 A1
concentrated in degrees —1 and 0 with d being the differential map [IlI71, Corol-
laire I11.3.2.7]. 'The co-Lie complex of G over S was defined by Illusie [I1172, $VII.3.1]
as €(';/s = sgL.G/s, where e6:S — G is the unit section. To see that this is equal to
Faltings’s definition note that

eg(I/P)=1/P®R=1 ® R=1I/(I-Ixx]) = Ng,
A R[X] =

n
GOy o A) = kxR = DR X =gy Mgy = 65

(X] [x]
and that the differential of both co-Lie complexes sends an element x € I to the linear
term in its expansion as a polynomial in X, because all terms of higher degree are
sent to zero under &¢;.

Up to homotopy equivalence both L.G /s and Bé ;s only depend on G, and not on the
presentation A = R[X ]/I nor on the deformation G of G. Note that L.G ssand 17 8g g

are quasi-isomorphic by [Mes72, Chapter II, Proposition 3.2.9], where 1: G — S is the
structure map.
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Definition 3.4 We (re-)define the co-Lie module of G over S as wg = HO(Zé/S) =
cokerd and set ng = H_l(ﬁé/s) := ker d. These R-modules only depend on G and
not on G. Since HO(L.G/S) = Qlc/s> we have wg = nglG/s, which is also canonically
isomorphic to the R-module of invariant differentials on G.

We record the following lemmas.

Lemma 3.5 If G e DGrs, the following are equivalent:

(i) G is étale over S;
(ii) wg = 0;
(iii) the differential of £g g is an isomorphism.

Proof If G is étale, then O, /s = 0. Conversely, since Qg /s 1s a finitely generated
O-module, by Nakayama w¢ = 0 implies that G is étale along the zero section. Being
a group scheme, it is étale everywhere.

Clearly (iii) implies (ii). Conversely if wg = 0, that is, if d is surjective, then d is
also injective, because both ¢§ and Ng are finite locally free of the same rank. ]

Lemma 3.6 ([Mes72, Chapter II, Proposition 3.3.4]) Let0 - G' - G - G" > 0
be an exact sequence of finite locally free group schemes over S. Then there is an exact
sequence of R-modules

0 — ngr — ng — ngr — wgr — wg — wgr — 0.

4 Strict F,-module Schemes
We keep the notation of the previous section. Let O be a commutative unitary ring.

Definition 4.1 Inthis article an O-module scheme over S is a finite locally free com-
mutative group scheme G over S together with a ring homomorphism O — Ends(G).
We denote the category of O-module schemes over S by Gr(O)s.

Proposition 4.2 If S is the spectrum of a field L, every O-module scheme G over S
is canonically an extension 0 - G° - G — G — 0 of an étale O-module scheme
G by a connected O-module scheme G°. The O-module scheme G is the largest étale
quotient of G. If L is perfect, G is canonically isomorphic to the reduced closed O-mod-
ule subscheme G™4 of G and the extension splits canonically, G = G® x5 G™4,

Proof The constituents of the canonical decomposition of the finite S-group scheme
G are O-invariant. ]

Definition 4.3 Let S = Spec R be a scheme over O and let § € DGrs. A strict O-ac-
tion on G is a homomorphism O - Endpgy, (G) such that the induced action on L’; /s
is equal to the scalar multiplication via O — R; ¢f Remark 4.4.

We let DGr(O)s be the category whose objects are pairs (G, [ - ]) where G € DGrg
and [-]:O0 — Endpgr(G), a — [a] is a strict O-action, and whose morphisms
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f:(S,[-]) = (9.[]) are those morphisms f:G — G’ in DGry that are compati-
ble with the O-actions, that is, they satisfy f o [a] = [a] o f foralla € O.

We let DGr*(0O)s be the quotient category of DGr(0)s having the same objects,
whose morphisms are the equivalence classes of morphisms (G, G’) — (H, H®) in
DGr(0)s that induce the same morphism G - H.

So by definition the forgetful functor DGr*(0)s — Gr(0)s, which sends (G, G")
to G and morphisms (G, G") — (H, H") to their restriction to G — H, is faithful.

Faltings [Fal02, Remark b) after Definition 1] remarked that a strict O-action [ - ] on
G induces on every deformation G of G a unique strict O-action fv] that is compatible
with all lifts § - Gand G — § of the identity on G; for details see [HS, Lemma 4.4].
In particular, the pairs (G, [ - ]) and (G, [+ ]) are isomorphic in DGr* (O)s.

Remark 4.4 'The co-Lie complex Eé /s depends on the deformation G of G. For an-
S/s
one might try to weaken Definition 4.3 and only require that the action of a € O on
14 9 /s 18 homotopic to the scalar multiplication with a. We do not know whether this is
equivalent to Definition 4.3 and whether Faltings’s remark remains valid for general
O. Both are true for the polynomial ring O = Fy[a].

other deformation G the complex €, is homotopically equivalent to £ ; /s Therefore

Remark 4.5 Note that there can be different non-isomorphic strict O-actions on a
deformation §. For example, let G = &, = Spec R[X]/(X?) and A" = R[X]/(XP*").
Let O = Fy[a] be the polynomial ring in the variable a, and let R be an O-algebra by
sending a to 0 in R. For every u € R the endomorphism [a] = 0:a, > &, X ~ 0 lifts
to [a]: A" - A’, X = uXP. All these lifts define strict O-actions on (G, Spec A") that
are non-isomorphic in DGr*(F,[a])s. In particular, the forgetful functor

DGr* (Fpy[a])s = Gr(Fp[a])s
is not fully faithful.

In contrast, for O = 'y, we have the following lemma.

Lemma 4.6  The forgetful functor DGr* (Fy)s — Gr(F)s is fully faithful. In partic-
ular, if G € Gr(Fy)s and G = (G, G") € DGrs is a deformation of G, then there is at
most one strict IF g-action on G that lifts the action on G.

Proof Let (G,[-]) and (G, m) be in DGr*(F,)s with § = Spec(A, A") and G =
Spec(A, A’). Let f: A — A be a morphism in Gr(F,)s, thatis [a] f = f[a]. Take any
lift f*: A" - A” of f. Then for each a ¢ IF,; there is an R-homomorphism h,:t5 -~ N3

with [a] f* - f*[a] = fiham. It satisfies hgy, = ahy, + bh, because n[b] = tf, ;m = b

and [a]n = AN = afi, and hence

fihaym = [ab]f* - f*[ab] = [a]([6] f* - £°[b]) + ([alf* - f'[a])[P]

[
= [a]ihym + than[b] = i(ahy + bha)m.
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We claim that it also satisfies h,4, = h, + hp. Namely,

fihauym=[a+b]f* - f'la+b] =0 ([alf* @ [b]f* - f'la] ® f*[b]) o A*
=i o (ftha ® [b]f" + f'[a] ® iihym) o A,

where 7i: (A @ A)’ - A® is induced from the multiplication in the ring A” and

([a ]fb ® [b]f"): A’ ® A" - A’ ®p A’ induces a homomorphism
A®A) > (Ao A),
(A©4)" > (A®4)

denoted by the same symbol. We evaluate this expression on X, where
A" = R[X /I Ip(x)

For every v there are u;, v; € Iy[x] such that A*(X,) = X, ®1+1® X, + X, u; ®v;; see
(a) after Definition 3.3. Now n(l) 0, together with (72h, m)(Irx) € I/T- Tp(x cA
and [T)]f"(IR 1) € Ipzy imply thawpm(Xy) = fihan(X,) + ahpm(X,) as de31red.
This proves hu+h =hg,+ hb If a lies in the image F of Z in F ¢, then h, = a-h; = 0. In
other words a + h,,F, — HomR(tg,N ) is an F,-derivation. Since Q}, JJFy = = (0),
we must have h, = 0 and [a]f* = f*[a] forall a € F,. This means that (f, f*)
defines a morphism in DGr* (F,)s that maps to f under the forgetful functor. So this

functor is fully faithful. The remaining assertion follows by taking A’ = A", A = A and
fb=id. ]

Definition 4.7 A finite locally free F;-module scheme G over R is called a
strict F-module scheme if it lies in the essential image of the forgetful functor
DGr* (Fy)s — Gr(F,)s, that is, if it has a deformation G carrying a strict Fy-action
that lifts the F;-action on G. We identify DGr™ (IF,; ) s with the category of finite locally
free strict F;-module schemes over S.

Lemma 4.8  For afinite locally free F g -module scheme G over R, the property of being
a strict F g-module scheme is local on Spec R.

Proof Let G be a deformation of G over SpecR. Let SpecR; c SpecR be an open
covering and let §; be deformations of G x g Spec R; carrying a strict IF;-action which
lifts the Fj-action on G. This action induces by [Fal02, Remark b) after Definition 1]

a strict IF;-action on G xg SpecR; for all i. Above SpecR; n Spec R; these actions
coincide by Lemma 4.6, and hence they glue to a strict IFy-action on Gas desired. W

Example 4.9 We give examples for finite locally free strict IF ;-module schemes. Let
R be an [F;-algebra.

(a) Leta, = SpecR[X]/(X?) and & = Spec R[X]/(X9*"). Then [a](X) = aX
for a € IF; defines a strict Fy-action on G = (ay, a"q). Indeed, the co-Lie complex is

55  0—X1-R— X-R—>0
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with d = 0 and a € [ acts on it as scalar multiplication by a because N,j(X?) =
(aX)? =aX?and ta (X) = aX. Therefore a, is a finite locally free strict F;-module
scheme.

(b) On a, = SpecR[X]/(X?) there is an FF4-action given by [a](X) = aX. If
q # p, it does not lift to a strict [F;-action on al", = Spec R[X]/(X?*). Although we
may lift the action to § = (a,, a;) via [a](X) = aX, the co-Lie complex is

55 0— XP.R— X-R—0,

J

and so a € F acts on Ng by a? which is not scalar multiplication by a when a? # a.

Any otherlift [a] of the F;-action on &, to G satisfies [a] = [a]+nh, 7 for an R-homo-

morphism hg:t5 — Ng and yields nNg = [a]n = [a]n + nhamn = [a]n = nNp4
because 7n = d = 0 on €é/s. So no such action is strict and &, is not a strict Fy-
module scheme.

(c) The constant étale group scheme IF; = Spec R[X]/(X9 — X) over Spec R and

its deformation IF," = Spec R[X]/(X%*! - X?) carry a strict F;-action via [a](X) =
aX. Indeed, the co-Lie complex is

59/3: 0— (X-X9) R— X-R—0

with d: X~ X7+ Xand a € Fjactsonitby N[,j(X-X1) = aX-(aX)? = a(X-X1)

and ¢} ](X ) = aX. Therefore I, is a finite locally free strict IF;-module scheme.

a

(d) The multiplicative group g, = Spec R[X]/(X? —1) has an IF,-action via
[a](X) = X“.

This action does not lift to 4}, = Spec R[X]/(X ~1)?*!, because on }, we have A(X) =
X ® X and hence [a](X) = X¢, which satisfies [p](X) = X? # 1. Therefore no de-
formation of y, can carry a strict I ,-action and p,, is not a strict IF ,-module scheme.
Note that nevertheless I, acts through scalar multiplication on the co-Lie complex
€l‘p/s'

Part (c) generalizes to the following lemma.

Lemma 4.10  Any finite étale F ;-module scheme is a finite locally free strict IF ;-mod-
ule. In particular, if 0 > G’ - G — G" — 0 is an exact sequence of finite locally free
IF4-module schemes with G a strict Fg-module and G" étale, then both G" and G" are
strict F ;-modules.

Proof The first assertion was remarked by Faltings [Fal02, §3, p. 252] more generally
for finite étale O-module schemes, and also follows from [Dri87, Proposition 2.1(6)]
and Theorem 5.2 below. (For a direct proof, see [HS, Lemma 4.11].) The last assertion
on the strictness of G’ can be proved on affine open subsets of S. There Lemma 4.6
implies that the morphism G - G" is IF;-strict in the sense of Faltings [Fal02, Defi-
nition 1], and by [Fal02, Proposition 2] its kernel G’ is a strict F;-module. [ |
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5 Equivalence Between Finite [ -shtukas and Strict IF,-modules

Let S be a scheme over SpeclF,;. Recall that a finite locally free commutative group
scheme G over S is equipped with a relative p-Frobenius F,,g: G - 0, G and a p-Ver-
schiebung morphism V), 6:0,G — G that satisfy

FP>G o VP,G =p idU;G and VP,G o FP,G =p idg .

For more details see [SGA 3, Exposé VII,, §4.3]. Example 4.9 is generalized by the
following results of Abrashkin. The first is concerned with finite locally free strict
IF-module schemes.

Theorem 5.1 ([Abr06, Theorem1]) Let G be a finite locally free group scheme equip-
ped with an IF y-action over an F ,-scheme S. Then this action lifts (uniquely) to a strict
IF-action on some (any) deformation of G if and only if the p-Verschiebung of G is zero.
In particular, the forgetful functor induces an equivalence between DGr”* (I, ) s and the
category of those group schemes in Gr(IF,)s that have p-Verschiebung zero.

To explain Abrashkin’s classification of finite locally free strict IF;-module schemes
we recall that Drinfeld [Dri87, §2] defined a functor from finite FF;-shtukas over S
to finite locally free F,-module schemes over S. Abrashkin [Abr06] proved that the
essential image of Drinfeld’s functor consists of finite locally free strict F;-module
schemes. Other descriptions of the essential image were given by Taguchi [Tag95, §1]
and Laumon [Lau96, §B.3]. (But note that [Lau96, Propositions 2.4.11, B.3.13, and
Lemma B.3.16] are incorrect as the F;-module scheme G = &, = Spec R[x]/(xF)
shows when p # q.) Drinfeld’s functor is defined as follows. Let M = (M, Fj) be a
finite IF;-shtuka over S. Let

E= %s nGZBO Symy M
be the geometric vector bundle corresponding to M, and let Fy,g: E — o E be its rel-
ative g-Frobenius morphism over S. On the other hand, the map F); induces another
S-morphism Spec(Sym*® Fy): E — o E. Drinfeld defined

Dry (M) := ker( Spec(Sym® Fyr) — Fg p: E —> a;E) = Spec, (’16290 Symg M)/1

where the ideal I is generated by the elements m®7 —

Fu(o;m) for all local sections
m of M. (Here m®1 lives in Sym?95 M and FM(a;m) in Symt)s M)

There is an equivalent description of Dry (M ) as follows. Let S = Spec R be affine
and denote the R-module I'(S, M) again by M. Let Frobg z: R — R be the g-Frobenius
on R with x  x9. We equip M with the Frob, r-semi-linear endomorphism

Fy™:M — M, m > Fy(o;m),
that satisfies
E™(bm) = FM( a;(bm)) = Fy(blo,m) = bIFE™ (m).

Also we equip every R-algebra T with the Frob, z-semi-linear R-module endomor-
phism F5*™ := Frobg, r: T — T. Then Dr,(M ) is the group scheme over S that is
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given on R-algebras T as
qu(M)(T) = HOmFsemi (M, T)
= { h e Homg.moa(M, T): h(m)1 = h(FM(a;m)) VmeM},

because Hompg moda(M, T) = Hompg. a1g(Symy M, T) = E(Spec T).!

Now Dry(M ) is an F;-module scheme over S via the comultiplication A:m +
m®1+1®m and the F-action [a]: m ~ am that it inherits from E. It has a canonical
deformation

Dr, (M)’ = Spec, (@ Symp, M)/(I-To),

where Iy = @,,5; Sym(, . M is the ideal generated by all m € M. This deformation is
equipped with both the comultiplication A’:m — m ® 1 +1® m and the F,-action
[a]’:m — am. We set Dry(M ) := (Dry(M ), Dr,(M)"). Its co-Lie complex is

(5.1) 0—I/(I-1y) — Ip/Tt — 0

with differential d: m®4 — Fy (0, m) = ~Fpy (0, m). On it [a] acts by scalar multipli-
cation with a because (am)? — Fy (o, (am)) = a9(m®? — Fyr(o;m)). This defines
the functor Dr,:F-Shty - DGr(FF,;)s. We also compose Dr, with the projection to
DGI'* (Fq ) S

Conversely, let § = (G, G") = Spec(A, A") € DGr(F,)s in the affine situation S =
Spec R. Note that on the additive group scheme G, s = Spec R[x] the elements b € R
act via endomorphisms y: G, s - G, s given by y;:R[x] — R[x], x = bx. This
makes G, into an R-module scheme, and in particular, into an F;-module scheme
via F,; c R. We associate with § the R-module of IF;-equivariant homomorphisms
on S

Mq(g) = HomR—groups,]Fq—lin(G: Ga,S)
={xeAA(x)=x®1+1®x, [a](x) = ax, VaeF,},

with its action of R via R — Endg_groups,F,-lin(Ga,s). It is a finite locally free R-mod-
ule by [Pogl7, Proposition 3.6, Remark 5.5]; see also [SGA 3, VII,, 7.4.3] in the reed-
ited version of SGA 3 by P. Gille and P. Polo. The composition on the left with the
relative g-Frobenius endomorphism F, g, of G4s = Spec R[x] given by x ~ x1
defines a map My(G) - My(G), m — Fy g, o m that is not R-linear, but o, -linear,
because Fy g, © ¥ = Ypa © Fy i, . Therefore, Fy g, ¢ induces an R-homomorphism
Fy,(5): 04 Mg(G) = Mg(S). Then M (S) == (Mq(S),FMq(g)) is a finite shtuka
over S. Note that for m € M,;(9) the commutative diagram

(5.2) G——"—>0G
ml \Lﬂ;m
F

9:Ga,8
Gal,S > Ga,S

'We thank L. Taelman for mentioning this to us.
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implies that Fy, (g)(0;m) = Fgg,s om = o;mo Fy. If H € DGr(F,;)s and
(f,f"):§ — H is a morphism in the category DGr(F,)s, then M (f): M (3) ~
M ,(S), m = mo f. This defines the functor M : DGr(F,)s — Fq-Sht. It factors
through the category DGr™ (IF;)s and further over the forgetful functor through the
category of finite locally free strict IF;-module schemes over S.

There is a natural morphism M — M, (Drg(M )), m = f,, where f,,: Dry(M) —~
Ga,s = Spec R[x] is given by f(x) = m. There is also a natural morphism of group
schemes G — Dry(M ,(G)) given on the structure sheaves by

€>BO Symg My(G)/1 - Og, m m*(x),

which is well defined because

Fay(6)(0gm)" (x) = (Fai,s 0m)™ (x) = m™ (x7) = (m™ (x))".
A large part of the following theorem was already proved by Drinfeld [Dri87, Pro-
position 2.1] without using the notion of strict IF;-modules.

Theorem 5.2 (i) The contravariant functors Dry and M g are mutually quasi-in-
verse anti-equivalences between the category of finite ¥ ,-shtukas over S and the category
of finite locally free strict IF ;-module schemes over S.

(ii) Both functors are I -linear and map short exact sequences to short exact se-
quences. They preserve étale objects and map the canonical decompositions from Propo-
sitions 4.2 and 2.7 to each other.

(iii) Let M = (M, Fy) be a finite Fg-shtuka over S and let G = Drgy(M ). Then

(a) the natural morphisms

M > M, (Drg(M)), me fn and G- Dry(M(G))

are isomorphisms;

(b) the Fy-module scheme Dr,(M ) is radicial over S if and only if Fy is nilpotent
locally on S;

(c) the order of the S-group scheme Dry(M ) is g™ M;

(d) the co-Lie complex E;qu( M)s 1S canonically isomorphic to the complex

0~ 0, M % M 0.

In particular, WDr, (M) = coker Fy; and NDr, (M) = ker Fyy.

Proof Assertions (i) and (iii)(a) were proved by Abrashkin [Abr06, Theorem 2] in
terms of the category DGr™ (IF,)s.

(ii) The Fy-linearity is clear from the definitions and the compatibility with étale
objects follows from (iii)(d) and Lemma 3.5. Let 0 - M"” — M — M’ — 0bea short
exact sequence of finite IF,-shtukas. Then by construction Dry(M ") —» Dr,(M ) isa
closed immersion. Using (i), we consider the local sections of

M" = j—fomS—groups,Fq-lin(qu (M ”)> Ga,S)

that are obtained by the closed immersion Dry(M") - SpecS(Syme)S M) com-

posed with local coordinate functions on Spec, (Symg, M"). These local sections go
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to zero in M’ and this yields a morphism Dry (M )/ Dry(M ") — Dry(M"). The latter
must be an isomorphism by (i) due to the identification

M (Dry(M)/Drg(M")) =ker(M ,(Drg(M)) - M ,(Drg(M")))
:M” :Mq(qu(M")).

Conversely let 0 - G’ - G - G” — 0 be a short exact sequence of finite locally
free strict IF;-module schemes. Then the exactness of 0 — Mq(G”) - Mq(G) -
M ,(G’) is obvious. Applying Dr,, whose exactness we just established, to the injec-
tion M ,(G)/M ,(G") -~ M (G') yields an isomorphism qu(Mq(G)/Mq(G”)) =
ker(G -~ G") = G". From (i) it follows that M . (G)/M ,(G") — M (G’) is an iso-
morphism.

Consider the exact sequences from Propositions 4.2 and 2.7. Then Dr,(M ,,) is
an étale quotient of Dr,(M ). This yields a morphism Dry (M) — Dry(M ).
Conversely, M q(Gét) is an étale IFy-subshtuka of M ,(G). This yields a morphism
M q(Gét) — M ,(G)er. The equivalence of (i) shows that both morphisms are iso-
morphisms. This proves the compatibility of Dry and M , with the canonical decom-
positions.

(iii) (b) By definition G := Dr,(M ) is radicial over S if G(K) — S(K) is injective
for all fields K. This can be tested by applying the base change Spec K — S. By (ii)
and Propositions 4.2 and 2.7 the base change G xs Spec K is connected if and only if
Fuy ® idg is nilpotent. This implies (iii)(b) over Spec K. It remains to show that Fj
is nilpotent locally on S if G is radicial. Locally on an affine open Spec R c § we may
choose an R-basis of M and write Fy as an r x r-matrix where r = rk M. For every
point s € S, Proposition 2.7 implies that F;; = 0 in x(s)"™". Therefore the entries of
the matrix F}, lie in the nil-radical of R. If # is an integer such that their g”-th powers
are zero, then Fj\"™" = FJ, .. o7 (F},) = 0. This establishes (iii)(b).

(iii) (c) If locally on S we choose an isomorphism M = @)_; Os - X, and let (t;;)
be the matrix of the morphism Fy: 9y M — M with respect to the basis (X, ..., X,),
then Dr, (M ) is the subscheme of G} , given by the system of equations

n
X;?:th,-jX,- forj=1,...,n.
i

Therefore Op,, (u) is a free Os-module with basis X" --- X}',0 < m; < q. Thus
ord Dry (M ) = rko, Opr, (M) = qkM,
(iii) (d) In the presentation of E.qu (M)/s given in (5.1) with

I=(m® ~Fy(o;m):meM)

and Iy = @, Symg, M, we use the isomorphisms of Os-modules M —ryirs
m > m and oy M 5 I/(Ilp),boym = m ® b + bFy(o;m) — bm®1. Note that
the latter is surjective by definition and injective because both oy M and I/(II,) are
locally free Og-modules of the same rank. ]
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Remark 5.3  Finite locally free strict IF;-module schemes over S = Spec R were
equivalently described by Poguntke [Pogl7]. He defined the category IF,- grg’b of finite
locally free IF;-module schemes G = Spec A that locally on S can be embedded into
G s for some set N and are balanced in the following sense. The R-module

M, (G) := Homg_groups (G, Ga,s) = { xeA:A(x)=x ®1+1®x}

of morphisms of group schemes over R decomposes under the action of IF; on G into
eigenspaces

Mp(G)pi = {m e My(G) : [a](m) = af' - mforall a e Fq}s

fori € Z/eZ, where q = p°. Now G is balanced if the composition on the right with the
relative p-Frobenius F g, ; of the additive group scheme G,,s induces isomorphisms
Mp(G)pi = Mp(G)pin foralli = 0,...,e 2. Note that it is neither required nor
implied that M, (G) et = M,(G), =2 My(G) is also an isomorphism. The latter
holds if and only if G is étale by Theorem 5.2(ii).

Abrashkin [Abr06, 2.3.2] showed that every finite locally free strict F;-module
scheme over S belongs to Fq—grg’b. And Poguntke [Pogl7, Theorem 1.4] conversely
showed that Dry and M , provide an anti-equivalence between the category of finite

IF;-shtukas over S and the category Fq—gr;”b.

6 Relation to Global Objects

Without giving proofs, in this section we want to relate local shtukas and divisible
local Anderson modules (defined in the next section), as well as finite I ;-shtukas
and finite locally free strict IF;-module schemes to global objects like A-motives,
global shtukas, Drinfeld modules, Anderson A-modules, etc. which are defined as
follows. Let C be a smooth, projective, geometrically irreducible curve over F,. For
an [F;-scheme S we set Cs := C xp, S and we consider the endomorphism

0q = idc ®Frobq,5: Cs — Cs.

Definition 6.1 (i) Letnand r be positive integers. A global shtuka of rank r with
n legs over an Fy-scheme S is a tuple N = (N, ¢y, ..., ¢u, Tov) consisting of

« alocally free sheaf N of rank r on Cs,

* [F;-morphisms ¢;: S — C called the legs of N,

« anisomorphism 7: 07 Nc,y, 1o, = Ny, r., outside the graphs T;, of the c;.
In this article we will only consider the case where I';, N T, = @ for i # j.

(ii) A global shtuka over S is a Drinfeld shtuka if n = 2, I, n T, = @, and 7
satisfies TN(O"; N) c N on Cs \ I, with cokernel locally free of rank 1 as Og-module,
and 70 (N) ¢ oy N on Cs \ T, with cokernel locally free of rank 1as Os-module.

Drinfeld shtukas were introduced by Drinfeld [Dri87] under the name F-sheaves.

An important class of special examples is defined as follows. Let oo € C be a closed
pointand put A := T(C~ {00}, O¢). Then Spec A = C \ {o0}. We will consider affine
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A-schemes ¢: S = Spec R — Spec A and the ideal
Ji=(a®1-1®c*(a):aecA)cAp ::AEQZ)R
q

whose vanishing locus V(J) is the graph I of the morphism c. The endomorphism
04 = idc ® Frob, 5: Cs — Cs induces the ring endomorphism

0; := idy ® Froby p: Ag — Ag,a®b+— a® bl
of Ag for a € Aand b € R. The following definition generalizes Anderson’s [And86]

notion of t-motives, which is obtained as the special case, where C = P!, A = F[1]
and R is a field.

Definition 6.2 Let d and r be positive integers and let S = SpecR be an affine
A-scheme. An effective A-motive of rank r and dimension d over S is a pair N =
(N, 7y) consisting of a locally free Ag-module N of rank r and a morphism

N a; N — N
of Agr-modules, such that cokerry is a locally free R-module of rank d and
J? - coker Ty = 0. More generally, an A-motive of rank r over S is a pair N = (N, 1)
consisting of a locally free Ag-module N of rank r and an isomorphism
TN: O'q*N|SpecAR\V(]) — N|SpecAR\V(])

outside the vanishing locus V(J) = T of /.
Example 6.3 (@) N = (N, ¢, ¢z, 7o) is a global shtuka of rank r over S =
Spec R with two legs such that ¢; = c and ¢;: S - {0} c C, then

N(N) = (N, 7y) = (T(Spec Ar, N), 7x)

is an A-motive of rank r over S.
(b) Conversely, if co € C(IF;), every A-motive N = (N, 7y) over an affine
A-scheme ¢: S = Spec R — Spec A can be obtained from a global shtuka

ﬁ = (N) €1, C25 TN)
by taking ¢; = cand ¢,: S — {0} c C, and taking N as an extension to Cg of the sheaf

associated with N on Spec Ay, and oy = 7.

These global objects give rise to finite and local shtukas, and that motivates the
names for the latter.

Example 6.4 (a) Leti:D < C be a finite closed subscheme and let
N = (N)CI)---)CH’TN)

be a global shtuka of rank r over S such that 7x(g,N) c N in a neighborhood of
Ds := Dxp,S. (For example, this is satisfied if N is a Drinfeld-shtuka and DT, = @
orif N is as in Example 6.3 with N (') an effective A-motive and D c Spec A.) Then
(M, Fyr) = (i*N, i* 1) is a finite IF;-shtuka over S, because M is locally free over
S of rank r - dimp, Op. The sense in which N is global and (M, Fy) is finite, is with
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respect to the coeflicients; N lives over all of C and M lives over the finite scheme D.
This example gave rise to the name finite I ;-shtuka.

(b) Let v € C be a closed point defined by a sheaf of ideals p c Oc, let 4 be the
cardinality of the residue field I, of v, let f := [FF,:F;], and let z € F,(C) be a
uniformizing parameter at v. Let N = (N, ¢1, ..., ¢4, Tv) be a global shtuka of rank r
over S = Spec R such that for some i the elements of ¢} (p) are nilpotent in R. Set { :=
¢i(2z) € R. Then the formal completion of Cg along the graph I, of ¢; is canonically
isomorphic to Spf R[[z]] by [AH14, Lemma 5.3]. The formal completion M of (N, 1)
along T, together with 7y := T{\[I G,J;*M[z%(] > M[z%(] is a local shtuka over S of
rank 7 (as in Definition 2.1 with g and I, [[z]] and o; replaced by § and F, [[z]] and
or‘{ *). See [Harl7, §6] for more details. Again M islocal with respect to the coefficients

as it lives over the complete local ring O¢,, = I, [[z]] of C at v. This gave rise to the
name Jocal shtuka.

So far we have discussed the semi-linear algebra side given by shtukas. On the
side of group schemes, an important source from which the corresponding strict IF ;-
module schemes arise are Drinfeld A-modules, or more generally abelian Anderson
A-modules. To define them, let ¢: § = Spec R — Spec A be an affine A-scheme. Recall
that for a smooth commutative group scheme E over Spec R the co-Lie module wg :=
€5 QL /& is alocally free R-module of rank equal to the relative dimension of E over
R. Moreover, on the additive group scheme G, r = Spec R[x] the elements b € R,
and in particular ¢*(a) € R for a € Fy c A, act via endomorphisms y3,: G4z = Ga,r
given by y;: R[x] - R[x], x ~ bx. This makes G, r into an Fy-module scheme.
In addition, let 7 := F;g,, be the relative g-Frobenius endomorphism of G,z =
Spec R[x] given by x — x1. It satisfies 7 o Y}, = Ypqe o 7. We let

R{t} := {Zn:b,-'r" :neNg,b; € R}
i=0

with 76 = b97 be the non-commutative polynomial ring in the variable 7 over R.
There is an isomorphism of rings R{7} 5 EndR_groups,]Fq,hn(Ga, r) sending an ele-
ment f = Y; b;7’ € R{7} to the F,-equivariant endomorphism f: G4 r = Gg,r given

by f*(x) = X, bixd.

Definition 6.5 Let d and r be positive integers. An abelian Anderson A-module
of rank r and dimension d over an affine A-scheme c:SpecR — SpecA is a pair
E = (E, ¢) consisting of a smooth affine group scheme E over Spec R of relative di-
mension d and a ring homomorphism ¢: A - Endg_groups (E), @ = @, such that

(i) there is a faithfully flat ring homomorphism R — R’ for which E xg SpecR’ =
Gg,R, as IF;-module schemes, where IF; acts on E via ¢ and IF; c A;
(i) (a®1-1®c*a)?-wg = 0forall a € Aunder the action of a ® 1 induced from
¢, and the natural action of 1 ® b for b € R on the R-module wg;
(iii) the set N := My(E) := HOomg_groups,F,-lin(Es G4,r) of Fy-equivariant homo-
morphisms of R-group schemes is a locally free Az-module of rank r under the
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action given on m € N by
Asa:N->N,mw—mog¢,, R3b:N—->N,mw~ y,om.

If d =1, this is called a Drinfeld A-module over S; cf. [Harl7, Theorem 2.13].

The case in which C = P!, A = F,[t], and R is a field was considered by Ander-
son [And86] under the name abelian t-module. In [Harl7, Theorem 2.10] we gave a
proof of the following relative version of Anderson’s theorem [And86, Theorem 1].

Theorem 6.6 IfE = (E, ¢) is an abelian Anderson A-module of rank r and dimension
d, we consider, in addition, on N := My(E), the map 15™:m + F, g, , o m. Since
™ (bm) = bIT™ (m) for b € R, the map T™ is o -semilinear and induces an
Ag-linear map t:0,N — N with ¢™(m) = t~(oym). Then M ((E) = (N, 1)
is an effective A-motive of rank r and dimension d. There is a canonical isomorphism
of R-modules coker Ty — wg, m mod t§(0;N) = m*(1), where m* (1) means the
image of 1€ wg, , = R under the induced R-homomorphism m*: wg, , = Wg.

The contravariant functor E — M . (E ) is fully faithful. Its essential image consists
of all effective A-motives N = (N, Ty) over R for which there exists a faithfully flat ring
homomorphism R — R’ such that N ®g R’ is a finite free left R'{ 1}-module under the
map T:N - N, m = 1y(0ym).

Example 6.7 LetE = (E, @) be an abelian Anderson A-module over an affine
A-scheme c¢:SpecR — SpecA, and let N := MQ(E) be its associated effective A-
motive.

(a) Leta c Abeanon-zeroideal. By [Harl7, Theorem 5.4] the a-torsion submodule
of E, defined as the scheme-theoretic intersection E [a] := Ngeq ker(¢q:E - E),isa
finite locally free A/a-module scheme and a strict Fy-module scheme over S, which
satisfies M, (E[a]) = N /aN and E [a] = Drg(N /aN).

(b) Let p c A be a maximal ideal and assume that the elements of ¢*(p) c R are
nilpotent. Let g be the cardinality of the residue field Fy, := A/p and let f := [F,:F,].
We fix a uniformizing parameter z € F,(C) = Frac(A) at p and set { := ¢*(z) € R.
We obtain an isomorphism F,[[z]] — A, := lim A/p". As in Example 6.4 the J-adic

completion M of N together with 7y := Tﬁ: aﬁf; *M — M is an effective local shtuka

M = (M, ty) over Rof rank r (as in Definition 2.1 with g and Fy[[z]] and o replaced
by ¢ and Fy[[z]] and o; ). By [Harl7, Theorem 6.6] the torsion module E [p"] is a
finite locally free strict F,-module scheme that satisfies Dry(M /p"M ) = E [p"] and
M/p"M = M ,(E[p"]). Moreover, in the sense of Section 7 below, the inductive
limit E [p*°] := lim E [p"] is a p-divisible local Anderson module over R that satisfies
Dry(M) = E[p™]and M = Mq(ﬁ [p*°]) under the functors from Theorem 8.3.
Note that condition (ii) of Definition 6.5 implies that (z - {)¢ = 0 on w ,n] for every
nand on wg o] = @wg[pn].
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7 Divisible Local Anderson Modules

The name divisible local Anderson module is motivated by Example 6.7 (b). These are
the function field analogs of p-divisible groups. They were introduced in [Har09], but
their definition in [Har09, §3.1] and the claimed equivalence in [Har09, §3.2] is false.
We give the correct definition below analogously to Messing [Mes72, Chapter I, Defi-
nition 2.1]. We fix the following notation. For an fppf-sheaf of F;[z]-modules G over
a scheme S, we denote the kernel of z": G — G by G[z"]. Clearly (G[z"*™"])[z"] =
G[z"] forall n,m e N.

Definition 7.1 A z-divisible local Anderson module over a scheme § € Nilpg 1,7 is
a sheaf of I, [[z]]-modules G on the big fppf-site of S such that

(i) G is z-torsion, that is, G = lim G[z"].
—

(ii) G is z-divisible, that is, z: G — G is an epimorphism.
(iii) For every n the F;-module G[2"] is representable by a finite locally free strict
F;-module scheme over S (Definition 4.7).
(iv) Locally on S there exists an integer d € Zsy, such that (z - {)? = 0 on wg where
wg = l(iLna)G[zn].
We define the co-Lie module of a z-divisible local Anderson module G over S as wg :=
lim wgzn]. We will see in Lemma 8.2 and Theorem 10.7 that w is a finite locally free
Og-module and we define the dimension of G as rk wg. It is locally constant on S.

A z-divisible local Anderson module is called (ind-)étale if wg = 0. Since wg
surjects onto each WG[zn] because w;,: WG[zn+1] ™ WG[zn] IS an epimorphism, wg =0
if and only if all G[2"] are étale; see Lemma 3.5.

A morphism of z-divisible local Anderson modules over S is a morphism of
fppf-sheaves of IF, [[z]]-modules.

The category of z-divisible Anderson modules over S is F; [ z]]-linear and an exact
category in the sense of Quillen [Qui73, §2].

Remark 7.2 We will frequently use that for a quasi-compact S-scheme X, any
S-morphism f: X — lim G[2z"] factors through f:X — G[z"] for some m; see for
example [HV1], Lemma 5.4].

Remark 7.3 (On axiom (iv) in Definition 71) Note the following difference to the
theory of p-divisible groups. On a commutative group scheme, multiplication by p
always induces multiplication with the scalar p on its co-Lie module. In the case of
IF4[[z]]-module schemes, axiom (iv) is the appropriate substitute for this fact, taking
into account Example 6.7. It allows that z—( is nilpotent on wg,»]. Without axiom (iv)
the Og-module wg is not necessarily finite; see Example 7.7.

Notation 7.4 Let G be a z-divisible local Anderson module. We denote by i, the
inclusion map G[z"] = G[z"*'] and by iy, ,: G[z"] - G[z™*"] the composite of the

inclusions iy m-1 0 -0i,. We denote by j, , the unique homomorphism G[z"*"] —

https://doi.org/10.4153/CJM-2018-016-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-016-2

Local Shtukas and Divisible Local Anderson Modules 1187

m+n]

G[z™] that is induced by multiplication with z” on G[z such that i, , 0 jum =
z" idg m+n]. Observe thatalso j,,m 0 im,n = 2" idg[,m] forall m, n € N, as can be seen
by composing with the F,[z]-equivariant monomorphism i, ,: G[z™] = G[2"*"].

The following two propositions give an alternative characterization of divisible lo-
cal Anderson modules, which is analogous to Tate’s definition [Tat66] of p-divisible
groups.

Proposition 7.5 Let G be a z-divisible local Anderson module.

(i) For any 0 < m, n the following sequence of group schemes over S is exact

(71) 0 > G[2"] 2% G[z"™*"] 222 G[2™] - .

(ii) There is a locally constant function h:S — Ng,s — h(s) such that the order of
G[z"] equals q"". We call h the height of the z-divisible local Anderson module G.

Proof (i) Since z: G — G is an epimorphism, j, . is also. The rest of (i) is clear. Let
h = ko Mq(G[z]). Then ord G[z] = ¢" by Theorem 5.2 (iii)(c). Now (ii) follows
from (i) and the multiplicativity of the order. [ |

Proposition 7.6 Let (G, in: Gy = Gpi1)nen be an inductive system of By [ z]-module
schemes that are finite locally free strict F ;-module schemes over S satisfying the follow-
ing conditions.
(i) i, induces an isomorphism i,: G, — Gp41[2"].
(ii) There is a locally constant function h: S — Ny such that ord G, = q”hfor all n.
(iii) Locally on S there exists an integer d € Zg, such that (z - 0)? = 0 on wg, where
wg = l(£1 waG,-

Then G = h_n)l G, is a z-divisible local Anderson module.

Proof From (i) it follows that G, = G,,[2"] c G[2"] for all m > n. Conversely let
x € G[z"](T) for an S-scheme T. On each quasi-compact open subscheme U ¢ T
we can find an m such that x|y € G,,(U) by Remark 7.2. Now z"x = 0 implies
x|y € Gu[2"](U) = G,(U). In total, x € G,,(T). This shows that G, = G[z"] and
G =lim G[z"] is z-torsion.

The quotient G, /G; is a finite locally free group scheme over S by Remark 3.1 (d).
Its order is g""D", by (ii) and the multiplicativity of the order. The natural map
2:G,/Gy = Gu[z"'] 2 G,_, is a monomorphism and hence a closed immersion
by Remark 3.1 (a). It must be an isomorphism because ord(G,/G;) = ord(G,_;) by
(ii). This proves that z: G, — G,,_; is an epimorphism of fppf-sheaves. Let x € G(T)
for an S-scheme T. Choose a quasi-compact open covering {U; }; of T. For each i
we find by Remark 72 an integer n; such that x|y, € G,,(U;). By the above, there is a
¥i € Gu,11(U;) € G(U;) with z - y; = x|y,. This shows that G is z-divisible. By (iii) it
is a z-divisible local Anderson module. ]

Note that we require Definition 71(iv) and Proposition 7.6(iii) due to the following
example that we do not want to consider a z-divisible local Anderson module.
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Example 7.7 Let S be the spectrum of a ring R in which ( is zero, and let G,, be the
subgroup of G% ¢ = SpecR[xi, ..., x,] defined by the ideal (x{,...,x}). Make G,
into an F, [[z]]-module scheme by letting z act through z* (x;) = 0 and z* (x,) = x,_1,
for1 < v < n. Define i,: G, — Gy as the inclusion of the closed subgroup scheme
defined by the ideal (x,41).

As in Proposition 7.6 one proves that G := h_r)n G, satisfies axioms (i)—(iii) of Def-
inition 71, but not (iv). Here wg, = @], R - dx; = R", and so wg is not a finite
R-module. Therefore we cannot drop the conditions (iv) in Definition 7.1 and (iii) in
Proposition 7.6.

In the remainder of this section we introduce truncated z-divisible local Anderson
modules.

Lemma 7.8 Let n € N and let G be an fppf-sheaf of F [ z]-modules over S, such that
G = G[z"]. Then the following conditions are equivalent.

(i) GisaflatFy[z]/(z")-module.
(ii) ker(z"") =im(z') fori=0,...,n, that is, the morphism z': G — G[z" "] is an
epimorphism.

Proof (i) = (ii) Because of (i), the multiplication with z induces isomorphisms
Fo[z]/(z) — 2'Fy[2]/z""'F,[2z], G/zG —Z'G[z'"'G

for i < n — 1. This gives us ker(z" ') c im(z), and the opposite inclusion ker(z"') o
im(z) follows from G = G[z"]. Now ker(z""") c ker(z"™') c im(z) implies that
ker(z"") = zker(z" ') = z- 2'"!G = 2z’ G, by induction on i.

(ii) = (i) Taking i = 1 implies im(z) = ker(z"™!), and hence multiplication with
z" ! induces an isomorphism G/zG — z""!G. Since this factors through the epimor-
phisms G/zG - zG/z*G — --- — z""1G, we see that each of these maps is an isomor-
phism. Thus we have gr*(F,[z]/(z")) ®r, gr’(G) = gr*(G). Note that the ideal
(z) c Fy4[z]/(2") is nilpotent. Since G/zG is flat over IF,[z]/(z) = 4, [Bou6l, Chap-
ter III, §5.2, Theorem 1] implies that G is a flat F,[z] /(2" )-module. [ |

Definition 7.9 Letd,n € Nyo. A truncated z-divisible local Anderson module with
order of nilpotence d and level n is an fppf-sheaf of F,[z]-modules over S, such that

(i) if n > 2d, it is an [F,[2]/(2")-module scheme G that is finite locally free and
strict as an F;-module scheme, such that (z—{)“ is homotopic to 0 on ¢ é /s and
G satisfies the equivalent conditions of Lemma 7.8;

(ii) if n < 2d, it is of the form ker(z": G — G) for some truncated z-divisible local
Anderson module G with order of nilpotence d and level 2d.

If G is a z-divisible local Anderson module over S € Nilqu ey With (z2=¢ )4 =0on

wg, we will see in Proposition 9.5 that G[z"] is a truncated z-divisible local Anderson
module with order of nilpotence d and level »n. This justifies the name.

https://doi.org/10.4153/CJM-2018-016-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-016-2

Local Shtukas and Divisible Local Anderson Modules 1189
8 The Local Equivalence

The category of z-divisible local Anderson modules over S and the category of local
shtukas over S are both Fy [ z]]-linear. Our next aim is to extend Drinfeld’s construc-
tion and the equivalence from Section 5 to an equivalence between the category of
effective local shtukas over S and the category of z-divisible local Anderson modules
over S.

For every effective local shtuka M = (M, Fy;) over S we observe that

1 n n
M =1im(M/z"M, Fy mod z" M)
and we set Dry(M ) := lim Dry(M/z"M, Fyy mod z"M). The action of Fy[[z]] on

M makes Dr, (M ) into an fppf-sheaf of F; [[z]]-modules on S. Conversely, for every
z-divisible local Anderson module G = lim G[z"] over § we set

M (G) = (My(G), Fur,(6)) = lim(My(G[2"]), Far,(6121))-

n

Multiplication with z on G gives M, (G) the structure of an Os[[z]]-module.

Lemma 81 LetG = lim G[z"] be a z-divisible local Anderson module of height r

over S; see Proposition 7.5. Then My(G) is a locally free sheaf of Os[[z]]-modules of
rank r.

z

Proof Applying M , to the exact sequence 0 — G[z"] LN G[z""] z G[z""]

yields an exact sequence of Og[[z]]-modules
" M, (i
My(GL2]) 5 My(GL""1]) 2 My (G[2]) — 0.

We deduce from [Bou6l, SIIL.2.11, Proposition 14 and Corollaire 1] that M,(G) is
a finitely generated Og[[z]]-module and the canonical map M,(G) - M,(G[z"])
identifies My (G[2z"]) with My (G)/z"M4(G).

We claim that multiplication with z on My(G) is injective. So let lim(f,)n €
My(G), fu € My(G[2"]) with z- f, = 0in My(G[2"]) for all n. To prove the claim
consider the factorization

2 idy, (et = Ma(in) © M) My (G[2"1]) — M, (G[2""))

obtained from Notation 7.4. Theorem 5.2(ii) implies that M, (j1,,) is injective, and
hence f, = Mg (in1)(fas1) is zero for all n as desired.

Locally on Spec R c S the R-module M,(G[z]) is free. By Theorem 5.2 (iii)(c) its
rank is r. Let my, ..., m, be representatives in M, (G) of an R-basis of My (G[z]) and
consider the presentation

8.1) 0 —> kera —> @ R[] m; — M,(G) — 0.

i=1

Note that « is surjective by Nakayama’s Lemma [Eis95, Corollary 4.8] because z is
contained in the radical of R[[z]]. The snake lemma applied to multiplication with z
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on the sequence (8.1) yields the exact sequence

0 —> coker(z:kera —> kerat) — é Rm; — M,(G[z]) — 0
i=1
in which the right map is an isomorphism. This implies that multiplication with z” is
surjective on ker « for all n, and hence kera c N, 2" - (®}_, R[[z]]m;) = 0 because
R[[z]] is z-adically separated. Therefore, M,(G) is locally on S a free O [[z]]-module
of rank r. ]

Recall from Theorem 5.2 (iii)(d) that the co-Lie complex Eé[zn] /s of G[z"] is canon-
ically isomorphic to the complex of Os-modules

F N
) P, M, (G[2"]) — .

0 — 0y My(G[2"]
In particular, ng,n) = ker Fyy, (G[n]) and wgpn) = coker Fyy, (G[zn7) for the Og-mod-
ules from Definition 3.4.

Lemma 8.2 Let S € Nilpg .y and let G = lim G[2"] be a z-divisible local Anderson
module over S.

(i) Locally on S there is an N € N such that the morphism i,: G[z"] = G[z"*!]
induces an isomorphism wg[ 1] 5 wg[zn) foralln > N.
(ii) The projective system (ng.n1)n satisfies the Mittag-Leffler condition.
(iii) M ,(G) is an effective local shtuka over S and coker(Fy,(c)) is canonically iso-
morphic to wg. In particular, wg is a finite locally free Os-module.

Proof Workinglocally on S we may assume that (¥ "= 0in Og and that (z-0)wg =
0 for some integers N' and d. Let N > max{N’, d} be an integer which is a power of
p. Then zNwg = (2N - (Mwg = (z- O)Nwg = 0.

(i) The closed immersion i,: G[z"] = G[z"*!] induces an epimorphism
Wi, WG[zn+1] = WG[zn]»

and therefore wg surjects onto each wgp»]. This implies that ZN wg[z) = 0 for all
n. Applying Lemma 3.6 to the exact sequence (7.1) for m = 1, and using i1,, © j,1 =
2" idg[,n], we obtain that ker(wgp ] = wg[zn]) = 2" Wg[zn+1]. Therefore

WG+ = WG[zn]

is an isomorphism for all n > N.

To prove (ii) we fix an n > N. We abbreviate the Os-modules M,(G[z*]) by M
and the map Fy, (g[;+]) by Fx. From Proposition 7.5 and Theorem 5.2(ii) we have an
exact sequence

M, (i M, (i,
0 > My a(ink) - q(ink) 0.
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It remains exact after applying o, because M, is locally free. For all k, we consider
the commutative diagrams,

/

Fok .
0 ——=kerF, ., — O';Mm.k S imF, —>0

J{Pk iU;Mq(in,k) i

0 ——kerF, *>0;Mn imF, 0

F

"

. Fk
0 —> im F,. —> M,y —> coker F,,, —> 0

e

0 imF, - M, coker F, ——=0

n

where we have split F, = F)/ o F, with F/, surjective and F!/ injective, and where the
vertical map on the right in the second diagram is an isomorphism by the identifica-
tion coker F,, = wg,»] from Theorem 5.2 (iii) (d) and by what we proved in (i) above.
We denote the vertical map on the left in the first diagram by pi. The snake lemma
applied to both diagrams yields the following exact sequence

* Fy
0y Mg —> My — coker pp — 0.
Therefore coker pi = coker Fy = wg[+]- In the diagram

0 —— im py; — ker F,, —— coker py;; ——0

] | I

0 im py ker F,, — coker py —0

the vertical map on the right is an isomorphism for k > N by what we have proved
in (i) above. Therefore the image of p stabilizes for k > N; that is, ng,») = ker F,,
satisfies the Mittag-Leffler condition. Note that (im F,), also satisfies the Mittag-
Leffler condition. We will use this for proving (iii).
(iii) We still abbreviate My (G[2"]) by M,, and Fy, (g[z#]) by Fa. The maps

Fp: 0} My > M,

give us two short exact sequences of projective systems
0 —> kerF, — ogMn —imF, — 0

and

0 — imF,, — M, —> coker F, — 0.

Taking the projective limit, using the Mittag-Leffler conditions via [Har77, Propo-
sition 11.9.1(b)], the isomorphism o7 (My(G)) = lim oy (M) (which is due to the
flatness of My (G) over Os), and combining both exact sequences we obtain an exact
sequence

F
0 — limker F, — 0, (My(G)) 1O, My(G) — lim coker F,, —> 0.

n n
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This shows that wg := l(£1 WG[zn] = l(gq coker F, = coker Fyy, (), which is finite locally
free over O by Lemma 2.3. Furthermore, condition (iv) of Definition 7.1 implies that
(z - {)? annihilates coker F M, (G)- This proves that the map

* 1 1
Fa,(6): 04 (Mq(G))[ ;(] — Mq(G)[ ch]
is surjective. As both modules are locally free over Og[[z]] [Z%(] of the same rank, the
map is an isomorphism. Thus M , (G) is an effective local shtuka. ]

We can now prove the following theorem. It generalizes [And93, §3.4], which
treated the case of formal IF,[[ z]]-modules and which we state in (i).

Theorem 8.3 LetS e Nilp]Fq[[ -

(i) The two contravariant functors Drg and M , are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over S and the category of
z-divisible local Anderson modules over S.

(i) Both functors are IF4[[z]]-linear, map short exact sequences to short exact se-
quences, and preserve (ind-)étale objects.

Suppose furthermore that M = (M, Fy) is an effective local shtuka over S and let
G = Dry(M ) be its associated z-divisible local Anderson module. Then the following
hold.

(i) G is a formal F4[[z]]-module (Definition 1.1) if and only if F is topologically
nilpotent.

(ii) The height (see Proposition 7.5) and dimension of G are equal to the rank and
dimension of M.

(iii) The Os([z]]-modules wp,, (u ) and coker Fy are canonically isomorphic.

Proof (i) We already saw in Lemma 8.2(iii) that M q sends z-divisible local Ander-
son modules to effectve local shtukas. To prove the converse we use Proposition 7.6.
Let M = (M, Fp) bean effective local shtuka over S and abbreviate M /z"M = M , =
(M, Fy,) and G, := qu(Mn). Then G := Dry(M ) = lim G,,. Consider the locally
constant function h := rke . M on S. It satisfies rko, (M, ) = nh. By Theorem 5.2
the G, are finite locally free strict F,-module schemes over S of order g"", and the
exact sequence of finite IF;-shtukas

o
My — My — M, —0

yields an exact sequence of group schemes 0 — G, — Gp41 = Gy1. This implies

that G, = ker(z": G,41 = Gpn41) =t Gy41[2"]. By Lemma 2.3 we know that locally on
S there exist positive integers ¢/, N such that (z— ()¢ = 0 on coker Fy and zV = 0 on
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coker Fpr. Applying the snake lemma to the diagram

0 UJM For M coker Fpy ———0
J/Zﬂ lzn lzn
0 oq*M P M coker Fpy ———0

shows that coker Fyy — coker Fj;, is an isomorphism for # > N. Therefore by Theo-
rem 5.2 (iii)(d) wg := 1(&1 wg, = l(in coker(Fyy, ) = coker Fy;. This establishes (iii) and
implies (z—{)¢ = 0 on wg. Therefore G = lim G, is a z-divisible local Anderson mod-
ule by Proposition 7.6. By Theorem 5.2 the functors Dry and M, are quasi-inverse to
each other. This proves (i).

(ii) From our proof above, the height of Dr, (M ) equals the rank of M . The equal-
ity of dimensions follows from (iii).

(ii) The Iy [[ z]]-linearity of the functors is clear by construction. From (iii) it fol-
lows that both functors Dry and M , preserve (ind-)étale objects. To prove the ex-
actness of Drylet 0 > M"” — M — M’ — 0 be a short exact sequence of effec-
tive local shtukas. Modulo z", it yields a short exact sequence of finite I ,-shtukas
0> M) > M, > M - 0, where M!! := M"/z"M", etc. Theorem 5.2 pro-
duces the exact sequence 0 - G'[z"] - G[z"] = G"[z"] - 0, where G = Dry(M ),
G’ =Dry(M"), G" = Dry(M"). This implies that 0 > G’ > G - G” — 0 is exact,
because taking direct limits in the category of sheaves is an exact functor.

Conversely, let 0 -~ G’ = G > G” — 0 be a short exact sequence of z-divisible
local Anderson modules. Since multiplication with z” is an epimorphism on G, the
snake lemma yields the exact sequence of finite locally free strict F;-module schemes
0 - G'[z"] - G[z"] - G"[z"] — 0. Theorem 5.2 implies that the sequence
0->M!—>M,—> M —0is exact, where M = Mq(G),M' = Mq(G’),M” =
M ,(G"). Since {M "} satisfies the Mittag-Leffler condition, we obtain the exactness
of0>M" M ->M'—0.

(i) Let G = Drgy(M). In Proposition 10.11 we will see that G is a formal
IF,[[z]]-module if and only if G[z] = ker(z: G — G) is radicial, which by Theorem 5.2
(iii)(b) is equivalent to Fa, = (Fa mod z) being nilpotent locally on S. The latter is
the case if and only if locally on S there is an integer n such that (Fy/)" = 0 mod z,
that is, if and only if Fy is topologically nilpotent. ]

Corollary 8.4  Let S € Nilpg .7 and let f: G’ - G be a monomorphism of z-divisible

local Anderson modules over S. Then the quotient sheaf G /G’ is a z-divisible local An-
derson module over S.

Proof Since the questionislocal on S, we can assume that S = Spec R is affine. For all
n, the induced map G'[z"] — G[2z"] is a monomorphism, hence a closed immersion
by Remark 3.1 (a). By Lemma 4.6 it is strict IFj-linear in the sense of Faltings [Fal02,
Definition 1], and by [Fal02, Proposition 2] the cokernel G, := G[z"]/G'[z"] is a
strict IFy-module scheme that is finite locally free by Remark 3.1 (d). By Theorem 5.2
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this induces the exact sequence of finite F; -shtukas
0> M, (G,) > M, (G[z"]) > M, (G'[z"]) > 0.

In the diagram

0 0 0
04>G/[Zn]"‘4m>Gl[zn+m] Jn,m G’[Zm] - -0

0 G/ Gl Gl 0
{ | |
0 0 0

the columns are exact by definition of G;, and the two upper rows are exact by Propo-
sition 7.5. By the snake lemma, this defines the exact sequence in the bottom row. By
Theorem 5.2, this implies that M (i}/,): M ,(G}/,;) — M ,(G}) is surjective for all
n. In particular, the projective system M , (G;/) satisfies the Mittag-Leffler condition,
and the morphism M (f):M = M ,(G) » M':= M ,(G") of effective local shtukas
corresponding to f by Theorem 8.3 is surjective by [Har77, Proposition I1.9.1(b)]. The
kernel M" := ker M ,(f) = lim M ,(G})) is a locally free R[[2]]-module with a mor-
phism Fyv: 0y M"” - M" inducing an isomorphism Fy»: U;M”[z%(] - M”[Z%C],
because this is true for M and M’. Thus M " is an effective local shtuka over .
Applying the snake lemma to the (injective) multiplication with z" on the sequence
0> M"—-> M - M' - 0shows that M"/z"M" = Mq(G;’). Therefore, The-
orem 8.3 implies that G/G" = Dry(M") = lim G}/ is a z-divisible local Anderson
module over S. ]

9 Frobenius, Verschiebung and Deformations of Local Shtukas

Definition 9.1 Let G be an fppf-sheaf of groups over an F;-scheme S. For n € Ny
we let G[F ] be the kernel of the relative q"-Frobenius Fyn,: G — 0., G of G over S.

Let S € Nilp]Fq ¢y Later we will assume that { = 0 in Og. Let G be a z-divisible
local Anderson module over S andlet M = (M, Fy) = M (G) be its associated local
shtuka from Theorem 8.3. Then the g-Frobenius morphism Fy ¢ := lim Fy [;#: G
04 G corresponds by diagram (5.2) to the morphism

M (Fq,c) = Fu: My(0,G) = 0, Mg(G) — My(G), mr—moF;c=Fy(m).

In addition to the g-Frobenius, G carries a g-Verschiebung that is identically zero
by Theorem 5.1. Therefore, if { = 0 in O, we will introduce a “zd -Verschiebung” in
Remark 9.3 and Corollary 9.4, which is more useful for z-divisible local Anderson
modules. We begin with the following lemma.
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Lemma 9.2 Let M be an effective local shtuka with (z — {)% = 0 on coker Fy;. Then
there exists a uniquely determined homomorphism of Os[[z]]-modules Vayi: M — o, M

with Fy o Vg = (2= ()4 - idy and Vig o Fy = (2= )¢ - idge .

Proof Since F is injective by Lemma 2.3 and (z - {)? = 0 on coker Fy, the lemma
follows from diagram (9.1).

(9.1) 0 aq*M For M coker Fjy ———= 0
Ve
7
(Z()dl ‘LM/ l(z()" l(z()'%o
~
0 ogM M coker Fpy ——— 0
Fm

|
Remark 9.3 1f { = 0 in O, the Frobenius f := FaroyM[1] — M[1] satis-
fies Fyy o o5 f = Fm o 0,Fu = f o 0yFuy, and hence is a quasi-isogeny between
the local shtukas o, M = (o, M,0;Fy) and M. Likewise, if M is effective with
(z - {)? = 0 on coker Fy, the homomorphism Vj; from Lemma 9.2 is an isogeny
Vay =V M[] > o, M[1], called the 2% -Verschiebung of M . Tt satisfies Fy o
Vaam = z%. idy and Vya p o Fyr = z4. idgs . Indeed, ¢ =0 = {7 implies that the
following diagram is commutative

*
Uqu

* =M * *
_—
o M oy (oy M)
iFM iD_;FM_FU:;M
Vzd,ﬂ R
M oM

as
Foapo 0y Vo = 0gFyo0og Vo y =07 ((z- O idy)
= (z2-{N)* idgzar = Viaar © Far.

Corollary 9.4  Assume that { = 0 in Og. Let G be a z-divisible local Anderson mod-
ule over S with (z — ()% = 0 on wg. Then there is a uniquely determined morphism
Voag:00G = G with Fyg o Vg = 2% - idgsg and Vo g o Fg = 2% - idg. It
is called the z% Verschiebung of G. In particular, G[Fy] is contained in G[z""] and
ker(V}; ;205G > G) c a;nG[z"d]for all n.

Proof Let M =M ,(G) be the effective local shtuka associated with G. Since
(z-0)*=0

on wg = coker Fy, the z¢-Verschiebung V. m of M from Remark 9.3 corresponds

by Theorem 8.3 to a morphism V,a ¢ := Drg(V,a p):0,G - G with Fg,g 0 V,u g =
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d : _d n n  _ nd n
+idgsG and Via g 0 Fg,g = 2° - idg, and hence V; o Fig=2""" idgand FJ ; o

n
Vz“ G~

2" - id, . This proves the corollary. ]
q

Proposition 9.5 Let G be a z-divisible local Anderson module with (z - ()% =

on wg, and let n € N. Then G[z"] := ker(z": G — G) is a truncated z-divisible local

Anderson module with order of nilpotence d and level n; see Definition 7.9.

Proof The equivalent conditions of Lemma 7.8 for the IF,[z]/(z")-module scheme
G[z"] follow from Proposition 7.5 by considering, for all v = 0,...., n, the commuta-
tive diagram

ln v,V ]n v,V

00—

G|z
Jvn—v / \ &vnv

in which i, ,_, is a monomorphism and j, ,_, an epimorphism, and hence
ker(z"™") =ker(ju—y,y) = im(iy_y,,) = im(z").

By Theorem 8.3(iii), (z - {)¥ = 0 on coker Fi,(6)- We reduce the map Vi, () from
Lemma 9.2 modulo z" to obtain a homomorphism

Vi, (6lzr): Mq(G[2"]) = 0 Mg (G[2"])
with
Fa,612]) © Vg 6z = (2= O% - i, (6 12))»
Vi, (6lz]) © Faty ey = (2= O - idoz gy (612 -
Under the identification of the co-Lie complex €é[zn] /s With

F, Zn
Mq(GL"]) M,(G[2"]) — 0

0 — 0, My(G[2"])
from Theorem 5.2 (iii)(d) the map V), (G[.»]) corresponds to a homotopy h: tg[ e
Ngpzn with dh = (z - {)? on tgre and hd = (z-{)%on Ng[z#]- This means that

(z - {)? is homotopic to zero on €(;[z,,]/s. [ |

Proposition 9.6  Assume that { = 0 in Og. Let G = G[z'] be a truncated z-divisible
local Anderson module over S with order of nilpotence d and level I.

(i) There exists a morphism Vo gi0,G = G with Fyg o Vag = z4 - idgrg and
Vzig o FgG = =z%. idg. It is not uniquely determined, unless G is étale.
(ii) G[F;]c G[ ‘T and ker V}, ; c a;iG[z"d]for all i.

Now let n € Nyg and | = nd. In particular, if n = 1, there is a truncated divisible local
Anderson module G of level 2d with G = G[z%] and we assume that V= Vzd)§|0;G.
Then the following hold.
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(iii) For all i, with 0 < i < n the morphism F‘;’G: G[Fj] ~ a;iG[F;”i] is an epimor-
phism.

(iv) The morphisms V) ;:05.G — kerFj ; and F o:G — ker V[, . are epimor-
phisms.

(v) G[F;] and ker V, . are finite locally free strict F j-module schemes over S for all
0<i<n.

(vi) Forall 0 <i < n, we have wg = Wg[ia] = Wg(F,] and this is a finite locally free
Og-module.

Proof (i) Let h:tj; - Ng be a homotopy satisfying dh = (z - ( )4 on t¢ and also
hd = (z—{)¥ on Ng. Note that / is determined only up to adding a homomorphism
te = cokerd = wg - ng = kerd — Ng, and in particular, is not unique unless G
is étale. Let V:My(G) — 07 My(G) be the homomorphism that corresponds to h

under the identification of the co-Lie complex EE; /s with

0> 07 My(G) 2 M,(G) - 0
from Theorem 5.2 (iii)(d). Then V o Fy; () = z%. idgs M, (G) = a;(zd ~idpy,(6)) =
04 (Fu,(6)°V) = Form,(Gy©0, Vimplies that V: M  (G) - oy M ,(G) = M (0, G)
is a morphism of finite IF;-shtukas. It induces the desired morphism
Vg :=Dry(V):0,G~>G

with Fy g o Vo g = 2% - idgrg and Vya g 0 Fo6 = 24 - idg.
(ii) follows from VZid)G o Fé,G =z%.idg and F;’G o Vz",,,’G =z, id,* ¢ which are
consequences of (i). ! '
(iii) is trivial if n = land i = 0 or 1. If n > 2, there is by (i) a factorization F;)G o

Vzi,, G = zidzoq‘“iG - aq*,-G. Since the morphism z"d:a;,,G - ogiG[z(”‘i)d] is an
epimorphism by Lemma 7.8, and since o; G[F;"i] cog G[z("=)4] by (ii), we obtain
(iii).

(iv) is proved by induction on n. For n = 1, we use G = G[z%]. By Lemma 7.8
there is an exact sequence 0 - G[z%] - G 2 G[z%] - 0. Since G[F,] c G[F,] c
G[z%] by (ii), the map VagoF, g= z%:(2%)"Y(G[F,]) - G[F,] is an epimorphism.
From F, & (z9)7Y(G[F,]) — agé[zd] =0,G weseethat Vi g = Vi glorc oG —
G[F,] is an epimorphism. The statement for Fy ¢ is proved in the analogous way

using ker V,a g c ker V4 z c o] G[z%]. Thus we have proved (iv) for the case n = 1.
To prove it in general by induction on n, consider the diagram

* nd Vznd’G n
05 G[2"?] G[F{]
zdi in,G
O G[Z(n—l)d] — (g;G[Z(nfl)d])[Fg*I] _ OJG[F;"I]
q 24,6
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In the bottom row, oy VZ’,’[é is an epimorphism by the induction hypothesis, and the
equality comes from (ii). The vertical map on the left is an epimorphism by Lemma 7.8,
and therefore Fy,g o V; . is an epimorphism. Thus if we can show that ker(F,,¢) =
G[F,] is contained in the image of V; .,
But by the case n = 1 settled above

G[Fy] = Vaa,6(0, G[2"]) = Va6 0 2" D(07 G[2"])

= Vi g o Fid(07G[2"]) € Vi 5 (0 G[2"]).

This proves that V;  is an epimorphism. The statement for F} ; is proved in the
same way. _ '

(v) The morphisms F;’G: G- 0;,. Gand V), .: a;,»G — G between group schemes
of finite presentation over S are themselves of finite presentation by [EGA, IV, Propo-
sition 1.6.2(v)]. Therefore G[F;] := ker F ;,G and ker V/, . are of finite presentation
over S by [EGA, IV, Proposition 1.6.2(iii)]. As closed subschemes of G, respectively
0,:G, they are also finite over S. Since in (iv) we proved that

it will follow that VZ';’ ¢ is an epimorphism.

.60 G2 ] > (G[])[Fy] = G[F,]

and
F;’G: G[zid] — ker Vzid’G[zid] = ker Vzid)G

are epimorphisms, they are faithfully flat by Remark 3.1 (b). Therefore G[F}] and
ker Vzid)G are flat over S by [EGA, IV3, Corollaire 11.3.11], and hence finite locally
free. Over any affine open U c S the FF;-equivariant morphisms F;,G and Vzid’ ¢ lift
by Lemma 4.6 to morphisms in DGr(F,)y. Thus they are IF;-strict morphisms in
the sense of Faltings [Fal02, Definition 1]. By [Fal02, Proposition 2], their kernels
G[F;] xs U and ker( Vzid,G) xs U are strict F;-module schemes over U. So the -
strictness of G[F ‘;] and ker VZ’;,, ¢ over all of S follows from Lemma 4.8.

(vi) For any group scheme G = Spec R[Xj, ..., X,]/I of finite type over SpecR,
we compute G[F,] = SpecR[X,,..., X, ]/(I, X, ..., X}). By the conormal sequence
[Har77, Proposition I1.8.12] for the closed immersion G[F;] c G, this implies that
wG = wg[F,]- The inclusion G[F4] c G[2?] from (ii) therefore implies that G[F,] =
(G[z'Y])[F,], and hence wg = Wg[zi4] = Wg[F,] for all i. Moreover, since G[F,] is a
finite locally free strict IF;-module scheme over S by (v), we can compute wg(r,] as
coker Fy;, (g[F,])> where (M4(G[Fg]), Fa,(c[F,))) is the associated finite IF;-shtuka
from Theorem 5.2. In particular, Fyr, ([r,]) = M 4(Fy,6[r,]) = 0 and this implies that
coker F, ([r,]) = Mq(G[F,]) is a finite locally free Os-module. [ |

In the remainder of this section we will show that to lift a z-divisible local Ander-
son-module is equivalent to lifting its Hodge filtration. Let S € Nilqu [¢y and let G be

a z-divisible local Anderson module over § satisfying (z — ) - wg = 0. Let (M, Far)
be its effective local shtuka. Then (z — () - coker F); = 0 and we consider the map
Vu from Lemma 9.2. The injective morphism Fj; induces by diagram (9.1) an exact
sequence of Og[[z]]-modules

0 —> coker Vi Lu, M/(z-{)*M — coker Fpy —> 0.
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In particular coker V) is a locally free Og-module of finite rank. Conversely, Vi
induces the exact sequence of Og[[z]]-modules

(9.2) 0 — coker Fy; Yot U;M/(Z—C)d(r;M—>coker Vu — 0.

Definition 9.7 (cf. [H]19, §5.7]) We call
H(G) := Hix (G, 0s[z]/(z= O)*) =0, M/(z - ()0} M

the de Rham cohomology of G with coefficients in Os[z]/(z — {)%. Tt is a locally free
Os[z]/(z - {)*-module of rank equal to rk M = height G. The O[z]-submodule
Vu (coker Fyr) ¢ H(G) is called the Hodge filtration of the z-divisible local Anderson
module G.

Now let i:S" < S be a closed subscheme defined by an ideal I with I? = 0. Then
the morphisms Frobg s and Frobg s/ factor through i

Frobgs=icjS—>S8 -8 and Frobys =joi:S >89,

where j:S — §’ is the identity on the underlying topological space |S’| = |S| and on
the structure sheaf this factorization is given by

it i
OS — Os/ —> Os

b~ bmodlI - bl

Let G’ be a divisible local Anderson module over S’ with (z—{)?-w¢ = 0, and denote
by (M’, Fyrr) its local shtuka. We set H(G")s := j*M'/(z~{)¢ j*M’. This is a locally
free module over Os[z]/(z - {) and satisfies i* H(G")s = H(G").

Theorem 9.8 'The functor G — (i*G, Vy(coker Fyr) ¢ H(G)) defines an equiva-
lence between
(i) the category of z-divisible local Anderson modules G over S with (z—{)? - wg = 0,
and
(ii) the category of pairs (G', Fil ¢ H(G')s), where G' is a z-divisible local Anderson
module over S’ and Fil ¢ H(G')s is an Os[[ z]]-submodule whose quotient is a flat

Og-module that specializes to the O[[z]]-submodule Vi (coker Fyr) ¢ H(G")
under i.

Proof We describe the quasi-inverse functor. Let (G',Fil ¢ H(G")s) be given and
let (M, Fpyr) be the local shtuka of G'. We define Vyi: M — j* M’ as the kernel of the
morphism j*M’ - H(G")s/ Fil. Since Fil c H(G")s specializes to Vjs(coker Fp) c
H(G'") we obtain i*(H(G")s/ Fil) = H(G")/Va(coker Fyp) = coker Vi, This im-
plies i*M = M" and o; M = j*i*M = j*M’. Moreover coker Vy is annihilated by
(z - {)?. Thus there is an injective morphism of Os[[z]]-modules F: oM > M
with Fp Vi = (z = ()% idy and Vi Fy = (z = () idU;M. From sequence (9.2) we
see that the cokernel of Fy; is a locally free Og-module. Clearly the z-divisible local
Anderson module G over S associated with the local shtuka (M, Fy;) specializes to
G’ and has Fil c H(G")s = H(G) as its Hodge filtration. [ |
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Remark 9.9 We only treated the case where S’ c § is defined by an ideal I with
I9 = 0. The general case for d = 1is treated by Genestier and Lafforgue [GL1l, Propo-
sition 6.3] using (-divided powers in the style of Grothendieck and Berthelot.

10 Divisible Local Anderson Modules and Formal Lie Groups

In this section we clarify the relation between z-divisible local Anderson modules
and formal F,[[z]]-modules; see Definition 1.1. We follow the approach of Mess-
ing [Mes72] who treated the analogous situation of p-divisible groups and formal Lie
groups.

Definition 10.1 Let G be an fppf-sheaf of abelian groups over S € Nilpg, ¢y We
say that G is F-torsion if G = lim G[F7 ], and that G is F-divisible if Fg,6: G - 07 G is
an epimorphism.

Recall that Messing [Mes72, Chapter II, Theorem 2.1.7] proved that a sheaf of
groups G on S is a formal Lie group [Mes72, Chapter II, Definitions 1.1.4, 1.1.5], if
and only if G is F-torsion, F-divisible, and the G[F] are finite locally free S-group
schemes.

Theorem 10.2 When { = 0 in Og and G is a z-divisible local Anderson module over
S, thenlim G[F{ ] is a formal ¥ 4 [[z]]-module. It is equal to G:= limm Inf*(G), where
k

n
for any S-scheme T, Messing [Mes72, Chapter II, (1.1)] defined

(10.1) (Inf* G)(T) := {x € G(T): there is an fppf-covering {SpecR; — T}; and
for every i an ideal I; c R; with I¥*! = (0)such that the
pull-back x € G(SpecR;/1;) is zero}.

Proof By [Mes72, Chapter II, Theorem 2.1.7] it suffices to show that lim G[F{] is
F-torsion, F-divisible, and that the G[F}] are finite locally free. By construction
lim G[Fg] is F-torsion. By Definition 7.1(iv) there is locally on S an integer d with
(z-0)? - wg = (0), and then G[Fj]c G[2"%] by Corollary 9.4 and G[2z"?] is a trun-
cated z-divisible local Anderson module with order of nilpotence d and level nd by
Proposition 9.5. Therefore Proposition 9.6 shows that G[Fy | is finite locally free, and
that Fy,¢: G[F}}] — 0, G[F}/"'] is an epimorphism. Consequently,

Fyc:lim G[Fg] — o (lim G[Fg]) = lim o} G[F; ']

is an epimorphism and so lim G[Fj ] is F-divisible, and hence a formal Lie group. The
action of IF,[[z]] makes it into a formal F [[z]]-module.

To prove the last statement of the theorem, observe that for any S-scheme T,
the homomorphism Fgn6:G(T) - (0;,G)(T) is simply the map sending x to
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x o Frobg» 7 as can be seen from the following diagram:

Frobgn 1

Therefore, the monomorphism G[Fg] = G defines an inclusion G[F7 ] c Inf 716,
the ideals I; in (10.1) being the augmentation ideal in O Fr] defining the zero section.

We claim that this inclusion is an equality. So let x € (Inf a1 G)(T) andletR; and I;
beasin (10.1). Then I?" = (0) implies that Frobg» g, factors through R; - R;/I; 4 R;.
S0 Fyn g (%)|specr, = X © Frobgn g, = j*(x|specr,/1;) = 0, that is, x € G[Fg‘]. Thus we
have G[F]] = Inf? ' G and lim G[F}] = limInf*(G) c G which completes the

f - - m
proof.

Our next aim is to extend the theorem to all § € Nilp[m[ ¢ For that purpose we
start with the following lemma.

Lemma 10.3 Let S be a scheme with (N*' = 0 in Og, and let G = G[2"%] be
a truncated z-divisible local Anderson module over S with order of nilpotence d and
level nd with n > N + 1. Then for any affine open subset U of S and any quasi-
coherent sheaf I of Oy-modules, the natural homomorphism for the co-Lie complexes

Exth(Eé[Z@_N_l)d]/U, F) - Extbu(ﬁé[z,,d]/u, F) is zero.

Proof We proceed by induction on N and begin with N = 0. If n = 1, then
G["N D] = (0)

and there is nothing to prove. If n > 2, we use [Mes72, Chapter II, Corollary 3.3.9]

for the sequence 0 — G[z(" V9] - G[z"?] AN G[z%] = 0. So we must show
that wg[;n) > @g[,(n-n4] is an isomorphism, that wg(.n] and wg(.4) are locally free
Os-modules, and that 1k w«g[m-n4] < Tk g[za) for all points s € S. All three
statements follow from Proposition 9.6(vi). This concludes the proof when N = 0.
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For general N we take the exact sequence 0 - {F — F — F/{F — 0. and consider
the following commutative diagram with exact rows.

Extlou (eG[z("_N_l)d]/U’ (F)— Extlou (eG[z("_N_l)d]/U’ F) — Extlou (eG[z("_N_l)d]/U’ FI(F)

| l l

ExtloU(t’G[z(,,,N)d]/U, (F)— Extlou (EG[Z("*NW]/U’ F)— ExtloU(t’G[z(,,,N)d]/U, F(F)

| l

Extly , (€g(gnayyus (F) ——= Extly, (8 pnayyr F)
Since { - (F/{F) = (0), the right vertical arrow can be computed by base change to
the zero locus V({) c S of {. So it is the zero map by what we have proved above, and

hence the image of Extbv (Eé[z(n,N,l)d]/U, F) in Extbv (ZE;[Z(,,,N),,]/U, F) is contained

G[z(-Md]/u? {F). Since (V- ({F) = (0), the lower left vertical
arrow can similarly be computed by base change to the zero locus V(¢{V) c S, and
hence it is the zero map by our induction hypothesis. This proves the lemma. ]

in the image of Ext(, (€

Theorem 10.4 IfS e Nilqu[[ ¢q 4nd G is a z-divisible local Anderson module over S,
then G is formally smooth.

Proof Let X’ be an affine scheme over S and let X be a closed subscheme defined
by an ideal of square zero. Let f: X — G be an S-morphism. We must show that f
can be lifted to an S-morphism f": X’ — G. As X is quasi-compac,t we have G(X) =
lim G[z"](X) = lim G[z"%](X), and hence f: X — G[2"?] for some n by Remark 7.2.

n n
We cover X by a finite number of affine opens U;, i = 1,..., m such that the image of
U; in S is contained in an affine open V;. Since { is nilpotent on each V;, there is an
integer N such that {(N*!is zero on U V;. Replacing Sby S’ = U V; and G by G/ we are
led to the case where (N*! = 0 in Og. But now Lemma 10.3 and [Mes72, Chapter II,
Proposition 3.3.1] show that f can be lifted to an f": X’ — G[z("*N*D4], and the
theorem is proved. ]

Lemma 10.5 Let G be a z-divisible local Anderson module over S with (z - {)® = 0
on we for some d € N. Assume we are given an S-scheme X' and a subscheme X
defined by a sheaf of ideals I such that I**' = (0) and (N - I/I? = 0 for some integer
N. Let N’ be the smallest integer that is a power of p and greater or equal to N and d.
If an S-morphism f': X' — G satisfies f = f'|x: X — G[z"], then f' factors through
f’IX, N G[zn+kN’] cG.

Proof The problem islocal on X’ and hence we can assume that X’ is affine and thus
quasi-compact. But then ' € G(X') = lim G[2z™](X") and hence we can assume that

f":X" - G[z"] for some n’ by Remark 7.2. We now use induction on k and the
sequence of closed subschemes V(I') c X’ for [ = 1,...,k + 1. Thus we can assume
that [ =0and k = L.
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Since f € G[2"](X), we have z” f = 0, and so 2" f’ € G[z" ](X') has the property
that its restriction to G[z" ](X) is zero. Since I? = 0, the group of sections of G[z" ]
over X’ whose restriction to X is zero, is, by [SGA 3, III, Théoréme 0.1.8(a)], isomor-
phic to the group Homg, (wG[Zy,/] ®o, Ox,I) under an isomorphism that sends the
zero morphism X’ - G[z" ] to the zero element, and the morphism z" f' to an ele-
ment that we denote by h € Homg, (wg ®0, Ox,I). Since {N kills I and N’ > N, we
obtain {N' - i = 0. On wg the assumption (z — ¢)? = 0 implies 2N = ¢V, and so the
section zV' (2" f') is sent to 2N - h = (N - h = 0. This implies z**N f' = 0, that is,
f' e G[z"™N)(X"). n

Corollary 10.6 Let (N = 0in Og and let G and d be as in Lemma 10.5. Let N’ be
the smallest integer that is a power of p and greater or equal to N and d. Then the k-th
infinitesimal neighborhood of G[2"] in G is the same as that of G[2"] in G[z"**N']. In
particular, Inf*(G) = Inf*(G[2*N']) and this is therefore representable.

Proof By definition [Mes72, Chapter I, Definition (1.01)], an S-morphism f: T’ —
G belongs to the k-th infinitesimal neighborhood of G[z"] in G, if and only if there
is an fppf-covering {SpecR; — T'}; and ideals I; c R; with I**! = (0) such that
flspecri/1; € G[2"](SpecR;/I;). But then f € G[z"**N'](T’) by Lemma 10.5. The
last statement is the special case with n = 0. ]

Theorem 10.7  Let G be a z-divisible local Anderson module over S € Nilpmq[[ ¢y Then
G= lim Inf*(G) is a formal F4([z]]-module.

Proof As G clearly is an FF,[[z]]-submodule of G, we must show that it is a for-
mal Lie variety; see [Mes72, Chapter II, Definition 1.1.4]. By construction it is ind-
infinitesimal. Since the question is local on S, we may assume that there are integers
N and d as in Corollary 10.6. Then the sheaf Inf*(G) is representable for all k. By
Theorem 10.4 we know that G is formally smooth and by definition (10.1) of Inf *(G)
this implies that G is formally smooth. Let N’ be the smallest integer that is a power
of p and greater or equal to N and d. Then G[z*N '] satisfies the lifting condition 2)
of [Mes72, Chapter II, Proposition 3.1.1] by Theorem 10.4 and Lemma 10.5. There-
fore, by [Mes72, loc. cit] G[z"N ’] satisfies condition 2) and 3) of [Mes72, Chapter II,
Definition 1.1.4], and hence is a formal F,[[z]]-module. [ |

Remark 10.8 We already know from Theorem 8.3 and Lemma 2.3 that w is locally
free of finite rank. This now follows again from the theorem because wg = w.

Next we pursue the question when a z-divisible local Anderson module is a formal
IF,[[z]]-module and vice versa.

Lemma 10.9  Let B be a ring in which ( is nilpotent, and let I be a nilpotent ideal of B.

Define a sequence of ideals Iy == (I + I*, ..., I, = (I, + (I,,)Z. Then for n sufficiently
large I,, = (0).
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Proof Let] = (B + I. Then it is easy to check that I, c J"*!. Since { and I are both
nilpotent, so is the ideal J. This implies I,, = 0 for n sufficiently large. ]

Lemma 10.10 If S € Nilpg 1y and G is a formal F, [z]]-module over S such that

locally on S there is an integer d with (z — {)? = 0 on wg, then G is z-torsion.

Proof We must show G = h_n} G[z"] and since this is a statement about sheaves, it
suffices to check it locally on S. Thus we can assume S = Spec R with { € R nilpotent
and G is given by a power series ring R[[X1,..., X4]]; see [Mes72, p. 26]. If T is
any affine S-scheme, say T = Spec B, then an element of G(T') will be an N-tuple
(b1, ..., by) with each b; nilpotent. Let I be the ideal generated by {by,...,bs}. Let
N’ be a power of p with N’ > d. Then multiplication with zV "on G is given by power
series (zV)*(X;) € R[[Xy,...,X,]] with linear term {N'X; and without constant

term. Therefore each component of 2 -(by, . . ., by ) belongs to (N I+1% ¢ {I+1% =: I.
Then each component of ZN . (by,...,ba) belongs to the ideal I,, from Lemma 10.9,
and hence the lemma shows that (b, ..., by) is z-torsion. [ |

The next result is analogous to Messing’s characterization [Mes72, Chapter II, Pro-
position 4.4] for a p-divisible group to be a formal Lie group, and its proof also follows
similarly using Theorem 10.7.

Proposition 10.11  Let S € Nilpg, 1,y and let G be a z-divisible local Anderson module
over S. Then the following conditions are equivalent.

(i) G=G.

(ii) G isaformal F4[[z]]-module.
(iil) G[z"] is radicial for all n.
(iv) Gz] is radicial.

Corollary 10.12 For S € Nilqu[[(]], there is an equivalence of categories between
that of z-divisible local Anderson modules over S with G| z] radicial and the category
of z-divisible formal F ;[[ z]]-modules G with G[z] representable by a finite locally free
group scheme such that locally on S there is an integer d for which (z - ()% = 0 on wg.

Proof By Lemma 10.10 and Proposition 10.11, both categories are identified with the
same full sub-category of fppf-sheaves of Iy [z]-modules on S, once we observe that
G[z"] = ker(z":G - G) is a strict Fg-module as the kernel of an [F,-linear homo-
morphism of formal Lie groups that are IF;-modules. ]

Corollary 10.13  Let S € Nilpg, 1,y be the spectrum of an Artinian local ring. Then a
z-divisible formal F 4[| z]]-module, such that locally on S there is an integer d for which

(z - 0% = 0 on wg, is a z-divisible local Anderson module with G[z] radicial and
conversely.
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Proof This follows from Corollary 10.12, because the G[z" ] are automatically repre-
sentable by finite locally free group schemes by [Mes72, Chapter II, Proposition 4.3].
|

The next result is analogous to Messing’s characterization for a p-divisible group
to be ind-étale, [Mes72, Chapter II, Proposition 4.7]. Its proof follows verbatim.

Proposition 10.14  Let S € Nilpg 1,y and let G be a z-divisible local Anderson module
over S. In order that G = 0, it is necessary and sufficient that G is (ind-)étale. ]

We have the following lemma for z-divisible local Anderson modules over S sim-
ilarly to and with the same proof as [Mes72, Chapter II, Proposition 4.11].

Lemma 10.15 Let S € Nilqu[m] andlet 0 - G; - G, - G3 — 0 be an exact

sequence of z-divisible local Anderson modules over S. Then 0 - G, — G, - G3 = 0
is also exact. [ |

Finally, there is a criterion when G is itself a z-divisible local Anderson module in
analogy to Messing’s criterion [Mes72, Chapter II, Proposition 4.9].

Proposition 10.16  Let S € Nilpg 1,y and let G be a z-divisible local Anderson module
over S. Then the following conditions are equivalent.

(i) G is a z-divisible local Anderson module.
(i) G is an extension of an (ind-)étale z-divisible local Anderson module G" by an
ind-infinitesimal z-divisible local Anderson module G'.
(iii) G is an extension of an (ind-)étale z-divisible local Anderson module G" by a
z-divisible formal IF [ z]]-module G'.
(iv) Foralln, G[2"] is an extension of a finite étale group by a finite locally-free radicial
group.
(v) Glz] is an extension of a finite étale group by a finite locally-free radicial group.
(vi) Themap S — Z, s — ord(G|[z];)et =: separable rank (G[z];) is a locally constant
function on S.

Proof The proof proceeds in the same way as [Mes72, Chapter II, Proposition 4.9]
using Corollary 8.4 and Lemma 10.15 in (i) <> (ii), Corollary 10.12 and wg = wgr in
(ii) < (iii), and Lemma 4.10 in (iv) = (iii). [ |
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