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Local Shtukas and Divisible Local Anderson
Modules

Urs Hartl and Rajneesh Kumar Singh

Abstract. We develop the analog of crystalline Dieudonné theory for p-divisible groups in the arith-
metic of function ûelds. In our theory p-divisible groups are replaced by divisible local Anderson
modules, and Dieudonnémodules are replaced by local shtukas. We show that the categories of di-
visible local Anderson modules and of eòective local shtukas are anti-equivalent over arbitrary base
schemes. We also clarify their relation with formal Lie groups and with global objects like Drinfeld
modules, Anderson’s abelian t-modules and t-motives, and Drinfeld shtukas. Moreover, we discuss
the existence of aVerschiebung map and apply it to deformations of local shtukas and divisible local
Anderson modules. As a tool we use Faltings’s and Abrashkin’s theories of strict modules, which we
review brie�y.

1 Introduction

In the arithmetic of number ûelds, elliptic curves and abelian varieties are important
objects. _eir theory has been extensively developed in the last two centuries and
their moduli spaces have played a major role in Faltings’s proof of the Mordell con-
jecture [Fal83,CS86], the proof of Fermat’s Last _eorem byWiles and Taylor [Wil95,
TW95, CSS97], and the proof of the Langlands correspondence for GLn over non-
archimedean local ûelds of characteristic zero by Harris and Taylor [HT01]. A use-
ful tool for studying abelian varieties and their moduli spaces are p-divisible groups.
More precisely, for an elliptic curve or an abelian variety E over a Zp-algebra R the
p-divisible group E[p∞] = limÐ→ E[p

n], also called theBarsotti–Tate group, captures the
local p-adic information of E. One reason why E[p∞] is a useful tool for the study of
E is that the complicated arithmetic data of a p-divisible group over a Zp-algebra R
in which p is nilpotent can be faithfully encoded by an object of semi-linear algebra,
its Dieudonnémodule.
Elliptic curves and abelian varieties have analogs in the arithmetic of function

ûelds. Namely, Drinfeld [Dri74, Dri87] invented the notions of elliptic modules (to-
day called Drinfeldmodules) and the dual notion of F-sheaves (today called Drinfeld
shtukas). _ese structures are function ûeld analogs of elliptic curves in the follow-
ing sense. _eir endomorphism rings are rings of integers in global function ûelds
of positive characteristic or orders in central division algebras over the later. On the
other hand, their moduli spaces are varieties over smooth curves over a ûnite ûeld.
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_rough these two aspects in which global function ûelds of positive characteristic
come into play, Drinfeld shtukas and variants of them proved to be fruitful for estab-
lishing large parts of the Langlands program over local and global function ûelds of
positive characteristic inworks byDrinfeld [Dri74,Dri77,Dri87], Laumon, Rapoport,
and Stuhler [LRS93], L. Laòorgue [Laf02], and V. Laòorgue [Laf18]. Beyond this the
analogy between Drinfeldmodules and elliptic curves is abundant.

In this spirit, Anderson [And86] introduced higher dimensional generalizations
of Drinfeldmodules, called abelian t-modules. _ese are group schemes which carry
an action of the polynomial ring Fr[t] over a ûnite ûeld Fr with r elements subject to
certain conditions. Abelian t-modules are the function ûeld analogs of abelian vari-
eties [BH09]. Although Anderson worked over a ûeld, abelian t-modules also exist
naturally over arbitrary Fr[t]-algebras R as base rings (Deûnition 6.5). _ey pos-
sess an (anti-)equivalent description by semi-linear algebra objects called t-motives,
which are R[t]-modules together with a Frobenius semi-linear endomorphism (Def-
inition 6.2 and_eorem 6.6) and are a variant and generalization of Drinfeld shtukas.
_rough thework of Drinfeld and Anderson itwas realized very early on that a Drin-
feldmodule or abelian t-module over a ûeld is completely described by its t-motive.
_e same is true over an arbitraryFr[t]-algebra R, as is shown for example in [Har17].
So in a way the situation in function ûeld arithmetic is much better than in the arith-
metic of abelian varieties; the t-motive is a “global”Dieudonnémodule that integrates
the “local” Dieudonnémodules for every prime in a single object.
Correspondingly it is not diõcult to come up with a deûnition of a Dieudonné

module at a prime p ⊂ Fr[t] of an abelian t-module. It should arise as the p-adic
completion of its t-motive; see Example 6.7 (ii) for details. _e object one ends up
with is an eòective local shtuka. To deûne these, let p = (z) for a monic irreducible
polynomial z ∈ Fr[t] and let Fq = Fr[t]/p be the residue ûeld. _en lim←ÐFr[t]/pn =
Fq[[z]]. Let R be an Fq[[z]]-algebra inwhich the image ζ of z is nilpotent. An eòective
local shtuka over R is a pair M = (M , FM) consisting of a locally free R[[z]]-moduleM
of ûnite rank and an isomorphism FM ∶ σ∗q M[ 1

z−ζ ]
∼Ð→ M[ 1

z−ζ ] with FM(σ∗q M) ⊂ M.
Here σ∗q is the endomorphism of R[[z]] that extends the q-Frobenius endomorphism
σ∗q ∶= Frobq ,R ∶ b ↦ bq for b ∈ R by σ∗q (z) = z, and σ∗q M ∶= M⊗R[[z]],σ∗q R[[z]]. Now the
goal of crystalline Dieudonné theory in the arithmetic of function ûelds is to describe
the analogs of p-divisible groups that correspond to eòective local shtukas. In the
present article we call them z-divisible local Anderson modules as in the following
deûnition, and we develop this theory under the technical assumption that ζ ∈ R is
nilpotent. _is theory was already announced in [Har05,Har09,Har11,HK19] andwas
used in [Har17].

Deûnition 7.1 A z-divisible local Anderson module over R is a sheaf of Fq[[z]]-
modules G on the big fppf-site of SpecR such that

(i) G is z-torsion, that is, G = limÐ→G[zn], where G[zn] ∶= ker(zn ∶ G → G).
(ii) G is z-divisible, that is, z∶G → G is an epimorphism.
(iii) For every n the Fq-module G[zn] is representable by a ûnite locally free strict

Fq-module scheme over R in the sense of Faltings (Deûnition 4.7).
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(iv) Locally on SpecR there exists an integer d ∈ Z≥0, such that (z − ζ)d = 0 on ωG
where ωG ∶= lim←ÐωG[zn] and ωG[zn] ∶= ε∗Ω1

G[zn]/ Spec R for the unit section ε of
G[zn] over R.

Such objects were studied in the special case with d = 1 in work by Drinfeld [?],
Genestier [Gen96], Laumon [Lau96], Taguchi [Tag93], and Rosen [Ros03]. General-
izations for d > 1 and their semi-linear algebra description by the analog of Dieudonné
theory were attempted by the ûrst author [Har05, Deûnition 6.2] and by W. Kim
[Kim09, Deûnition 7.3.1]. But unfortunately both deûnitions and the statements about
the analog of Dieudonné theory [Har05,_eorem 7.2] and [Kim09,_eorem 7.3.2] are
wrong. _e problem lies in the fact that the strictness assumption from (iii) is miss-
ing. Our above deûnition corrects this error. It generalizes Anderson’s [And93, §3.4]
deûnition of formal t-modules that considered the case where the G[zn] are radicial
and G is a formal Fq[[z]]-module in the following sense.

Deûnition 1.1 In this article we deûne a formal Fq[[z]]-module over an Fq-scheme
S to be a formal Lie group G equipped with an action of Fq[[z]]. In particular, we do
not impose a condition for the Fq[[z]]-action on ωG .

_e description of z-divisible local Anderson modules by eòective local shtukas is
deduced from Abrashkin’s [Abr06] anti-equivalence between ûnite locally free strict
Fq-module schemes over SpecR and ûnite Fq-shtukas. _e latter are pairs (M , FM)
consisting of a locally free R-module M of ûnite rank and an R-module homomor-
phism FM ∶ σ∗q M → M. We deûne ûnite and local shtukas in Section 2 and we recall
Abrashkin’s results in Section 5. His equivalence is given by Drinfeld’s functor

(M , FM)↦ Drq(M , FM) ∶= Spec(⊕
n≥0

Symn
R M)/(m⊗q − FM(σ∗q m)∶m ∈ M),

and its quasi-inverse deûned on a ûnite locally free strict Fq-module scheme G as

G ↦ M q(G) ∶= HomR-groups,Fq-lin(G ,Ga ,R),

bywhichwemean the R-module ofFq-equivariantmorphisms of group schemes over
R on which the Frobenius FMq(G) is provided by the relative q-Frobenius of the ad-
ditive group schemeGa ,R over R. Various properties ofM are re�ected in properties
of Drq(M ) (_eorem 5.2). _e functors Drq and M q are extended to eòective local
shtukas M and z-divisible local Anderson modules G by

M ↦ Drq(M ) ∶= limÐ→
n
Drq(M /znM ), G ↦ M q(G) ∶= lim←Ð

n
M q(G[zn]).

Generalizing Anderson [And93, §3.4], who treated the case of formal Fq[[z]]-mod-
ules, we prove the following theorem.

_eorem 8.3 (i) _e two contravariant functorsDrq andM q aremutually quasi-
inverse anti-equivalences between the category of eòective local shtukas over R and the
category of z-divisible local Anderson modules over R.
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(ii) Both functors are Fq[[z]]-linear, map short exact sequences to short exact se-
quences, and preserve (ind-)étale objects.

(iii) G is a formal Fq[[z]]-module if and only if FM is topologically nilpotent, that is
im(Fn

M) ⊂ zM for an integer n.
(iv) _e R[[z]]-modules ωDrq(M ,FM) and coker FM are canonically isomorphic.

In Section 6 we explain the relation of z-divisible local Anderson modules and
local shtukas to global objects like Drinfeld modules [Dri74], Anderson’s [And86]
abelian t-modules and t-motives, and Drinfeld shtukas [Dri87]. In particular, if E is
a Drinfeld-Fr[t]-module or an abelian t-module over R, then the zn-torsion points
E[zn] of E form a ûnite locally free Fr[t]/(zn)-module scheme over R. By Exam-
ple 6.7 (ii), the limit G ∶= E[z∞] ∶= limÐ→ E[z

n] in the category of fppf-sheaves of
Fq[[z]]-modules on SpecR satisûes G[zn] ∶= ker(zn ∶G → G) = E[zn] and is a
z-divisible local Anderson module over R. Moreover, the associated eòective local
shtuka M q(G) from _eorem 8.3 arises as the z-adic completion of the t-motive as-
sociated with E; see Example 6.7 (ii).

In Section 7 we present the above deûnition of z-divisible local Anderson mod-
ules G and give equivalent deûnitions. We also introduce truncated z-divisible local
Anderson modules such as G[zn] (Proposition 9.5). In Section 9 we investigate, for
ζ = 0 in R, the existence of a zd-Verschiebung Vzd ,G for (truncated) z-divisible lo-
cal Anderson modules G, respectively for local shtukas, with Vzd ,G ○ Fq ,G = zd ⋅ idG

and Fq ,G ○ Vzd ,G = zd ⋅ idσ∗q G , where Fq ,G is the relative q-Frobenius of G over R.
We use the zd-Verschiebung in _eorem 9.8 to prove that li�ing a z-divisible local
Anderson module from R/I to R, when Iq = (0), is equivalent to li�ing the Hodge
ûltration on its de Rham cohomology. In Section 10 we use the zd-Verschiebung to
clarify the relation between z-divisible localAndersonmodulesG and formalFq[[z]]-
modules. Following the approach ofMessing [Mes72], who treated the analogous sit-
uation of p-divisible groups and formal Lie groups, we show that a z-divisible local
Anderson module is formally smooth (_eorem 10.4) and how to associate a formal
Fq[[z]]-module with it (_eorem 10.7). We also discuss conditions under which it
is an extension of an (ind-)étale z-divisible local Anderson module by a z-divisible
formal Fq[[z]]-module (Proposition 10.16) and we prove the following corollary.

Corollary 10.12 _ere is an equivalence of categories between that of z-divisible local
Anderson modules over R with G[z] radicial, and the category of z-divisible formal
Fq[[z]]-modules G with G[z] representable by a ûnite locally free group scheme, such
that locally on SpecR there is an integer d with (z − ζ)d = 0 on ωG .

In Section 4 we explain Faltings’s notion of strict Fq-module schemes and give
details additional to the treatments of Faltings [Fal02] and Abrashkin [Abr06]. _is
notion is based on certain deformations of ûnite locally free group schemes and the
associated cotangent complex, which we review in Section 3. _ere is an equivalent
description of ûnite locally free strict Fq-module schemes by Poguntke [Pog17] (Re-
mark 5.3).
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Notation 1.2 Let Fq be a ûnite ûeld with q elements and characteristic p. For a
scheme S over SpecFq and a positive integer n ∈ N>0, we denote by

σqn ∶= Frobqn ,S ∶ S Ð→ S

its absolute qn-Frobenius endomorphism which acts as the identity on points and as
the qn-power map b ↦ bqn

on the structure sheaf. For an S-scheme X, respectively,
an OS-module M, we write σ∗qnX ∶= X ×S ,σqn S, respectively, σ∗qn M ∶= M ⊗OS ,σ∗qn

OS ,
for the pullback under σqn . For m ∈ M, we also write σ∗qn(m) ∶= m ⊗ 1 ∈ σ∗qn M and
note that σ∗qn(bm) = bm ⊗ 1 = m ⊗ bqn = bqn ⋅ σ∗q m for b ∈ OS and m ∈ M.

Let z be an indeterminant over Fq . Let OS[[z]] be the sheaf on S of formal power
series in z. _at is, Γ(U ,OS[[z]]) = Γ(U ,OS)[[z]] for open U ⊂ S with the obvi-
ous restriction maps. _is is indeed a sheaf being the countable direct product of
OS . Let ζ be an indeterminant over Fq and let Fq[[ζ]] be the ring of formal power
series in ζ over Fq . Let NilpFq[[ζ]] be the category of Fq[[ζ]]-schemes on which ζ
is locally nilpotent. For S ∈ NilpFq[[ζ]], let OS((z)) be the sheaf of OS-algebras on S
associated with the presheaf U ↦ Γ(U ,OU)[[z]][ 1

z ]. If U is quasi-compact, then
OS((z))(U) = Γ(U ,OS[[z]])[ 1

z ]. Since ζ is locally nilpotent on S, the sheaf OS((z))
equals the sheaf associated with the presheaf U ↦ Γ(U ,OS[[z]])[ 1

z−ζ ]. We denote
by σ∗q the endomorphism of OS[[z]] and OS((z)) that acts as the identity on z and as
b ↦ bq on local sections b ∈ OS . For a sheaf M of OS[[z]]-modules on S, we let
σ∗q M ∶= M ⊗OS[[z]],σ∗q OS[[z]] and

M[ 1
z − ζ

] ∶= M ⊗
OS[[z]]

OS[[z]][
1

z − ζ
] = M ⊗

OS[[z]]
OS((z))

be the tensor product sheaves. Also for a section m ∈ M we write σ∗q m ∶= m ⊗ 1 ∈
σ∗q M. Note that by [HV11,Proposition 2.3], a sheafM ofOS[[z]]-moduleswhich fpqc-
locally on S is isomorphic to OS[[z]]⊕r is already Zariski-locally on S isomorphic to
OS[[z]]⊕r . We therefore call such a sheaf simply a locally free sheaf ofOS[[z]]-modules
of rank r.

2 Local and Finite Shtukas

Let S be a scheme in NilpFq[[ζ]].

Deûnition 2.1 A local shtuka of rank (or height) r over S is a pair M = (M , FM)
consisting of a locally free sheafM ofOS[[z]]-modules of rank r, and an isomorphism
FM ∶ σ∗q M[ 1

z−ζ ]
∼Ð→ M[ 1

z−ζ ].
Amorphism of local shtukas f ∶ (M , FM)→ (M′ , FM′) over S is amorphism of the

underlying sheaves f ∶M → M′ that satisûes FM′ ○ σ∗q f = f ○ FM .
A quasi-isogeny between local shtukas f ∶ (M , FM) → (M′ , FM′) over S is an iso-

morphism of OS((z))-modules f ∶M ⊗OS[[z]] OS((z))
∼Ð→ M′ ⊗OS[[z]] OS((z)) with FM′ ○

σ∗q ( f ) = f ○ FM . Amorphism that is a quasi-isogeny is called an isogeny.

1167

https://doi.org/10.4153/CJM-2018-016-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-016-2


U. Hartl and R. K. Singh

For any local shtuka (M , FM) over S ∈ NilpFq[[ζ]] the homomorphism

M Ð→ M[ 1
z − ζ

]

is injective by the �atness of M and the following lemma.

Lemma 2.2 Let R be an Fq[[ζ]]-algebra in which ζ is nilpotent. _en the sequence of
R[[z]]-modules

0 // R[[z]]
1↦z−ζ

// R[[z]]
z↦ζ

// R // 0

is exact. In particular R[[z]] ⊂ R[[z]][ 1
z−ζ ].

Proof If ∑i b iz i lies in the kernel of the ûrst map, that is, 0 = (z − ζ)(∑i b iz i) =
∑i(b i−1 − ζb i)z i , then b i = ζb i+1 = ζnb i+n for all n. Since ζ is nilpotent, all b i are
zero. Also due to the nilpotency of ζ , the second map is well deûned and surjective.
For exactness in the middle note that ∑i b i ζ i = 0 implies ∑i b iz i = ∑i b i(z i − ζ i),
which is amultiple of z − ζ .

For a morphism f ∶ S′ → S in NilpFq[[ζ]] we can pull back a local shtuka (M , FM)
over S to the local shtuka (M ⊗OS[[z]] OS′[[z]], FM ⊗ id) over S′.

We deûne the tensor product of two local shtukas (M , FM) and (N , FN) over S as
the local shtuka (M ⊗OS[[z]] N , FM ⊗ FN) . _e local shtuka

1l(0) ∶= (OS[[z]], F1l(0) = idOS[[z]]∶ σ
∗
qOS[[z]] = OS[[z]]

∼Ð→ OS[[z]])

is a unit object for the tensor product. _e dual (M∨ , FM∨ ) of a local shtuka (M , FM)
over S is deûned as the sheaf M∨ =HomOS[[z]](M ,OS[[z]]) together with

FM∨ ∶ σ∗q M
∨[ 1

z − ζ
] ∼Ð→ M

∨[ 1
z − ζ

] , f ↦ f ○ F−1
M .

Also there is a natural deûnition of internal Hom, given byHom(M ,N ) = M
∨ ⊗N .

_is makes the category of local shtukas over S into an Fq[[z]]-linear, additive, rigid
tensor category. It is an exact category in the sense of Quillen [Qui73, §2], provided
one calls a short sequence of local shtukas exact when the underlying sequence of
sheaves of OS[[z]]-modules is exact.

Lemma 2.3 Let (M , FM) be a local shtuka over S. _en locally on S there are e,
e′ ,N ∈ Z such that (z − ζ)e′M ⊂ FM(σ∗q M) ⊂ (z − ζ)−eM and zNM ⊂ FM(σ∗q M).
For any such e themap FM ∶ σ∗q M → (z − ζ)−eM is injective, and the quotient

(z − ζ)−eM/FM(σ∗q M)
is a locally free OS-module of ûnite rank.

Proof We work locally on SpecR ⊂ S and assume that σ∗q M and M are free
OS[[z]]-modules. Applying FM to a basis of σ∗q M, respectively, F−1

M to a basis of M,
proves the existence of e, respectively, e′. If N ≥ e′ is an integer that is a power of p
such that ζN = 0 in R, then zNM = (zN − ζN)M = (z − ζ)NM ⊂ FM(σ∗q M).
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We prove that the quotient K ∶= (z − ζ)−eM/FM(σ∗q M) is a locally free R-module
of ûnite rank. _iswas already proved in [HV11, Lemma 4.3], but the argument given
there only works if R is noetherian, because it uses the fact that R[[z]] is �at over R.
We now give a proof in the non-noetherian case. Since

K = coker(FM mod (z − ζ)e+e
′
∶ σ∗q M/(z − ζ)e+e

′
σ∗q M Ð→ (z − ζ)−eM/(z − ζ)e

′
M),

it is of ûnite presentation over R. Since R[[z]] ⊂ R[[z]][ 1
z−ζ ] is a subring by Lemma 2.2

and M is locally free, the map FM ∶ σ∗q M → (z − ζ)−eM is injective. Let m ⊂ R be a
maximal ideal and set k = R/m. In the exact sequence

0Ð→ TorR[[z]]1 (K , k[[z]])Ð→ σ∗q M ⊗
R[[z]]

k[[z]]Ð→ (z − ζ)−eM ⊗
R[[z]]

k[[z]]

Ð→ K ⊗
R[[z]]

k[[z]]Ð→ 0,

we have isomorphisms σ∗q M ⊗R[[z]] k[[z]] ≅ k[[z]]⊕ rk M ≅ (z − ζ)−eM ⊗R[[z]] k[[z]].
Moreover, ζ = 0 in k and hence ze+e

′
K ⊗R[[z]] k[[z]] = 0. Since k[[z]] is a PID,

the map σ∗q M⊗R[[z]] k[[z]] → (z − ζ)−eM ⊗R[[z]] k[[z]] is injective by the ele-
mentary divisor theorem, and hence 0 = TorR[[z]]1 (K , k[[z]]). To relate this to

TorR1 (K , k) = TorR[[z]]/(z−ζ)
e+e′

1 (K , k[[z]]/(ze+e′))we use the change of rings spectral
sequence [Rot09,_eorem 10.71] and the induced epimorphism (from its associated
5-term sequence of low degrees, see [Rot09,_eorem 10.31])

⋅ ⋅ ⋅Ð→ TorR[[z]]1 (K , k[[z]])Ð→ TorR[[z]]/(z−ζ)
e+e′

1 (K , k[[z]]/(ze+e
′
))Ð→ 0.

It follows that TorR1 (K , k) = 0 and from Nakayama’s lemma we conclude that K is
locally free over R of ûnite rank; compare [Eis95, Exercise 6.2].

Deûnition 2.4 A local shtukaM = (M , FM) over S is called eòective if FM is actually
amorphism FM ∶ σ∗q M ↪ M. Let (M , FM) be eòective of rank r = rkM . We say that
(i) (M , FM) has dimension d if coker FM is locally free of rank d as an OS-module.
(ii) (M , FM) is étale if FM ∶ σ∗q M

∼Ð→ M is an isomorphism.
(iii) FM is topologically nilpotent if locally on S there is an integer n such that

im(Fn
M) ⊂ zM ,

where Fn
M ∶= FM ○ σ∗q FM ○ ⋅ ⋅ ⋅ ○ σ∗qn−1FM ∶ σ∗qn M → M.

Example 2.5 We deûne the Tate objects in the category of local shtukas over S as

1l(n) ∶= (OS[[z]], FM ∶ 1↦ (z − ζ)n).
By Lemma 2.3 every local shtuka over a quasi-compact scheme S becomes eòective
a�er tensoring with a suitable Tate object.

More generally, now let S be an arbitrary Fq-scheme.

Deûnition 2.6 A ûnite Fq-shtuka over S is a pair M = (M , FM) consisting of a lo-
cally free OS-moduleM on S of ûnite rank denoted rkM , and an OS-module homo-
morphism FM ∶ σ∗q M → M. Amorphism f ∶ (M , FM)→ (M′ , FM′) of ûniteFq-shtukas
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is an OS-module homomorphism f ∶M → M′ satisfying f ○ FM = FM′ ○ σ∗q f . We de-
note the category of ûnite Fq-shtukas over S by Fq-ShtS .
A ûnite Fq-shtuka over S is called étale if FM is an isomorphism. We say that FM

is nilpotent if there is an integer n such that Fn
M ∶= FM ○ σ∗q FM ○ ⋅ ⋅ ⋅ ○ σ∗qn−1FM = 0.

Finite Fq-shtukas were studied at various places in the literature. _ey were called
(ûnite) φ-sheaves byDrinfeld [Dri87, §2], Taguchi andWan [Tag95,TW96] andDieu-
donné Fq-modules by Laumon [Lau96]. Finite Fq-shtukas over a ûeld admit a canon-
ical decomposition.

Proposition 2.7 ( [Lau96, Lemma B.3.10]) If S is the spectrumof a ûeld L, every ûnite
Fq-shtukaM = (M , FM) is canonically an extension of ûnite Fq-shtukas

0Ð→ (Mét , Fét)Ð→ (M , FM)Ð→ (Mnil , Fnil)Ð→ 0,

where Fét is an isomorphism and Fnil is nilpotent, and M ét = (Mét , Fét) is the largest
étale ûnite Fq-sub-shtuka of M and equals im(Frk M

M ). If L is perfect, this extension
splits canonically.

Proof _is was proved by Laumon [Lau96, Lemma B.3.10] for perfect L. In gen-
eral one considers the descending sequence ⋅ ⋅ ⋅ ⊃ im(Fn

M) ⊃ im(Fn+1
M ) ⊃ ⋅ ⋅ ⋅ of L-

subspaces of M that stabilizes at some ûnite n. If im(Fn+1
M ) = im(Fn

M), then

FM ∶ σ∗q (im Fn
M)↠ im Fn+1

M = im Fn
M

is surjective, hence bijective, and therefore im(Fn′
M ) = im(Fn

M) for all n′ ≥ n. So
the sequence stabilizes already for some n ≤ rkM and Mét = im(Frk M

M ). If L is
perfect, Mnil is isomorphic to the submodule ⋃n≥0 ker(Fn

M ○ σ∗qn ∶M → M) of M;
see [Lau96, Lemma B.3.10].

Example 2.8 Every eòective local shtuka (M , FM) of rank r over S yields for every
n ∈ N a ûnite Fq-shtuka (M/znM , FM mod zn) of rank rn, and (M , FM) equals the
projective limit of these ûnite Fq-shtukas.

_us from Proposition 2.7 we obtain the following result.

Proposition 2.9 If S is the spectrum of a ûeld L in NilpFq[[ζ]], every eòective local
shtuka (M , FM) is canonically an extension of eòective local shtukas

0Ð→ (Mét , Fét)Ð→ (M , FM)Ð→ (Mnil , Fnil)Ð→ 0,

where Fét is an isomorphism, Fnil is topologically nilpotent, and (Mét , Fét) is the largest
étale eòective local sub-shtuka of (M , FM). If L is perfect, this extension splits canoni-
cally.

3 Review of Deformations of Finite Locally Free Group Schemes

For a commutative group scheme G over S, we denote by εG ∶ S → G its unit sec-
tion and by ωG ∶= ε∗GΩ1

G/S its co-Lie module. It is a sheaf of OS-modules. In order
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to describe which group objects are classiûed by ûnite Fq-shtukas, we need to re-
view the deûnition of a strict Fq-module scheme in the next two sections. We follow
Faltings [Fal02] and Abrashkin [Abr06]. We begin this sectionwith a review of defor-
mations of ûnite locally free group schemes. Recall that a group scheme G over S is
called ûnite locally free over S if on every open aõne SpecR ⊂ S the schemeG is of the
form SpecA for a ûnite locally free R-module A. By [EGA, Inew, Proposition 6.2.10]
this is equivalent to G being ûnite �at and of ûnite presentation over S. _e rank of
the R-module A is called the order of G and is denoted ordG. It is a locally constant
function on S. _e following facts will be used throughout.

Remark 3.1 (a) A morphism G′ → G of ûnite locally free group schemes is a
monomorphism (of schemes, or equivalently of fppf-sheaves on S) if and only if it is
a closed immersion by [EGA, IV4, Corollaire 18.12.6], because it is proper.

(b) LetG andG′′ be group schemes over S that are ûnite and of ûnite presentation,
and assume thatG is�at over S. _en amorphismG → G′′ is an epimorphismof fppf-
sheaves on S if and only if it is faithfully �at; compare the proof of [Mes72, Chapter I,
Lemma 1.5(b)].

(c) A sequence 0 → G′ → G → G′′ → 0 of ûnite locally free group schemes over
S is called exact if it is exact when viewed as a sequence of fppf-sheaves on S. By
the above this is equivalent to the conditions that G → G′′ is faithfully �at, and that
G′ → G is a closed immersion that equals the kernel of G → G′′.

(d) If G′ ↪ G is a closed immersion of ûnite locally free group schemes over S,
then the quotient G/G′ exists as a ûnitely presented group scheme over S by [SGA
3,_éorèmeV.4.1 andPropositionV.9.1],which is�at by [EGA, IV3, Corollaire 11.3.11].
It is integral over S and hence ûnite, becauseOG/G′ ⊂ OG . In particular, G/G′ is ûnite
locally free over S.

In the following we will work locally on S and assume that S = SpecR is aõne.
Let G = SpecA be a ûnite locally free group scheme over S. _en G is a relative
complete intersection by [SGA 3, Proposition III.4.15]. _is means that locally on S
we can take A = R[X1 , . . . , Xn]/I where the ideal I is generated by a regular sequence
( f1 , . . . , fn) of length n, cf. [EGA, IV4, Proposition 19.3.7]. _e unit section εG ∶ S → G
deûnes an augmentation εA ∶= ε∗G ∶A↠ R of the R-algebra A, that is, εA is a section of
the structure morphism ιA∶R ↪ A. Faltings [Fal02] and Abrashkin [Abr06] deûned
deformations of augmented R-algebras as follows. For every augmented R-algebra
(A, εA∶A↠ R) set IA ∶= ker εA. For the polynomial ring R[X ] = R[X1 , . . . , Xn] set
IR[X ] = (X1 , . . . , Xn) and εR[X ]∶R[X ] ↠ R, Xν ↦ 0. Abrashkin [Abr06, §§1.1, 1.2]
made the following deûnition.

Deûnition 3.2 _e categoryDSchS has as objects all triplesH = (H,H♭ , iH),where
H = SpecA for an augmented R-algebra A that is ûnite locally free as an R-module,
where H♭ = SpecA♭ for an augmented R-algebra A♭, and where iH∶H ↪ H♭ is a
closed immersion given by an epimorphism iA∶A♭ ↠ A of augmented R-algebras,
such that locally on SpecR there is a polynomial ring R[X ] = R[X1 , . . . , Xn] and an
epimorphism of augmented R-algebras j∶R[X ]↠ A♭ satisfying the properties that
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(i) the ideal I ∶= ker(iA○ j) is generated by elements of a regular sequence of length
n in R[X ],

(ii) ker j = I ⋅ IR[X ], and hence A = R[X ]/I and A♭ = R[X ]/(I ⋅ IR[X ]).
In particular, H is a relative complete intersection. We write A = (A,A♭ , iA) and
H = SpecA. A morphism Spec(Ã, Ã♭ , iÃ) → Spec(A,A♭ , iA) in DSchS is given by
morphisms f ∶A → Ã and f ♭∶A♭ → Ã♭ of augmented R-algebras such that f ○ iA =
iÃ ○ f ♭. Sometimes iH and iA are omitted.

For an object H = Spec(A,A♭ , iA) of DSchS , deûne the two R-modules NH =
ker iA and t∗H = IA♭/I2A♭ , where IA♭ is the kernel of the augmentation εA♭ ∶A♭ → R.
A�er choosing an epimorphism j∶R[X ] ↠ A♭ locally on SpecR, we have IA♭ =
IR[X ]/(I ⋅ IR[X ]), which implies NH = I/(I ⋅ IR[X ]) and t∗H = IR[X ]/I2R[X ]. Both
are ûnite locally free R-modules of the same rank. _is is obvious for t∗H, and for NH

a proof can be found in [HS, Lemma 3.3]. Also note that IA♭ ⋅ ker iA = 0, because
ker iA = I/(I ⋅ IR[X ]). We write n = nH∶NH ↪ A♭ for the natural inclusion and
π = πH ∶= ( id−ιA♭ εA♭) mod I2A♭ ∶A♭↠ t∗H. IfH = (A,A♭) and H̃ = Spec(Ã, Ã♭), ev-
ery morphism ( f , f ♭)∶ (A,A♭) → (Ã, Ã♭) in HomDSch(H̃,H) induces morphisms
of R-modules N f ∶NH → NH̃ and t∗f ∶ t∗H → t∗

H̃
with f ♭ ○ nH = nH̃ ○ N f and

πH̃ ○ f ♭ = t∗f ○ πH.
Let H = Spec(A,A♭ , iA) and H̃ = Spec(Ã, Ã♭ , iÃ) be objects in DSchS and let

f ∶A→ Ã be amorphismof augmented R-algebras. Faltings [Fal02, §2] noted that the
set

L ∶= { f ♭∶A♭ → Ã♭,morphisms of augmented R-algebras for which
( f , f ♭) ∈ HomDSchS (H̃,H)}

is non-empty and is a principal homogeneous space under HomR(t∗H ,NH̃). _at is,
for any f ♭ ∈ L themapHomR(t∗H ,NH̃)→ L, h ↦ f ♭+nH̃ ○h○πH is a bijection. For
a proof, see [HS, Lemma 3.4] in the expanded version of this article on arXiv [HS].

_e category DSchS possesses direct products. If H = Spec(A,A♭ , iA) and H̃ =
Spec(Ã, Ã♭ , iÃ), then the product H ×S H̃ is given by Spec(A⊗R Ã, (A⊗R Ã)♭ , κ),
where

(A⊗
R
Ã)♭ ∶= (A♭⊗

R
Ã♭)/(ker iA ⊗ Ã♭ + A♭ ⊗ ker iÃ) ⋅ (IA♭ ⊗ Ã♭ + A♭ ⊗ IÃ♭)

and κ is the natural epimorphism (A⊗R A)♭ ↠ A⊗R A. A�er choosing locally on
SpecR presentations A = R[X ]/I, A♭ = R[X ]/(I ⋅ IR[X ]), and Ã = R[X̃ ]/Ĩ, Ã♭ =
R[X̃ ]/(Ĩ ⋅ IR[X̃ ]), we can write

(A⊗
R
Ã)♭ = R[X ⊗1, 1⊗ X̃ ] / (I⊗R[X̃ ]+R[X ]⊗ Ĩ) ⋅(IR[X ]⊗R[X̃ ]+R[X ]⊗ IR[X̃ ]).

Deûnition 3.3 LetDGrS be the category of group objects inDSchS . If G = SpecA ∈
DGrS , then its group structure is given via the comultiplication ∆∶A → A⊗R A and
∆♭∶A♭ → (A⊗RA)♭, the counit ε∶A→ R and ε♭∶A♭ → R, and the coinversion [−1]∶A→
A and [−1]♭∶A♭ → A♭, which satisfy the usual axioms. In particular, we require the
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counit axiom ( idA♭ ⊗ε♭) ○ ∆♭ = idA♭ = (ε♭ ⊗ idA♭) ○ ∆♭, and that ε and ε♭ are the
augmentation maps. _emorphisms in DGrS aremorphisms of group objects.

If G = (G ,G♭) ∈ DGrS , note that G = SpecA is a ûnite locally free group scheme
over Rwith the comultiplication∆, the counit ε, and the coinversion [−1]. But, in gen-
eral, G♭ is not a group scheme over S when the comultiplication ∆♭∶A♭ → (A⊗R A)♭
does not li� to A♭ ⊗R A♭. Faltings and Abrashkin [Abr06, §1.2] made the following
remarks.

(a) If G = Spec(A,A♭ , iA) ∈ DSchS and G = SpecA is a ûnite locally free group
scheme over R, then there exists a unique structure of a group object on G that is
compatible with that of G. It satisûes ∆♭(x) − x ⊗ 1 − 1⊗ x ∈ IA♭ ⊗ IA♭ for all x ∈ IA♭ .

(b) If G,H ∈ DGrS are group objects and ( f , f ♭) ∈ HomDSchS (G,H) such that
f ∶G → H is amorphism of group schemes, then ( f , f ♭) ∈ HomDGrS (G,H).

See [HS, p. 10] for a proof.
Let G = (G ,G♭ , iG) ∈ DGrS . Faltings deûned the co-Lie complex of G over S =

SpecR (that is, the ûber at the unit section of G of the cotangent complex) as the
complex of ûnite locally free R-modules

ℓ
●
G/S ∶ 0Ð→ NG

dÐ→ t∗G Ð→ 0

concentrated in degrees −1 and 0 with diòerential d ∶= πG ○ nG. Recall that the
co-Lie complex of G/S and more generally the cotangent complex of a morphism
were deûned by Illusie [Ill71,Ill72] generalizing earlierwork of Lichtenbaum and Sch-
lessinger [LS67]. If G = SpecA for A = R[X ]/I, where I is generated by a regular
sequence, then the cotangent complex of Illusie [Ill71, II.1.2.3] is quasi-isomorphic to
the complex of ûnite locally free A-modules

L
●
G/S ∶ 0Ð→ I/I2 dÐ→ Ω1

R[X ]/R ⊗
R[X ]

AÐ→ 0

concentrated in degrees −1 and 0 with d being the diòerential map [Ill71, Corol-
laire III.3.2.7]. _e co-Lie complex of G over S was deûned by Illusie [Ill72, §VII.3.1]
as ℓ

●
G/S ∶= ε∗GL

●
G/S , where εG ∶ S → G is the unit section. To see that this is equal to

Faltings’s deûnition note that

ε∗G(I/I2) = I/I2 ⊗
A
R = I ⊗

R[X ]
R = I/(I ⋅ IR[X ]) = NG ,

ε∗G(Ω1
R[X ]/R ⊗

R[X ]
A) = Ω1

R[X ]/R ⊗
R[X ]

R =
n
⊕
ν=1

R ⋅ dXν = IR[X ]/I2R[X ] = t∗G ,

and that the diòerential of both co-Lie complexes sends an element x ∈ I to the linear
term in its expansion as a polynomial in X , because all terms of higher degree are
sent to zero under ε∗G .

Up to homotopy equivalence both L
●
G/S and ℓ

●
G/S only depend onG, and not on the

presentation A = R[X ]/I nor on the deformation G of G. Note that L
●
G/S and ι∗ℓ

●
G/S

are quasi-isomorphic by [Mes72, Chapter II, Proposition 3.2.9], where ι∶G → S is the
structuremap.
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Deûnition 3.4 We (re-)deûne the co-Lie module of G over S as ωG ∶= H0(ℓ ●G/S) ∶=
coker d and set nG ∶= H−1(ℓ ●G/S) ∶= ker d. _ese R-modules only depend on G and
not on G. Since H0(L●G/S) = Ω1

G/S , we have ωG = ε∗GΩ1
G/S , which is also canonically

isomorphic to the R-module of invariant diòerentials on G.

We record the following lemmas.

Lemma 3.5 If G ∈ DGrS , the following are equivalent:
(i) G is étale over S;
(ii) ωG = 0;
(iii) the diòerential of ℓ

●
G/S is an isomorphism.

Proof If G is étale, then Ω1
G/S = 0. Conversely, since Ω1

G/S is a ûnitely generated
OG-module, byNakayama ωG = 0 implies thatG is étale along the zero section. Being
a group scheme, it is étale everywhere.
Clearly (iii) implies (ii). Conversely if ωG = 0, that is, if d is surjective, then d is

also injective, because both t∗G and NG are ûnite locally free of the same rank.

Lemma 3.6 ( [Mes72, Chapter II, Proposition 3.3.4]) Let 0 → G′ → G → G′′ → 0
be an exact sequence of ûnite locally free group schemes over S. _en there is an exact
sequence of R-modules

0Ð→ nG′′ Ð→ nG Ð→ nG′ Ð→ ωG′′ Ð→ ωG Ð→ ωG′ Ð→ 0.

4 Strict Fq-module Schemes

We keep the notation of the previous section. Let O be a commutative unitary ring.

Deûnition 4.1 In this article anO-module scheme over S is a ûnite locally free com-
mutative group schemeG over S togetherwith a ring homomorphismO→ EndS(G).
We denote the category of O-module schemes over S by Gr(O)S .

Proposition 4.2 If S is the spectrum of a ûeld L, every O-module scheme G over S
is canonically an extension 0 → G0 → G → G ét → 0 of an étale O-module scheme
G ét by a connected O-module scheme G0. _e O-module scheme G ét is the largest étale
quotient ofG. If L is perfect,G ét is canonically isomorphic to the reduced closedO-mod-
ule subscheme Gred of G and the extension splits canonically, G = G0 ×S Gred.

Proof _e constituents of the canonical decomposition of the ûnite S-group scheme
G are O-invariant.

Deûnition 4.3 Let S = SpecR be a scheme over O and let G ∈ DGrS . A strict O-ac-
tion on G is a homomorphismO→ EndDGrS (G) such that the induced action on ℓ

●
G/S

is equal to the scalar multiplication via O→ R; cf Remark 4.4.
We let DGr(O)S be the category whose objects are pairs (G, [ ⋅ ]) where G ∈ DGrS

and [ ⋅ ]∶O → EndDGrS (G), a ↦ [a] is a strict O-action, and whose morphisms
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f ∶ (G, [ ⋅ ]) → (G′ , [ ⋅ ]′) are those morphisms f ∶G → G′ in DGrS that are compati-
ble with the O-actions, that is, they satisfy f ○ [a] = [a]′ ○ f for all a ∈ O.

We let DGr∗(O)S be the quotient category of DGr(O)S having the same objects,
whose morphisms are the equivalence classes of morphisms (G ,G♭) → (H,H♭) in
DGr(O)S that induce the samemorphism G → H.

So by deûnition the forgetful functorDGr∗(O)S → Gr(O)S , which sends (G ,G♭)
to G andmorphisms (G ,G♭)→ (H,H♭) to their restriction to G → H, is faithful.
Faltings [Fal02,Remark b) a�erDeûnition 1] remarked that a strictO-action [ ⋅ ] on

G induces on every deformation G̃ ofG a unique strictO-action [̃ ⋅ ] that is compatible
with all li�s G̃ → G and G → G̃ of the identity on G; for details see [HS, Lemma 4.4].
In particular, the pairs (G, [ ⋅ ]) and (G̃, [̃ ⋅ ]) are isomorphic in DGr∗(O)S .

Remark 4.4 _e co-Lie complex ℓ
●
G/S depends on the deformation G of G. For an-

other deformation G̃ the complex ℓ
●

G̃/S is homotopically equivalent to ℓ
●
G/S . _erefore

one might try to weaken Deûnition 4.3 and only require that the action of a ∈ O on
ℓ
●
G/S is homotopic to the scalar multiplication with a. We do not know whether this is
equivalent to Deûnition 4.3 and whether Faltings’s remark remains valid for general
O. Both are true for the polynomial ring O = Fp[a].

Remark 4.5 Note that there can be diòerent non-isomorphic strict O-actions on a
deformation G. For example, let G = αααp = SpecR[X]/(X p) and A♭ = R[X]/(X p+1).
Let O = Fp[a] be the polynomial ring in the variable a, and let R be an O-algebra by
sending a to 0 in R. For every u ∈ R the endomorphism [a] = 0∶αααp → αααp , X ↦ 0 li�s
to [a]∶A♭ → A♭ , X ↦ uX p . All these li�s deûne strict O-actions on (G , SpecA♭) that
are non-isomorphic in DGr∗(Fp[a])S . In particular, the forgetful functor

DGr∗(Fp[a])S → Gr(Fp[a])S

is not fully faithful.

In contrast, for O = Fq we have the following lemma.

Lemma 4.6 _e forgetful functorDGr∗(Fq)S → Gr(Fq)S is fully faithful. In partic-
ular, if G ∈ Gr(Fq)S and G = (G ,G♭) ∈ DGrS is a deformation of G, then there is at
most one strict Fq-action on G that li�s the action on G.

Proof Let (G, [ ⋅ ]) and (G̃, [̃ ⋅ ]) be in DGr∗(Fq)S with G = Spec(A,A♭) and G̃ =
Spec(Ã, Ã♭). Let f ∶A→ Ã be amorphism in Gr(Fq)S , that is [̃a] f = f [a]. Take any
li� f ♭∶A♭ → Ã♭ of f . _en for each a ∈ Fq there is an R-homomorphism ha ∶ t∗G → NG̃

with [̃a] f ♭ − f ♭[a] = ñhaπ. It satisûes hab = ahb + bha because π[b] = t∗[b]π = b π

and [̃a]ñ = ñN[̃a] = a ñ, and hence

ñhabπ = [̃ab] f ♭ − f ♭[ab] = [̃a]( [̃b] f ♭ − f ♭[b]) + ([̃a] f ♭ − f ♭[a])[b]
= [̃a]ñhbπ + ñhaπ[b] = ñ(ahb + bha)π.
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We claim that it also satisûes ha+b = ha + hb . Namely,

ñha+bπ = [̃a + b] f ♭ − f ♭[a + b] = m̃ ○ ([̃a] f ♭ ⊗ [̃b] f ♭ − f ♭[a]⊗ f ♭[b]) ○ ∆♭

= m̃ ○ (ñhaπ ⊗ [̃b] f ♭ + f ♭[a]⊗ ñhbπ) ○ ∆♭ ,

where m̃∶ (Ã ⊗R Ã)♭ → Ã♭ is induced from the multiplication in the ring Ã♭ and
([̃a] f ♭ ⊗ [̃b] f ♭)∶A♭ ⊗R A♭ → Ã♭ ⊗R Ã♭ induces a homomorphism

(A⊗
R
A)♭ → (Ã⊗

R
Ã)♭ ,

denoted by the same symbol. We evaluate this expression on Xν , where

A♭ = R[X ]/I ⋅ IR[X ] .

For every ν there are u i , v i ∈ IR[X ] such that ∆♭(Xν) = Xν⊗ 1+ 1⊗Xν +∑i u i ⊗v i ; see
(a) a�erDeûnition 3.3. Now π(1) = 0, togetherwith (ñh̃aπ)(IR[X ]) ⊂ Ĩ/Ĩ ⋅ IR[X̃ ] ⊂ Ã♭

and [̃b] f ♭(IR[X ]) ⊂ IR[X̃ ] imply ñha+bπ(Xν) = ñhaπ(Xν) + ñhbπ(Xν) as desired.
_is proves ha+b = ha +hb . If a lies in the image Fp ofZ in Fq , then ha = a ⋅h1 = 0. In
other words a ↦ ha ,Fq → HomR(t∗G ,NG̃) is an Fp-derivation. Since Ω1

Fq/Fp
= (0),

we must have ha = 0 and [̃a] f ♭ = f ♭[a] for all a ∈ Fq . _is means that ( f , f ♭)
deûnes amorphism inDGr∗(Fq)S that maps to f under the forgetful functor. So this
functor is fully faithful. _e remaining assertion follows by taking Ã♭ = A♭, Ã = A and
f ♭ = id.

Deûnition 4.7 A ûnite locally free Fq-module scheme G over R is called a
strict Fq-module scheme if it lies in the essential image of the forgetful functor
DGr∗(Fq)S → Gr(Fq)S , that is, if it has a deformation G carrying a strict Fq-action
that li�s theFq-action onG. We identifyDGr∗(Fq)S with the category of ûnite locally
free strict Fq-module schemes over S.

Lemma 4.8 For a ûnite locally freeFq-module schemeG over R, the property of being
a strict Fq-module scheme is local on SpecR.

Proof Let G̃ be a deformation of G over SpecR. Let SpecR i ⊂ SpecR be an open
covering and let Gi be deformations ofG×R SpecR i carrying a strict Fq-actionwhich
li�s the Fq-action on G. _is action induces by [Fal02, Remark b) a�er Deûnition 1]
a strict Fq-action on G̃ ×R SpecR i for all i. Above SpecR i ∩ SpecR j these actions
coincide by Lemma 4.6, and hence they glue to a strict Fq-action on G̃ as desired.

Example 4.9 We give examples for ûnite locally free strict Fq-module schemes. Let
R be an Fq-algebra.

(a) Let αααq = SpecR[X]/(Xq) and ααα♭q = SpecR[X]/(Xq+1). _en [a](X) = aX
for a ∈ Fq deûnes a strict Fq-action on G = (αααq ,ααα♭q). Indeed, the co-Lie complex is

ℓ
●
G/S ∶ 0Ð→ Xq ⋅ R Ð→ X ⋅ R Ð→ 0
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with d = 0 and a ∈ Fq acts on it as scalar multiplication by a because N[a](Xq) =
(aX)q = aXq and t∗[a](X) = aX. _erefore αααq is a ûnite locally free strict Fq-module
scheme.

(b) On αααp = SpecR[X]/(X p) there is an Fq-action given by [a](X) = aX. If
q ≠ p, it does not li� to a strict Fq-action on ααα♭p = SpecR[X]/(X p+1). Although we
may li� the action to G = (αααp ,ααα♭p) via [a](X) = aX, the co-Lie complex is

ℓ
●
G/S ∶ 0Ð→ X p ⋅ R Ð→ X ⋅ R Ð→ 0,

and so a ∈ Fq acts on NG by ap which is not scalar multiplication by a when ap ≠ a.
Any other li� [̃a] of theFq-action onαααp toG satisûes [̃a] = [a]+nhaπ for anR-homo-
morphism ha ∶ t∗G → NG and yields nN[̃a] = [̃a]n = [a]n + nhaπn = [a]n = nN[a]

because πn = d = 0 on ℓ
●
G/S . So no such action is strict and αααp is not a strict Fq-

module scheme.
(c) _e constant étale group scheme Fq = SpecR[X]/(Xq − X) over SpecR and

its deformation Fq
♭ = SpecR[X]/(Xq+1 − X2) carry a strict Fq-action via [a](X) =

aX. Indeed, the co-Lie complex is

ℓ
●
G/S ∶ 0Ð→ (X − Xq) ⋅ R Ð→ X ⋅ R Ð→ 0

with d∶X−Xq ↦ X and a ∈ Fq acts on it by N[a](X−Xq) = aX−(aX)q = a(X−Xq)
and t∗[a](X) = aX. _erefore Fq is a ûnite locally free strict Fq-module scheme.

(d) _emultiplicative group µµµp = SpecR[X]/(X p − 1) has an Fp-action via

[a](X) = Xa .

_is action does not li� to µµµ♭p = SpecR[X]/(X−1)p+1, because on µµµ♭p we have ∆(X) =
X ⊗ X and hence [a](X) = Xa , which satisûes [p](X) = X p ≠ 1. _erefore no de-
formation of µµµp can carry a strict Fp-action and µµµp is not a strict Fp-module scheme.
Note that nevertheless Fp acts through scalar multiplication on the co-Lie complex
ℓ
●
µµµ p/S .

Part (c) generalizes to the following lemma.

Lemma 4.10 Any ûnite étale Fq-module scheme is a ûnite locally free strict Fq-mod-
ule. In particular, if 0 → G′ → G → G′′ → 0 is an exact sequence of ûnite locally free
Fq-module schemes with G a strict Fq-module and G′′ étale, then both G′ and G′′ are
strict Fq-modules.

Proof _e ûrst assertionwas remarked by Faltings [Fal02, §3, p. 252]more generally
for ûnite étale O-module schemes, and also follows from [Dri87, Proposition 2.1(6)]
and_eorem 5.2 below. (For a direct proof, see [HS, Lemma 4.11].) _e last assertion
on the strictness of G′ can be proved on aõne open subsets of S. _ere Lemma 4.6
implies that the morphism G → G′′ is Fq-strict in the sense of Faltings [Fal02, Deû-
nition 1], and by [Fal02, Proposition 2] its kernel G′ is a strict Fq-module.
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5 Equivalence Between Finite Fq-shtukas and Strict Fq-modules

Let S be a scheme over SpecFq . Recall that a ûnite locally free commutative group
schemeG over S is equippedwith a relative p-Frobenius Fp,G ∶G → σ∗pG and a p-Ver-
schiebung morphism Vp,G ∶ σ∗pG → G that satisfy

Fp,G ○ Vp,G = p idσ∗p G and Vp,G ○ Fp,G = p idG .

For more details see [SGA 3, Exposé VIIA, §4.3]. Example 4.9 is generalized by the
following results of Abrashkin. _e ûrst is concerned with ûnite locally free strict
Fp-module schemes.

_eorem 5.1 ( [Abr06,_eorem 1]) LetG be a ûnite locally free group scheme equip-
ped with an Fp-action over an Fp-scheme S. _en this action li�s (uniquely) to a strict
Fp-action on some (any) deformation ofG if and only if the p-Verschiebung ofG is zero.
In particular, the forgetful functor induces an equivalence betweenDGr∗(Fp)S and the
category of those group schemes in Gr(Fp)S that have p-Verschiebung zero.

To explainAbrashkin’s classiûcation of ûnite locally free strict Fq-module schemes
we recall that Drinfeld [Dri87, §2] deûned a functor from ûnite Fq-shtukas over S
to ûnite locally free Fq-module schemes over S. Abrashkin [Abr06] proved that the
essential image of Drinfeld’s functor consists of ûnite locally free strict Fq-module
schemes. Other descriptions of the essential image were given by Taguchi [Tag95, §1]
and Laumon [Lau96, §B.3]. (But note that [Lau96, Propositions 2.4.11, B.3.13, and
Lemma B.3.16] are incorrect as the Fq-module scheme G = αααp = SpecR[x]/(x p)
shows when p ≠ q.) Drinfeld’s functor is deûned as follows. Let M = (M , FM) be a
ûnite Fq-shtuka over S. Let

E = Spec
S ⊕n≥0

Symn
OS

M

be the geometric vector bundle corresponding to M, and let Fq ,E ∶ E → σ∗q E be its rel-
ative q-Frobenius morphismover S. On the other hand, themap FM induces another
S-morphism Spec(Sym● FM)∶ E → σ∗q E. Drinfeld deûned

Drq(M ) ∶= ker(Spec(Sym● FM) − Fq ,E ∶ E Ð→ σ∗q E) = Spec
S
(⊕
n≥0

Symn
OS

M)/I

where the ideal I is generated by the elements m⊗q − FM(σ∗q m) for all local sections
m of M. (Here m⊗q lives in Symq

OS
M and FM(σ∗q m) in Sym1

OS
M.)

_ere is an equivalent description of Drq(M ) as follows. Let S = SpecR be aõne
anddenote theR-module Γ(S ,M) again byM. LetFrobq ,R ∶R → R be the q-Frobenius
on R with x ↦ xq . We equip M with the Frobq ,R-semi-linear endomorphism

F semi
M ∶M Ð→ M , m z→ FM(σ∗q m),

that satisûes

F semi
M (bm) = FM(σ∗q (bm)) = FM(bqσ∗q m) = bqF semi

M (m).
Also we equip every R-algebra T with the Frobq ,R-semi-linear R-module endomor-
phism F semi

T ∶= Frobq ,T ∶T → T . _en Drq(M ) is the group scheme over S that is
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given on R-algebras T as

Drq(M )(T) = HomF semi(M , T)
∶= {h ∈ HomR-Mod(M , T)∶ h(m)q = h(FM(σ∗q m)) ∀m ∈ M} ,

becauseHomR-Mod(M , T) = HomR-Alg(Sym●
R M , T) = E(SpecT).1

Now Drq(M ) is an Fq-module scheme over S via the comultiplication ∆∶m ↦
m⊗1+1⊗m and the Fq-action [a]∶m ↦ am that it inherits from E. It has a canonical
deformation

Drq(M )♭ ∶= Spec
S
(⊕
n≥0

Symn
OS

M)/(I ⋅ I0),

where I0 = ⊕n≥1 Symn
OS

M is the ideal generated by all m ∈ M. _is deformation is
equipped with both the comultiplication ∆♭∶m ↦ m ⊗ 1 + 1 ⊗ m and the Fq-action
[a]♭∶m ↦ am. We set Drq(M ) ∶= (Drq(M ), Drq(M )♭). Its co-Lie complex is

(5.1) 0Ð→ I/(I ⋅ I0)Ð→ I0/I20 Ð→ 0

with diòerential d∶m⊗q − FM(σ∗q m)↦ −FM(σ∗q m). On it [a] acts by scalar multipli-
cation with a because (am)q − FM(σ∗q (am)) = aq(m⊗q − FM(σ∗q m)). _is deûnes
the functorDrq ∶Fq-ShtS → DGr(Fq)S . We also composeDrq with the projection to
DGr∗(Fq)S .
Conversely, let G = (G ,G♭) = Spec(A,A♭) ∈ DGr(Fq)S in the aõne situation S =

SpecR. Note that on the additive group schemeGa ,S = SpecR[x] the elements b ∈ R
act via endomorphisms ψb ∶Ga ,S → Ga ,S given by ψ∗b ∶R[x] → R[x], x ↦ bx. _is
makes Ga ,S into an R-module scheme, and in particular, into an Fq-module scheme
via Fq ⊂ R. We associate with G the R-module of Fq-equivariant homomorphisms
on S

Mq(G) ∶= HomR-groups,Fq-lin(G ,Ga ,S)
= {x ∈ A∶∆(x) = x ⊗ 1 + 1⊗ x , [a](x) = ax , ∀a ∈ Fq} ,

with its action of R via R → EndR-groups,Fq-lin(Ga ,S). It is a ûnite locally free R-mod-
ule by [Pog17, Proposition 3.6, Remark 5.5]; see also [SGA 3, VIIA, 7.4.3] in the reed-
ited version of SGA 3 by P. Gille and P. Polo. _e composition on the le� with the
relative q-Frobenius endomorphism Fq ,Ga ,S of Ga ,S = SpecR[x] given by x ↦ xq

deûnes amap Mq(G) → Mq(G),m ↦ Fq ,Ga ,S ○m that is not R-linear, but σ∗q -linear,
because Fq ,Ga ,S ○ ψb = ψbq ○ Fq ,Ga ,S . _erefore, Fq ,Ga ,S induces an R-homomorphism
FMq(G)∶ σ∗q Mq(G) → Mq(G). _en M q(G) ∶= (Mq(G), FMq(G)) is a ûnite shtuka
over S. Note that for m ∈ Mq(G) the commutative diagram

(5.2) G
Fq ,G //

m

��

σ∗q G

σ∗q m

��
Ga ,S

Fq ,Ga ,S // Ga ,S

1We thank L. Taelman for mentioning this to us.
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implies that FMq(G)(σ∗q m) ∶= Fq ,Ga ,S ○ m = σ∗q m ○ Fq ,G . If H ∈ DGr(Fq)S and
( f , f ♭)∶G → H is a morphism in the category DGr(Fq)S , then M q( f )∶M q(H) →
M q(G), m ↦ m ○ f . _is deûnes the functor M q ∶DGr(Fq)S → Fq-ShtS . It factors
through the category DGr∗(Fq)S and further over the forgetful functor through the
category of ûnite locally free strict Fq-module schemes over S.

_ere is anaturalmorphismM → M q(Drq(M )),m ↦ fm ,where fm ∶Drq(M )→
Ga ,S = SpecR[x] is given by f ∗m(x) = m. _ere is also a natural morphism of group
schemes G → Drq(M q(G)) given on the structure sheaves by

⊕
n≥0

Symn
OS

Mq(G)/I → OG ,m ↦ m∗(x),

which is well deûned because

FMq(G)(σ∗q m)∗(x) = (Fq ,Ga ,S ○m)∗(x) = m∗(xq) = (m∗(x))q .

A large part of the following theorem was already proved byDrinfeld [Dri87, Pro-
position 2.1] without using the notion of strict Fq-modules.

_eorem 5.2 (i) _e contravariant functorsDrq andM q aremutually quasi-in-
verse anti-equivalences between the category of ûniteFq-shtukas over S and the category
of ûnite locally free strict Fq-module schemes over S.

(ii) Both functors are Fq-linear and map short exact sequences to short exact se-
quences. _ey preserve étale objects andmap the canonical decompositions from Propo-
sitions 4.2 and 2.7 to each other.

(iii) Let M = (M , FM) be a ûnite Fq-shtuka over S and let G = Drq(M ). _en
(a) the natural morphisms

M → M q(Drq(M )), m ↦ fm and G → Drq(M q(G))
are isomorphisms;

(b) the Fq-module scheme Drq(M ) is radicial over S if and only if FM is nilpotent
locally on S;

(c) the order of the S-group scheme Drq(M ) is qrk M ;
(d) the co-Lie complex ℓ

●
Drq(M )/S is canonically isomorphic to the complex

0→ σ∗q M
FMÐ→ M → 0.

In particular, ωDrq(M ) = coker FM and nDrq(M ) = ker FM .

Proof Assertions (i) and (iii)(a) were proved by Abrashkin [Abr06, _eorem 2] in
terms of the category DGr∗(Fq)S .

(ii) _e Fq-linearity is clear from the deûnitions and the compatibility with étale
objects follows from (iii)(d) and Lemma 3.5. Let 0→ M ′′ → M → M ′ → 0 be a short
exact sequence of ûnite Fq-shtukas. _en by construction Drq(M ′) → Drq(M ) is a
closed immersion. Using (i), we consider the local sections of

M′′ =HomS-groups,Fq-lin(Drq(M ′′),Ga ,S)
that are obtained by the closed immersion Drq(M ′′) ↪ Spec

S
(Sym●

OS
M′′) com-

posed with local coordinate functions on Spec
S
(Sym●

OS
M′′). _ese local sections go
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to zero inM′ and this yields amorphismDrq(M )/Drq(M ′)→ Drq(M ′′). _e latter
must be an isomorphism by (i) due to the identiûcation

M q(Drq(M )/Drq(M ′)) = ker(M q(Drq(M ))→ M q(Drq(M ′)))
= M ′′ = M q(Drq(M ′′)).

Conversely let 0 → G′ → G → G′′ → 0 be a short exact sequence of ûnite locally
free strict Fq-module schemes. _en the exactness of 0 → M q(G′′) → M q(G) →
M q(G′) is obvious. Applying Drq , whose exactness we just established, to the injec-
tion M q(G)/M q(G′′)→ M (G′) yields an isomorphismDrq(M q(G)/M q(G′′)) =
ker(G → G′′) = G′. From (i) it follows that M q(G)/M q(G′′) → M (G′) is an iso-
morphism.
Consider the exact sequences from Propositions 4.2 and 2.7. _en Drq(M ét) is

an étale quotient of Drq(M ). _is yields a morphism Drq(M )ét → Drq(M ét).
Conversely, M q(G ét) is an étale Fq-subshtuka of M q(G). _is yields a morphism
M q(G ét) → M q(G)ét. _e equivalence of (i) shows that both morphisms are iso-
morphisms. _is proves the compatibility of Drq andM q with the canonical decom-
positions.

(iii) (b) By deûnition G ∶= Drq(M ) is radicial over S if G(K) → S(K) is injective
for all ûelds K. _is can be tested by applying the base change SpecK → S. By (ii)
and Propositions 4.2 and 2.7 the base change G ×S SpecK is connected if and only if
FM ⊗ idK is nilpotent. _is implies (iii)(b) over SpecK. It remains to show that FM
is nilpotent locally on S if G is radicial. Locally on an aõne open SpecR ⊂ S wemay
choose an R-basis of M and write FM as an r × r-matrix where r = rkM. For every
point s ∈ S, Proposition 2.7 implies that F r

M = 0 in κ(s)r×r . _erefore the entries of
thematrix F r

M lie in the nil-radical of R. If n is an integer such that their qn-th powers
are zero, then F r(n+1)

M = F r
M ⋅ ⋅ ⋅ σ n∗

q (F r
M) = 0. _is establishes (iii)(b).

(iii) (c) If locally on S we choose an isomorphism M ≅ ⊕n
ν=1 OS ⋅ Xν and let (t i j)

be thematrix of themorphism FM ∶ σ∗q M → M with respect to the basis (X1 , . . . , Xn),
then Drq(M ) is the subscheme ofGn

a ,S , given by the system of equations

Xq
j =

n

∑
i=1

t i jX i for j = 1, . . . , n.

_erefore ODrq(M ) is a free OS-module with basis Xm1
1 ⋅ ⋅ ⋅Xmn

n , 0 ≤ m i < q. _us
ordDrq(M ) ∶= rkOS ODrq(M ) = qrk M .

(iii) (d) In the presentation of ℓ
●
Drq(M )/S given in (5.1) with

I = (m⊗q − FM(σ∗q m) ∶ m ∈ M)

and I0 = ⊕n≥1 Symn
OS

M, we use the isomorphisms of OS-modules M
∼Ð→ I0/I20 ,

m ↦ m and σ∗q M
∼Ð→ I/(II0), bσ∗q m = m ⊗ b ↦ bFM(σ∗q m) − bm⊗q . Note that

the latter is surjective by deûnition and injective because both σ∗q M and I/(II0) are
locally free OS-modules of the same rank.
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Remark 5.3 Finite locally free strict Fq-module schemes over S = SpecR were
equivalently described byPoguntke [Pog17]. He deûned the categoryFq-gr+,bS of ûnite
locally free Fq-module schemes G = SpecA that locally on S can be embedded into
GN
a ,S for some set N and are balanced in the following sense. _e R-module

Mp(G) ∶= HomS-groups(G ,Ga ,S) = { x ∈ A ∶ ∆(x) = x ⊗ 1 + 1⊗ x }

ofmorphisms of group schemes over R decomposes under the action of Fq on G into
eigenspaces

Mp(G)p i ∶= {m ∈ Mp(G) ∶ [α](m) = αp i
⋅m for all α ∈ Fq},

for i ∈ Z/eZ,where q = pe . NowG is balanced if the composition on the rightwith the
relative p-Frobenius Fp,Ga ,S of the additive group schemeGa ,S induces isomorphisms
Mp(G)p i

∼Ð→ Mp(G)p i+1 for all i = 0, . . . , e − 2. Note that it is neither required nor
implied that Mp(G)pe−1 → Mp(G)1 =∶ Mq(G) is also an isomorphism. _e latter
holds if and only if G is étale by _eorem 5.2(ii).
Abrashkin [Abr06, 2.3.2] showed that every ûnite locally free strict Fq-module

scheme over S belongs to Fq-gr+,bS . And Poguntke [Pog17, _eorem 1.4] conversely
showed that Drq and M q provide an anti-equivalence between the category of ûnite
Fq-shtukas over S and the category Fq-gr+,bS .

6 Relation to Global Objects

Without giving proofs, in this section we want to relate local shtukas and divisible
local Anderson modules (deûned in the next section), as well as ûnite Fq-shtukas
and ûnite locally free strict Fq-module schemes to global objects like A-motives,
global shtukas, Drinfeld modules, Anderson A-modules, etc. which are deûned as
follows. Let C be a smooth, projective, geometrically irreducible curve over Fq . For
an Fq-scheme S we set CS ∶= C ×Fq S and we consider the endomorphism

σq ∶= idC ⊗Frobq ,S ∶CS Ð→ CS .

Deûnition 6.1 (i) Let n and r be positive integers. A global shtuka of rank r with
n legs over an Fq-scheme S is a tupleN = (N, c1 , . . . , cn , τN) consisting of

● a locally free sheafN of rank r on CS ,
● Fq-morphisms c i ∶ S → C called the legs ofN ,
● an isomorphism τN∶ σ∗qN∣CS∖⋃i Γc i

∼Ð→ N∣CS∖⋃i Γc i outside the graphs Γc i of the c i .
In this article we will only consider the case where Γc i ∩ Γc j = ∅ for i ≠ j.

(ii) A global shtuka over S is a Drinfeld shtuka if n = 2, Γc1 ∩ Γc2 = ∅, and τN
satisûes τN(σ∗qN) ⊂ N on CS ∖ Γc2 with cokernel locally free of rank 1 as OS-module,
and τ−1

N (N) ⊂ σ∗qN on CS ∖ Γc1 with cokernel locally free of rank 1 as OS-module.
Drinfeld shtukas were introduced by Drinfeld [Dri87] under the name F-sheaves.

An important class of special examples is deûned as follows. Let∞ ∈ C be a closed
point and put A ∶= Γ(C ∖{∞},OC). _en SpecA = C ∖{∞}. Wewill consider aõne
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A-schemes c∶ S = SpecR → SpecA and the ideal

J ∶= (a ⊗ 1 − 1⊗ c∗(a) ∶ a ∈ A) ⊂ AR ∶= A⊗
Fq

R

whose vanishing locus V(J) is the graph Γc of the morphism c. _e endomorphism
σq ∶= idC ⊗Frobq ,S ∶CS → CS induces the ring endomorphism

σ∗q ∶= idA⊗Frobq ,R ∶AR Ð→ AR , a ⊗ b z→ a ⊗ bq

of AR for a ∈ A and b ∈ R. _e following deûnition generalizes Anderson’s [And86]
notion of t-motives, which is obtained as the special case, where C = P1, A = Fq[t]
and R is a ûeld.

Deûnition 6.2 Let d and r be positive integers and let S = SpecR be an aõne
A-scheme. An eòective A-motive of rank r and dimension d over S is a pair N =
(N , τN) consisting of a locally free AR-module N of rank r and amorphism

τN ∶ σ∗q N Ð→ N

of AR-modules, such that coker τN is a locally free R-module of rank d and
Jd ⋅ coker τN = 0. More generally, an A-motive of rank r over S is a pair N = (N , τN)
consisting of a locally free AR-module N of rank r and an isomorphism

τN ∶ σ∗q N ∣Spec AR∖V(J)
∼Ð→ N ∣Spec AR∖V(J)

outside the vanishing locus V(J) = Γc of J.

Example 6.3 (a) If N = (N, c1 , c2 , τN) is a global shtuka of rank r over S =
SpecR with two legs such that c1 = c and c2∶ S → {∞} ⊂ C, then

N (N ) ∶= (N , τN) ∶= (Γ(SpecAR ,N), τN)
is an A-motive of rank r over S.

(b) Conversely, if ∞ ∈ C(Fq), every A-motive N = (N , τN) over an aõne
A-scheme c∶ S = SpecR → SpecA can be obtained from a global shtuka

N = (N, c1 , c2 , τN)
by taking c1 = c and c2∶ S → {∞} ⊂ C, and takingN as an extension to CS of the sheaf
associated with N on SpecAR , and τN = τN .

_ese global objects give rise to ûnite and local shtukas, and that motivates the
names for the latter.

Example 6.4 (a) Let i∶D ↪ C be a ûnite closed subscheme and let

N = (N, c1 , . . . , cn , τN)
be a global shtuka of rank r over S such that τN(σ∗qN) ⊂ N in a neighborhood of
DS ∶= D×Fq S. (For example, this is satisûed ifN is aDrinfeld-shtuka andDS∩Γc2 = ∅
or ifN is as in Example 6.3with N (N ) an eòective A-motive and D ⊂ SpecA.) _en
(M , FM) ∶= (i∗N, i∗τN) is a ûnite Fq-shtuka over S, because M is locally free over
S of rank r ⋅ dimFq OD . _e sense in which N is global and (M , FM) is ûnite, is with
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respect to the coeõcients; N lives over all of C andM lives over the ûnite scheme D.
_is example gave rise to the name ûnite Fq-shtuka.

(b) Let v ∈ C be a closed point deûned by a sheaf of ideals p ⊂ OC , let q̂ be the
cardinality of the residue ûeld Fv of v, let f ∶= [Fv ∶Fq], and let z ∈ Fq(C) be a
uniformizing parameter at v. LetN = (N, c1 , . . . , cn , τN) be a global shtuka of rank r
over S = SpecR such that for some i the elements of c∗i (p) are nilpotent in R. Set ζ ∶=
c∗i (z) ∈ R. _en the formal completion of CS along the graph Γc i of c i is canonically
isomorphic to Spf R[[z]] by [AH14, Lemma 5.3]. _e formal completionM of (N, τN)
along Γc i together with τM ∶= τ f

N
∶ σ f∗q M[ 1

z−ζ ]
∼Ð→ M[ 1

z−ζ ] is a local shtuka over S of
rank r (as in Deûnition 2.1 with q and Fq[[z]] and σ∗q replaced by q̂ and Fv[[z]] and
σ f∗q ). See [Har17, §6] formore details. AgainM is localwith respect to the coeõcients
as it lives over the complete local ring ÔC ,v = Fv[[z]] of C at v. _is gave rise to the
name local shtuka.

So far we have discussed the semi-linear algebra side given by shtukas. On the
side of group schemes, an important source from which the corresponding strict Fq-
module schemes arise are Drinfeld A-modules, or more generally abelian Anderson
A-modules. To deûne them, let c∶ S = SpecR → SpecA be an aõne A-scheme. Recall
that for a smooth commutative group scheme E over SpecR the co-Liemodule ωE ∶=
ε∗EΩ

1
E/R is a locally free R-module of rank equal to the relative dimension of E over

R. Moreover, on the additive group scheme Ga ,R = SpecR[x] the elements b ∈ R,
and in particular c∗(a) ∈ R for a ∈ Fq ⊂ A, act via endomorphisms ψb ∶Ga ,R → Ga ,R
given by ψ∗b ∶R[x] → R[x], x ↦ bx. _is makes Ga ,R into an Fq-module scheme.
In addition, let τ ∶= Fq ,Ga ,R be the relative q-Frobenius endomorphism of Ga ,R =
SpecR[x] given by x ↦ xq . It satisûes τ ○ ψb = ψbq ○ τ. We let

R{τ} ∶= {
n

∑
i=0
b iτ i ∶ n ∈ N0 , b i ∈ R}

with τb = bqτ be the non-commutative polynomial ring in the variable τ over R.
_ere is an isomorphism of rings R{τ} ∼Ð→ EndR-groups,Fq-lin(Ga ,R) sending an ele-
ment f = ∑i b iτ i ∈ R{τ} to theFq-equivariant endomorphism f ∶Ga ,R → Ga ,R given
by f ∗(x) ∶= ∑i b ixq i

.

Deûnition 6.5 Let d and r be positive integers. An abelian Anderson A-module
of rank r and dimension d over an aõne A-scheme c∶ SpecR → SpecA is a pair
E = (E , φ) consisting of a smooth aõne group scheme E over SpecR of relative di-
mension d and a ring homomorphism φ∶A→ EndR-groups(E), a ↦ φa such that

(i) there is a faithfully �at ring homomorphism R → R′ for which E ×R SpecR′ ≅
Gd
a ,R′ as Fq-module schemes, where Fq acts on E via φ and Fq ⊂ A;

(ii) (a ⊗ 1 − 1⊗ c∗a)d ⋅ ωE = 0 for all a ∈ A under the action of a ⊗ 1 induced from
φa and the natural action of 1⊗ b for b ∈ R on the R-module ωE ;

(iii) the set N ∶= Mq(E ) ∶= HomR-groups,Fq-lin(E ,Ga ,R) of Fq-equivariant homo-
morphisms of R-group schemes is a locally free AR-module of rank r under the
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action given on m ∈ N by

A ∋ a∶N → N ,m ↦ m ○ φa , R ∋ b∶N → N ,m ↦ ψb ○m.

If d = 1, this is called a Drinfeld A-module over S; cf. [Har17,_eorem 2.13].

_e case in which C = P1, A = Fq[t], and R is a ûeld was considered by Ander-
son [And86] under the name abelian t-module. In [Har17, _eorem 2.10] we gave a
proof of the following relative version of Anderson’s theorem [And86,_eorem 1].

_eorem 6.6 If E = (E , φ) is an abelianAndersonA-module of rank r and dimension
d, we consider, in addition, on N ∶= Mq(E ), the map τsemi

N ∶m ↦ Fq ,Ga ,R ○ m. Since
τsemi
N (bm) = bqτsemi

N (m) for b ∈ R, the map τsemi
N is σq-semilinear and induces an

AR-linear map τN ∶ σ∗q N → N with τsemi
N (m) = τN(σ∗q m). _en M q(E ) ∶= (N , τN)

is an eòective A-motive of rank r and dimension d. _ere is a canonical isomorphism
of R-modules coker τN

∼Ð→ ωE , m mod τN(σ∗q N) ↦ m∗(1), where m∗(1) means the
image of 1 ∈ ωGa ,R = R under the induced R-homomorphism m∗∶ωGa ,R → ωE .

_e contravariant functor E ↦ M q(E ) is fully faithful. Its essential image consists
of all eòective A-motives N = (N , τN) over R for which there exists a faithfully �at ring
homomorphism R → R′ such that N ⊗R R′ is a ûnite free le� R′{τ}-module under the
map τ∶N → N , m ↦ τN(σ∗q m).

Example 6.7 Let E = (E , φ) be an abelian Anderson A-module over an aõne
A-scheme c∶ SpecR → SpecA, and let N ∶= M q(E ) be its associated eòective A-
motive.

(a) Let a ⊂ Abe anon-zero ideal. By [Har17,_eorem 5.4] the a-torsion submodule
of E, deûned as the scheme-theoretic intersection E [a] ∶= ⋂a∈a ker(φa ∶ E → E), is a
ûnite locally free A/a-module scheme and a strict Fq-module scheme over S, which
satisûes M q(E [a]) = N /aN and E [a] = Drq(N /aN ).

(b) Let p ⊂ A be a maximal ideal and assume that the elements of c∗(p) ⊂ R are
nilpotent. Let q̂ be the cardinality of the residue ûeld Fp ∶= A/p and let f ∶= [Fp ∶Fq].
We ûx a uniformizing parameter z ∈ Fq(C) = Frac(A) at p and set ζ ∶= c∗(z) ∈ R.
We obtain an isomorphism Fp[[z]]

∼Ð→ Ap ∶= lim←ÐA/p
n . As in Example 6.4 the J-adic

completion M of N together with τM ∶= τ fN ∶ σ
f∗
q M → M is an eòective local shtuka

M = (M , τM) over R of rank r (as inDeûnition 2.1with q andFq[[z]] and σ∗q replaced
by q̂ and Fp[[z]] and σ f∗q ). By [Har17, _eorem 6.6] the torsion module E [pn] is a
ûnite locally free strict Fp-module scheme that satisûes Drq̂(M /pnM ) = E [pn] and
M /pnM = M q̂(E [pn]). Moreover, in the sense of Section 7 below, the inductive
limit E [p∞] ∶= limÐ→ E [pn] is a p-divisible local Anderson module over R that satisûes
Drq̂(M ) = E [p∞] and M = M q̂(E [p∞]) under the functors from _eorem 8.3.
Note that condition (ii) of Deûnition 6.5 implies that (z− ζ)d = 0 on ωE [pn] for every
n and on ωE [p∞] ∶= lim←ÐωE [pn].
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7 Divisible Local Anderson Modules

_e name divisible local Anderson module is motivated by Example 6.7 (b). _ese are
the function ûeld analogs of p-divisible groups. _ey were introduced in [Har09], but
their deûnition in [Har09, §3.1] and the claimed equivalence in [Har09, §3.2] is false.
We give the correct deûnition below analogously to Messing [Mes72, Chapter I, Deû-
nition 2.1]. We ûx the following notation. For an fppf-sheaf of Fq[z]-modules G over
a scheme S, we denote the kernel of zn ∶G → G by G[zn]. Clearly (G[zn+m])[zn] =
G[zn] for all n,m ∈ N.

Deûnition 7.1 A z-divisible local Anderson module over a scheme S ∈ NilpFq[[ζ]] is
a sheaf of Fq[[z]]-modules G on the big fppf-site of S such that

(i) G is z-torsion, that is, G = limÐ→
n

G[zn].

(ii) G is z-divisible, that is, z∶G → G is an epimorphism.
(iii) For every n the Fq-module G[zn] is representable by a ûnite locally free strict

Fq-module scheme over S (Deûnition 4.7).
(iv) Locally on S there exists an integer d ∈ Z≥0, such that (z − ζ)d = 0 on ωG where

ωG ∶= lim←Ð
n

ωG[zn].

We deûne the co-Liemodule of a z-divisible localAndersonmoduleG over S as ωG ∶=
lim←ÐωG[zn]. We will see in Lemma 8.2 and_eorem 10.7 that ωG is a ûnite locally free
OS-module and we deûne the dimension of G as rkωG . It is locally constant on S.
A z-divisible local Anderson module is called (ind-)étale if ωG = 0. Since ωG

surjects onto each ωG[zn] because ω in ∶ωG[zn+1] ↠ ωG[zn] is an epimorphism, ωG = 0
if and only if all G[zn] are étale; see Lemma 3.5.
A morphism of z-divisible local Anderson modules over S is a morphism of

fppf-sheaves of Fq[[z]]-modules.

_e category of z-divisible Andersonmodules over S is Fq[[z]]-linear and an exact
category in the sense of Quillen [Qui73, §2].

Remark 7.2 We will frequently use that for a quasi-compact S-scheme X, any
S-morphism f ∶X → limÐ→G[zn] factors through f ∶X → G[zm] for some m; see for
example [HV11, Lemma 5.4].

Remark 7.3 (On axiom (iv) in Deûnition 7.1) Note the following diòerence to the
theory of p-divisible groups. On a commutative group scheme, multiplication by p
always induces multiplication with the scalar p on its co-Lie module. In the case of
Fq[[z]]-module schemes, axiom (iv) is the appropriate substitute for this fact, taking
into accountExample 6.7. It allows that z−ζ isnilpotentonωG[zn]. Without axiom (iv)
the OS-module ωG is not necessarily ûnite; see Example 7.7.

Notation 7.4 Let G be a z-divisible local Anderson module. We denote by in the
inclusion map G[zn]↪ G[zn+1] and by in ,m ∶G[zn]→ G[zm+n] the composite of the
inclusions in+m−1○⋅ ⋅ ⋅○ in . We denote by jn ,m the unique homomorphismG[zm+n]→
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G[zm] that is induced by multiplication with zn on G[zm+n] such that im ,n ○ jn ,m =
zn idG[zm+n]. Observe that also jn ,m ○ im ,n = zn idG[zm] for all m, n ∈ N, as can be seen
by composing with the Fq[z]-equivariant monomorphism im ,n ∶G[zm]↪ G[zm+n].

_e following two propositions give an alternative characterization of divisible lo-
cal Anderson modules, which is analogous to Tate’s deûnition [Tat66] of p-divisible
groups.

Proposition 7.5 Let G be a z-divisible local Anderson module.
(i) For any 0 ≤ m, n the following sequence of group schemes over S is exact

(7.1) 0→ G[zn] in ,mÐÐ→ G[zm+n] jn ,mÐÐ→ G[zm]→ 0.

(ii) _ere is a locally constant function h∶ S → N0 , s ↦ h(s) such that the order of
G[zn] equals qnh . We call h the height of the z-divisible localAndersonmoduleG.

Proof (i) Since z∶G → G is an epimorphism, jn ,m is also. _e rest of (i) is clear. Let
h ∶= rkOS M q(G[z]). _en ordG[z] = qh by _eorem 5.2 (iii)(c). Now (ii) follows
from (i) and themultiplicativity of the order.

Proposition 7.6 Let (Gn , in ∶Gn ↪ Gn+1)n∈N be an inductive systemofFq[z]-module
schemes that are ûnite locally free strict Fq-module schemes over S satisfying the follow-
ing conditions.

(i) in induces an isomorphism in ∶Gn
∼Ð→ Gn+1[zn].

(ii) _ere is a locally constant function h∶ S → N0 such that ordGn = qnh for all n.
(iii) Locally on S there exists an integer d ∈ Z≥0, such that (z − ζ)d = 0 on ωG , where

ωG = lim←ÐωGn .

_en G = limÐ→Gn is a z-divisible local Anderson module.

Proof From (i) it follows that Gn = Gm[zn] ⊂ G[zn] for all m ≥ n. Conversely let
x ∈ G[zn](T) for an S-scheme T . On each quasi-compact open subscheme U ⊂ T
we can ûnd an m such that x∣U ∈ Gm(U) by Remark 7.2. Now znx = 0 implies
x∣U ∈ Gm[zn](U) = Gn(U). In total, x ∈ Gn(T). _is shows that Gn = G[zn] and
G = limÐ→G[zn] is z-torsion.

_e quotient Gn/G1 is a ûnite locally free group scheme over S by Remark 3.1 (d).
Its order is q(n−1)h , by (ii) and the multiplicativity of the order. _e natural map
z∶Gn/G1 ↪ Gn[zn−1] ≅ Gn−1 is a monomorphism and hence a closed immersion
by Remark 3.1 (a). It must be an isomorphism because ord(Gn/G1) = ord(Gn−1) by
(ii). _is proves that z∶Gn → Gn−1 is an epimorphism of fppf-sheaves. Let x ∈ G(T)
for an S-scheme T . Choose a quasi-compact open covering {U i}i of T . For each i
we ûnd by Remark 7.2 an integer n i such that x∣U i ∈ Gn i (U i). By the above, there is a
y i ∈ Gn i+1(U i) ⊂ G(U i) with z ⋅ y i = x∣U i . _is shows that G is z-divisible. By (iii) it
is a z-divisible local Anderson module.

Note thatwe require Deûnition 7.1(iv) and Proposition 7.6(iii) due to the following
example that we do not want to consider a z-divisible local Anderson module.
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Example 7.7 Let S be the spectrum of a ring R in which ζ is zero, and let Gn be the
subgroup of Gn

a ,S = SpecR[x1 , . . . , xn] deûned by the ideal (xq
1 , . . . , x

q
n). Make Gn

into anFq[[z]]-module scheme by letting z act through z∗(x1) = 0 and z∗(xν) = xν−1,
for 1 < ν ≤ n. Deûne in ∶Gn → Gn+1 as the inclusion of the closed subgroup scheme
deûned by the ideal (xn+1).
As in Proposition 7.6 one proves that G ∶= limÐ→Gn satisûes axioms (i)–(iii) of Def-

inition 7.1, but not (iv). Here ωGn = ⊕n
i=1 R ⋅ dx i ≅ Rn , and so ωG is not a ûnite

R-module. _erefore we cannot drop the conditions (iv) in Deûnition 7.1 and (iii) in
Proposition 7.6.

In the remainder of this sectionwe introduce truncated z-divisible localAnderson
modules.

Lemma 7.8 Let n ∈ N and let G be an fppf-sheaf of Fq[z]-modules over S, such that
G = G[zn]. _en the following conditions are equivalent.

(i) G is a �at Fq[z]/(zn)-module.
(ii) ker(zn−i) = im(z i) for i = 0, . . . , n, that is, themorphism z i ∶G → G[zn−i] is an

epimorphism.

Proof (i)⇒ (ii) Because of (i), themultiplication with z i induces isomorphisms

Fq[z]/(z)
∼Ð→ z iFq[z]/z i+1Fq[z], G/zG ∼Ð→ z iG/z i+1G

for i ≤ n − 1. _is gives us ker(zn−1) ⊂ im(z), and the opposite inclusion ker(zn−1) ⊃
im(z) follows from G = G[zn]. Now ker(zn−i) ⊂ ker(zn−1) ⊂ im(z) implies that
ker(zn−i) = z ker(zn−i+1) = z ⋅ z i−1G = z iG, by induction on i.

(ii)⇒ (i) Taking i = 1 implies im(z) = ker(zn−1), and hence multiplication with
zn−1 induces an isomorphismG/zG ∼Ð→ zn−1G. Since this factors through the epimor-
phismsG/zG → zG/z2G → ⋅ ⋅ ⋅→ zn−1G,we see that each of thesemaps is an isomor-
phism. _us we have gr●(Fq[z]/(zn)) ⊗Fq gr0(G) ∼Ð→ gr●(G). Note that the ideal
(z) ⊂ Fq[z]/(zn) is nilpotent. SinceG/zG is �at over Fq[z]/(z) = Fq , [Bou61, Chap-
ter III, §5.2,_eorem 1] implies that G is a �at Fq[z]/(zn)-module.

Deûnition 7.9 Let d , n ∈ N>0. A truncated z-divisible local Anderson module with
order of nilpotence d and level n is an fppf-sheaf of Fq[z]-modules over S, such that

(i) if n ≥ 2d, it is an Fq[z]/(zn)-module scheme G that is ûnite locally free and
strict as an Fq-module scheme, such that (z− ζ)d is homotopic to 0 on ℓ

●
G/S and

G satisûes the equivalent conditions of Lemma 7.8;
(ii) if n < 2d, it is of the form ker(zn ∶G → G) for some truncated z-divisible local

Anderson module G with order of nilpotence d and level 2d.

IfG is a z-divisible localAndersonmodule over S ∈ NilpFq[[ζ]] with (z−ζ)d = 0 on
ωG ,wewill see in Proposition 9.5 thatG[zn] is a truncated z-divisible localAnderson
module with order of nilpotence d and level n. _is justiûes the name.
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8 The Local Equivalence

_e category of z-divisible local Anderson modules over S and the category of local
shtukas over S are both Fq[[z]]-linear. Our next aim is to extend Drinfeld’s construc-
tion and the equivalence from Section 5 to an equivalence between the category of
eòective local shtukas over S and the category of z-divisible local Anderson modules
over S.
For every eòective local shtuka M = (M , FM) over S we observe that

M = lim←Ð(M/znM , FM mod znM)

and we set Drq(M ) ∶= limÐ→
n
Drq(M/znM , FM mod znM). _e action of Fq[[z]] on

M makes Drq(M ) into an fppf-sheaf of Fq[[z]]-modules on S. Conversely, for every
z-divisible local Anderson module G = limÐ→G[zn] over S we set

M q(G) = (Mq(G), FMq(G)) ∶= lim←Ð
n

(Mq(G[zn]), FMq(G[zn])).

Multiplication with z on G gives Mq(G) the structure of an OS[[z]]-module.

Lemma 8.1 Let G = limÐ→G[zn] be a z-divisible local Anderson module of height r
over S; see Proposition 7.5. _en Mq(G) is a locally free sheaf of OS[[z]]-modules of
rank r.

Proof Applying M q to the exact sequence 0 → G[zn] inÐ→ G[zn+1] zn

Ð→ G[zn+1]
yields an exact sequence of OS[[z]]-modules

Mq(G[zn+1]) zn

Ð→ Mq(G[zn+1])
Mq(in)ÐÐÐÐ→ Mq(G[zn])Ð→ 0.

We deduce from [Bou61, §III.2.11, Proposition 14 and Corollaire 1] that Mq(G) is
a ûnitely generated OS[[z]]-module and the canonical map Mq(G) → Mq(G[zn])
identiûes Mq(G[zn]) with Mq(G)/znMq(G).

We claim that multiplication with z on Mq(G) is injective. So let lim←Ð( fn)n ∈
Mq(G), fn ∈ Mq(G[zn]) with z ⋅ fn = 0 in Mq(G[zn]) for all n. To prove the claim
consider the factorization

z ⋅ idMq(G[zn+1]) = Mq( j1,n) ○Mq(in ,1)∶Mq(G[zn+1])Ð→ Mq(G[zn+1])

obtained from Notation 7.4. _eorem 5.2(ii) implies that Mq( j1,n) is injective, and
hence fn = Mq(in ,1)( fn+1) is zero for all n as desired.

Locally on SpecR ⊂ S the R-module Mq(G[z]) is free. By _eorem 5.2 (iii)(c) its
rank is r. Let m1 , . . . ,mr be representatives in Mq(G) of an R-basis ofMq(G[z]) and
consider the presentation

(8.1) 0Ð→ ker α Ð→
r
⊕
i=1

R[[z]]m i
αÐ→ Mq(G)Ð→ 0.

Note that α is surjective by Nakayama’s Lemma [Eis95, Corollary 4.8] because z is
contained in the radical of R[[z]]. _e snake lemma applied to multiplication with z
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on the sequence (8.1) yields the exact sequence

0Ð→ coker(z∶ker α Ð→ ker α)Ð→
r
⊕
i=1

Rm i
∼Ð→ Mq(G[z])Ð→ 0

in which the right map is an isomorphism. _is implies that multiplication with zn is
surjective on ker α for all n, and hence ker α ⊂ ⋂n zn ⋅ (⊕r

i=1 R[[z]]m i) = 0 because
R[[z]] is z-adically separated. _erefore,Mq(G) is locally on S a freeOS[[z]]-module
of rank r.

Recall from_eorem 5.2 (iii)(d) that the co-Lie complex ℓ
●
G[zn]/S ofG[zn] is canon-

ically isomorphic to the complex of OS-modules

0Ð→ σ∗q Mq(G[zn])
FMq(G[zn])
ÐÐÐÐÐ→ Mq(G[zn])Ð→ 0.

In particular, nG[zn] ≅ ker FMq(G[zn]) and ωG[zn] ≅ coker FMq(G[zn]) for the OS-mod-
ules from Deûnition 3.4.

Lemma 8.2 Let S ∈ NilpFq[[ζ]] and let G = limÐ→G[zn] be a z-divisible local Anderson
module over S.

(i) Locally on S there is an N ∈ N such that the morphism in ∶G[zn] ↪ G[zn+1]
induces an isomorphism ωG[zn+1]

∼Ð→ ωG[zn] for all n ≥ N.
(ii) _e projective system (nG[zn])n satisûes theMittag–Leøer condition.
(iii) M q(G) is an eòective local shtuka over S and coker(FMq(G)) is canonically iso-

morphic to ωG . In particular, ωG is a ûnite locally free OS-module.

Proof Working locally on S wemay assume that ζN ′ = 0 inOS and that (z−ζ)dωG =
0 for some integers N ′ and d. Let N ≥ max{N ′ , d} be an integer which is a power of
p. _en zNωG = (zN − ζN)ωG = (z − ζ)NωG = 0.

(i) _e closed immersion in ∶G[zn]↪ G[zn+1] induces an epimorphism

ω in ∶ωG[zn+1] ↠ ωG[zn] ,

and therefore ωG surjects onto each ωG[zn]. _is implies that zNωG[zn] = 0 for all
n. Applying Lemma 3.6 to the exact sequence (7.1) for m = 1, and using i1,n ○ jn ,1 =
zn idG[zn+1], we obtain that ker(ωG[zn+1] ↠ ωG[zn]) = znωG[zn+1]. _erefore

ωG[zn+1]
∼Ð→ ωG[zn]

is an isomorphism for all n ≥ N .
To prove (ii) we ûx an n ≥ N . We abbreviate the OS-modules Mq(G[zk]) by Mk

and themap FMq(G[zk]) by Fk . From Proposition 7.5 and_eorem 5.2(ii) we have an
exact sequence

0→ Mk
Mq( jn ,k)ÐÐÐÐÐ→ Mn+k

Mq(in ,k)ÐÐÐÐ→ Mn → 0.
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It remains exact a�er applying σ∗q because Mn is locally free. For all k, we consider
the commutative diagrams,

0 // ker Fn+k //

ρk

��

σ∗q Mn+k
F′n+k //

σ∗q Mq(in ,k)
����

im Fn+k //

����

0

0 // ker Fn // σ∗q Mn
F′n
// im Fn // 0

0 // im Fn+k
F′′n+k //

����

Mn+k //

Mq(in ,k)
����

coker Fn+k //

≅
��

0

0 // im Fn
F′′n
// Mn // coker Fn // 0

where we have split Fn = F′′n ○ F′n with F′n surjective and F′′n injective, and where the
vertical map on the right in the second diagram is an isomorphism by the identiûca-
tion coker Fn = ωG[zn] from _eorem 5.2 (iii) (d) and by what we proved in (i) above.
We denote the vertical map on the le� in the ûrst diagram by ρk . _e snake lemma
applied to both diagrams yields the following exact sequence

σ∗q Mk
FkÐ→ Mk Ð→ coker ρk Ð→ 0.

_erefore coker ρk ≅ coker Fk = ωG[zk]. In the diagram

0 // im ρk+1 //
� _

��

ker Fn // coker ρk+1 //

≅
��

0

0 // im ρk // ker Fn // coker ρk // 0

the vertical map on the right is an isomorphism for k ≥ N by what we have proved
in (i) above. _erefore the image of ρk stabilizes for k ≥ N ; that is, nG[zn] = ker Fn
satisûes the Mittag–Leøer condition. Note that (im Fn)n also satisûes the Mittag–
Leøer condition. We will use this for proving (iii).

(iii) We still abbreviate Mq(G[zn]) by Mn and FMq(G[zn]) by Fn . _emaps

Fn ∶ σ∗q Mn → Mn

give us two short exact sequences of projective systems

0Ð→ ker Fn Ð→ σ∗q Mn Ð→ im Fn Ð→ 0
and

0Ð→ im Fn Ð→ Mn Ð→ coker Fn Ð→ 0.

Taking the projective limit, using the Mittag–Leøer conditions via [Har77, Propo-
sition II.9.1(b)], the isomorphism σ∗q (Mq(G)) ≅ lim←Ð σ∗q (Mn) (which is due to the
�atness ofMq(G) over OS), and combining both exact sequences we obtain an exact
sequence

0Ð→ lim←Ð
n

ker Fn Ð→ σ∗q (Mq(G))
FMq(G)
ÐÐÐ→ Mq(G)Ð→ lim←Ð

n
coker Fn Ð→ 0.
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_is shows thatωG ∶= lim←ÐωG[zn] = lim←Ð coker Fn = coker FMq(G),which isûnite locally
free over OS by Lemma 2.3. Furthermore, condition (iv) of Deûnition 7.1 implies that
(z − ζ)d annihilates coker FMq(G). _is proves that themap

FMq(G)∶ σ∗q (Mq(G))[ 1
z − ζ

] Ð→ Mq(G)[ 1
z − ζ

]

is surjective. As both modules are locally free overOS[[z]][ 1
z−ζ ] of the same rank, the

map is an isomorphism. _us M q(G) is an eòective local shtuka.

We can now prove the following theorem. It generalizes [And93, §3.4], which
treated the case of formal Fq[[z]]-modules and which we state in (i).

_eorem 8.3 Let S ∈ NilpFq[[ζ]].

(i) _e two contravariant functors Drq and M q are mutually quasi-inverse anti-
equivalences between the category of eòective local shtukas over S and the category of
z-divisible local Anderson modules over S.

(ii) Both functors are Fq[[z]]-linear, map short exact sequences to short exact se-
quences, and preserve (ind-)étale objects.

Suppose furthermore that M = (M , FM) is an eòective local shtuka over S and let
G = Drq(M ) be its associated z-divisible local Anderson module. _en the following
hold.

(i) G is a formal Fq[[z]]-module (Deûnition 1.1) if and only if FM is topologically
nilpotent.

(ii) _e height (see Proposition 7.5) and dimension of G are equal to the rank and
dimension ofM .

(iii) _e OS[[z]]-modules ωDrq(M ) and coker FM are canonically isomorphic.

Proof (i) We already saw in Lemma 8.2(iii) that M q sends z-divisible local Ander-
son modules to eòectve local shtukas. To prove the converse we use Proposition 7.6.
LetM = (M , FM) be an eòective local shtuka over S and abbreviateM /znM =∶ M n =
(Mn , FMn) and Gn ∶= Drq(M n). _en G ∶= Drq(M ) = limÐ→Gn . Consider the locally
constant function h ∶= rkOS[[z]] M on S. It satisûes rkOS (Mn) = nh. By _eorem 5.2
the Gn are ûnite locally free strict Fq-module schemes over S of order qnh , and the
exact sequence of ûnite Fq-shtukas

M n+1
zn

Ð→ M n+1 Ð→ M n Ð→ 0

yields an exact sequence of group schemes 0Ð→ Gn Ð→ Gn+1
zn

Ð→ Gn+1. _is implies
that Gn = ker(zn ∶Gn+1 → Gn+1) =∶ Gn+1[zn]. By Lemma 2.3 we know that locally on
S there exist positive integers e′ ,N such that (z − ζ)e′ = 0 on coker FM and zN = 0 on
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coker FM . Applying the snake lemma to the diagram

0 // σ∗q M
FM //

zn

��

M //

zn

��

coker FM //

zn

��

0

0 // σ∗q M
FM // M // coker FM // 0

shows that coker FM → coker FMn is an isomorphism for n ≥ N . _erefore by _eo-
rem 5.2 (iii)(d) ωG ∶= lim←ÐωGn = lim←Ð coker(FMn) = coker FM . _is establishes (iii) and
implies (z−ζ)e′ = 0 onωG . _ereforeG = limÐ→Gn is a z-divisible localAndersonmod-
ule by Proposition 7.6. By _eorem 5.2 the functorsDrq andM q are quasi-inverse to
each other. _is proves (i).

(ii) From our proof above, the height of Drq(M ) equals the rank ofM . _e equal-
ity of dimensions follows from (iii).

(ii) _e Fq[[z]]-linearity of the functors is clear by construction. From (iii) it fol-
lows that both functors Drq and M q preserve (ind-)étale objects. To prove the ex-
actness of Drq let 0 → M ′′ → M → M ′ → 0 be a short exact sequence of eòec-
tive local shtukas. Modulo zn , it yields a short exact sequence of ûnite Fq-shtukas
0 → M ′′

n → M n → M ′
n → 0, where M ′′

n ∶= M ′′/znM ′′, etc. _eorem 5.2 pro-
duces the exact sequence 0 → G′[zn] → G[zn] → G′′[zn] → 0, where G = Drq(M ),
G′ = Drq(M ′), G′′ = Drq(M ′′). _is implies that 0 → G′ → G → G′′ → 0 is exact,
because taking direct limits in the category of sheaves is an exact functor.
Conversely, let 0 → G′ → G → G′′ → 0 be a short exact sequence of z-divisible

local Anderson modules. Sincemultiplication with zn is an epimorphism on G′′, the
snake lemma yields the exact sequence of ûnite locally free strict Fq-module schemes
0 → G′[zn] → G[zn] → G′′[zn] → 0. _eorem 5.2 implies that the sequence
0→ M ′′

n → M n → M ′
n → 0 is exact, where M = M q(G), M ′ = M q(G′), M ′′ =

M q(G′′). Since {M ′′
n} satisûes theMittag–Leøer condition,we obtain the exactness

of 0→ M ′′ → M → M ′ → 0.
(i) Let G = Drq(M ). In Proposition 10.11 we will see that G is a formal

Fq[[z]]-module if and only ifG[z] = ker(z∶G → G) is radicial,which by_eorem 5.2
(iii)(b) is equivalent to FM1 = (FM mod z) being nilpotent locally on S. _e latter is
the case if and only if locally on S there is an integer n such that (FM)n ≡ 0 mod z,
that is, if and only if FM is topologically nilpotent.

Corollary 8.4 Let S ∈ NilpFq[[ζ]] and let f ∶G
′ → G be amonomorphismof z-divisible

local Anderson modules over S. _en the quotient sheaf G/G′ is a z-divisible local An-
derson module over S.

Proof Since the question is local on S,we can assume that S = SpecR is aõne. For all
n, the inducedmap G′[zn]→ G[zn] is amonomorphism, hence a closed immersion
by Remark 3.1 (a). By Lemma 4.6 it is strict Fq-linear in the sense of Faltings [Fal02,
Deûnition 1], and by [Fal02, Proposition 2] the cokernel G′′

n ∶= G[zn]/G′[zn] is a
strict Fq-module scheme that is ûnite locally free by Remark 3.1 (d). By _eorem 5.2
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this induces the exact sequence of ûnite Fq-shtukas

0→ M q(G′′
n )→ M q(G[zn])→ M q(G′[zn])→ 0.

In the diagram

0
��

0
��

0
��

0 // G′[zn]
i′n ,m //

��

G′[zn+m]
j′n ,m //

��

G′[zm] //

��

0

0 // G[zn] in ,m //

��

G[zn+m]
jn ,m //

��

G[zm] //

��

0

0 // G′′
n

i′′n ,m //

��

G′′
n+m

j′′n ,m //

��

G′′
m

//

��

0

0 0 0

the columns are exact by deûnition ofG′′
n and the two upper rows are exact by Propo-

sition 7.5. By the snake lemma, this deûnes the exact sequence in the bottom row. By
_eorem 5.2, this implies that M q(i′′n ,1)∶M q(G′′

n+1) → M q(G′′
n ) is surjective for all

n. In particular, the projective system M q(G′′
n ) satisûes theMittag–Leøer condition,

and themorphism M q( f )∶M ∶= M q(G)→ M ′ ∶= M q(G′) of eòective local shtukas
corresponding to f by_eorem 8.3 is surjective by [Har77, Proposition II.9.1(b)]. _e
kernel M ′′ ∶= kerM q( f ) = lim←ÐM q(G′′

n ) is a locally free R[[z]]-module with amor-
phism FM′′ ∶ σ∗q M′′ → M′′ inducing an isomorphism FM′′ ∶ σ∗q M′′[ 1

z−ζ ] → M′′[ 1
z−ζ ],

because this is true for M and M ′. _us M ′′ is an eòective local shtuka over S.
Applying the snake lemma to the (injective) multiplication with zn on the sequence
0 → M ′′ → M → M ′ → 0 shows that M ′′/znM ′′ = M q(G′′

n ). _erefore, _e-
orem 8.3 implies that G/G′ = Drq(M ′′) = limÐ→G′′

n is a z-divisible local Anderson
module over S.

9 Frobenius, Verschiebung and Deformations of Local Shtukas

Deûnition 9.1 Let G be an fppf-sheaf of groups over an Fq-scheme S. For n ∈ N0
we let G[Fn

q ] be the kernel of the relative qn-Frobenius Fqn ,G ∶G → σ∗qnG of G over S.

Let S ∈ NilpFq[[ζ]]. Later we will assume that ζ = 0 in OS . Let G be a z-divisible
localAndersonmodule over S and let M = (M , FM) = M q(G) be its associated local
shtuka from _eorem 8.3. _en the q-Frobenius morphism Fq ,G ∶= limÐ→ Fq ,G[zn]∶G →
σ∗q G corresponds by diagram (5.2) to themorphism

M q(Fq ,G) = FM ∶Mq(σ∗q G) = σ∗q Mq(G)Ð→ Mq(G), m z→ m ○ Fq ,G = FM(m).

In addition to the q-Frobenius, G carries a q-Verschiebung that is identically zero
by _eorem 5.1. _erefore, if ζ = 0 in OS , we will introduce a “zd-Verschiebung” in
Remark 9.3 and Corollary 9.4, which is more useful for z-divisible local Anderson
modules. We begin with the following lemma.
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Lemma 9.2 Let M be an eòective local shtuka with (z − ζ)d = 0 on coker FM . _en
there exists a uniquely determined homomorphism of OS[[z]]-modules VM ∶M → σ∗q M
with FM ○ VM = (z − ζ)d ⋅ idM and VM ○ FM = (z − ζ)d ⋅ idσ∗q M .

Proof Since FM is injective by Lemma 2.3 and (z − ζ)d = 0 on coker FM , the lemma
follows from diagram (9.1).

(9.1) 0 // σ∗q M
FM //

(z−ζ)d

��

M //

(z−ζ)d

��

VM

{{

coker FM //

(z−ζ)d=0
��

0

0 // σ∗q M
FM

// M // coker FM // 0

Remark 9.3 If ζ = 0 in OS , the Frobenius f ∶= FM ∶ σ∗q M [ 1
z ]

∼Ð→ M [ 1
z ] satis-

ûes FM ○ σ∗q f = FM ○ σ∗q FM = f ○ σ∗q FM , and hence is a quasi-isogeny between
the local shtukas σ∗q M = (σ∗q M , σ∗q FM) and M . Likewise, if M is eòective with
(z − ζ)d = 0 on coker FM , the homomorphism VM from Lemma 9.2 is an isogeny
Vzd ,M ∶= VM ∶M [ 1

z ]
∼Ð→ σ∗q M [ 1

z ], called the zd -Verschiebung of M . It satisûes FM ○
Vzd ,M = zd ⋅ idM and Vzd ,M ○ FM = zd ⋅ idσ∗q M . Indeed, ζ = 0 = ζq implies that the
following diagram is commutative

σ∗q M
σ∗q Vzd ,M //

FM

��

σ∗q (σ∗q M)

σ∗q FM=Fσ∗q M

��
M

Vzd ,M // σ∗q M

as

Fσ∗q M ○ σ∗q Vzd ,M = σ∗q FM ○ σ∗q Vzd ,M = σ∗q ((z − ζ)d ⋅ idM)
= (z − ζq)d ⋅ idσ∗q M = Vzd ,M ○ FM .

Corollary 9.4 Assume that ζ = 0 in OS . Let G be a z-divisible local Anderson mod-
ule over S with (z − ζ)d = 0 on ωG . _en there is a uniquely determined morphism
Vzd ,G ∶ σ∗q G → G with Fq ,G ○ Vzd ,G = zd ⋅ idσ∗q G and Vzd ,G ○ Fq ,G = zd ⋅ idG . It
is called the zd-Verschiebung of G. In particular, G[Fn

q ] is contained in G[znd] and
ker(V n

zd ,G ∶ σ
∗
qnG → G) ⊂ σ∗qnG[znd] for all n.

Proof Let M = M q(G) be the eòective local shtuka associated with G. Since

(z − ζ)d = 0

on ωG = coker FM , the zd-Verschiebung Vzd ,M of M from Remark 9.3 corresponds
by _eorem 8.3 to a morphism Vzd ,G ∶= Drq(Vzd ,M )∶ σ∗q G → G with Fq ,G ○ Vzd ,G =
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zd ⋅ idσ∗q G and Vzd ,G ○ Fq ,G = zd ⋅ idG , and hence V n
zd ,G ○ F

n
q ,G = znd ⋅ idG and Fn

q ,G ○
V n
zd ,G = znd ⋅ idσ∗qn G . _is proves the corollary.

Proposition 9.5 Let G be a z-divisible local Anderson module with (z − ζ)d = 0
on ωG , and let n ∈ N. _en G[zn] ∶= ker(zn ∶G → G) is a truncated z-divisible local
Anderson module with order of nilpotence d and level n; see Deûnition 7.9.

Proof _e equivalent conditions of Lemma 7.8 for the Fq[z]/(zn)-module scheme
G[zn] follow from Proposition 7.5 by considering, for all ν = 0, . . . , n, the commuta-
tive diagram

0 // G[zn−ν]
in−ν ,ν // G[zn]

jn−ν ,ν //

zn−ν
''

G[zν]
� _

iν ,n−ν
��

// 0

G[zn]

jν ,n−ν

OOOO

zν

77

G[zn]

in which iν ,n−ν is amonomorphism and jν ,n−ν an epimorphism, and hence

ker(zn−ν) = ker( jn−ν ,ν) = im(in−ν ,ν) = im(zν).

By _eorem 8.3(iii), (z − ζ)d = 0 on coker FMq(G). We reduce themap VMq(G) from
Lemma 9.2 modulo zn to obtain a homomorphism

VMq(G[zn])∶Mq(G[zn])→ σ∗q Mq(G[zn])

with

FMq(G[zn]) ○ VMq(G[zn]) = (z − ζ)d ⋅ idMq(G[zn]) ,

VMq(G[zn]) ○ FMq(G[zn]) = (z − ζ)d ⋅ idσ∗q Mq(G[zn]) .

Under the identiûcation of the co-Lie complex ℓ
●
G[zn]/S with

0Ð→ σ∗q Mq(G[zn])
FMq(G[zn])
ÐÐÐÐÐ→ Mq(G[zn])Ð→ 0

from _eorem 5.2 (iii)(d) themap VMq(G[zn]) corresponds to a homotopy h∶ t∗G[zn] →
NG[zn] with dh = (z − ζ)d on t∗G[zn] and hd = (z − ζ)d on NG[zn]. _is means that
(z − ζ)d is homotopic to zero on ℓ

●
G[zn]/S .

Proposition 9.6 Assume that ζ = 0 in OS . Let G = G[z l ] be a truncated z-divisible
local Anderson module over S with order of nilpotence d and level l .
(i) _ere exists a morphism Vzd ,G ∶ σ∗q G → G with Fq ,G ○ Vzd ,G = zd ⋅ idσ∗q G and

Vzd ,G ○ Fq ,G = zd ⋅ idG . It is not uniquely determined, unless G is étale.
(ii) G[F i

q] ⊂ G[z id] and kerV i
zd ,G ⊂ σ∗q iG[z id] for all i.

Now let n ∈ N>0 and l = nd. In particular, if n = 1, there is a truncated divisible local
Anderson module G̃ of level 2d with G = G̃[zd] and we assume that Vzd ,G = Vzd ,G̃ ∣σ∗q G .
_en the following hold.
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(iii) For all i, with 0 ≤ i ≤ n the morphism F i
q ,G ∶G[Fn

q ] → σ∗q iG[Fn−i
q ] is an epimor-

phism.
(iv) _e morphisms V n

zd ,G ∶ σ
∗
qnG → ker Fn

q ,G and F
n
q ,G ∶G → kerV n

zd ,G are epimor-
phisms.

(v) G[F i
q] and kerV i

zd ,G are ûnite locally free strict Fq-module schemes over S for all
0 ≤ i ≤ n.

(vi) For all 0 ≤ i ≤ n, we have ωG = ωG[z id] = ωG[Fq] and this is a ûnite locally free
OS-module.

Proof (i) Let h∶ t∗G → NG be a homotopy satisfying dh = (z − ζ)d on t∗G and also
hd = (z − ζ)d on NG . Note that h is determined only up to adding a homomorphism
t∗G ↠ coker d = ωG → nG = ker d ↪ NG , and in particular, is not unique unless G
is étale. Let V ∶Mq(G) → σ∗q Mq(G) be the homomorphism that corresponds to h
under the identiûcation of the co-Lie complex ℓ

●
G/S with

0→ σ∗q Mq(G)
FMq(G)
ÐÐÐ→ Mq(G)→ 0

from _eorem 5.2 (iii)(d). _en V ○ FMq(G) = zd ⋅ idσ∗q Mq(G) = σ∗q (zd ⋅ idMq(G)) =
σ∗q (FMq(G)○V) = Fσ∗q Mq(G)○σ∗q V implies thatV ∶M q(G)→ σ∗q M q(G) = M q(σ∗q G)
is amorphism of ûnite Fq-shtukas. It induces the desiredmorphism

Vzd ,G ∶= Drq(V)∶ σ∗q G → G

with Fq ,G ○ Vzd ,G = zd ⋅ idσ∗q G and Vzd ,G ○ Fq ,G = zd ⋅ idG .
(ii) follows from V i

zd ,G ○ F
i
q ,G = z id ⋅ idG and F i

q ,G ○ V i
zd ,G = z id ⋅ idσ∗

q i G which are
consequences of (i).

(iii) is trivial if n = 1 and i = 0 or 1. If n ≥ 2, there is by (i) a factorization F i
q ,G ○

V i
zd ,G = z id ∶ σ∗q iG → σ∗q iG. Since the morphism z id ∶ σ∗q iG → σ∗q iG[z(n−i)d] is an

epimorphism by Lemma 7.8, and since σ∗q iG[Fn−i
q ] ⊂ σ∗q iG[z(n−i)d] by (ii), we obtain

(iii).
(iv) is proved by induction on n. For n = 1, we use G = G̃[zd]. By Lemma 7.8

there is an exact sequence 0 → G̃[zd] → G̃
zdÐ→ G̃[zd] → 0. Since G[Fq] ⊂ G̃[Fq] ⊂

G̃[zd] by (ii), themap Vzd ,G̃ ○Fq ,G̃ = zd ∶ (zd)−1(G[Fq])→ G[Fq] is an epimorphism.
From Fq ,G̃ ∶ (zd)−1(G[Fq]) → σ∗q G̃[zd] = σ∗q G we see that Vzd ,G = Vzd ,G̃ ∣σ∗q G ∶ σ∗q G →
G[Fq] is an epimorphism. _e statement for Fq ,G is proved in the analogous way
using kerVzd ,G ⊂ kerVzd ,G̃ ⊂ σ∗q G̃[zd]. _us we have proved (iv) for the case n = 1.

To prove it in general by induction on n, consider the diagram

σ∗qnG[znd]
V n
zd ,G //

zd
����

G[Fn
q ]

Fq ,G
����

σ∗qnG[z(n−1)d]
σ∗q V

n−1
zd ,G

// // (σ∗q G[z(n−1)d])[Fn−1
q ] σ∗q G[Fn−1

q ]
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In the bottom row, σ∗q V n−1
zd ,G is an epimorphism by the induction hypothesis, and the

equality comes from (ii). _e verticalmapon the le� is an epimorphism byLemma 7.8,
and therefore Fq ,G ○ V n

zd ,G is an epimorphism. _us if we can show that ker(Fq ,G) =
G[Fq] is contained in the image of V n

zd ,G , it will follow that V n
zd ,G is an epimorphism.

But by the case n = 1 settled above

G[Fq] = Vzd ,G(σ∗q G[zd]) = Vzd ,G ○ z(n−1)d(σ∗q G[znd])
= V n

zd ,G ○ F
n−1
q ,G (σ∗q G[znd]) ⊂ V n

zd ,G(σ
∗
qnG[znd]).

_is proves that V n
zd ,G is an epimorphism. _e statement for Fn

q ,G is proved in the
same way.

(v) _emorphisms F i
q ,G ∶G → σ∗q iG and V i

zd ,G ∶ σ
∗
q iG → G between group schemes

of ûnite presentation over S are themselves of ûnite presentation by [EGA, IV1, Propo-
sition 1.6.2(v)]. _erefore G[F i

q] ∶= ker F i
q ,G and kerV i

zd ,G are of ûnite presentation
over S by [EGA, IV1, Proposition 1.6.2(iii)]. As closed subschemes of G, respectively
σ∗q iG, they are also ûnite over S. Since in (iv) we proved that

V i
zd ,G ∶ σ

∗
q iG[z id]↠ (G[z id])[F i

q] = G[F i
q]

and
F i
q ,G ∶G[z id]↠ kerV i

zd ,G[z id] = kerV i
zd ,G

are epimorphisms, they are faithfully �at by Remark 3.1 (b). _erefore G[F i
q] and

kerV i
zd ,G are �at over S by [EGA, IV3, Corollaire 11.3.11], and hence ûnite locally

free. Over any aõne open U ⊂ S the Fq-equivariant morphisms F i
q ,G and V i

zd ,G li�
by Lemma 4.6 to morphisms in DGr(Fq)U . _us they are Fq-strict morphisms in
the sense of Faltings [Fal02, Deûnition 1]. By [Fal02, Proposition 2], their kernels
G[F i

q] ×S U and ker(V i
zd ,G) ×S U are strict Fq-module schemes over U . So the Fq-

strictness of G[F i
q] and kerV i

zd ,G over all of S follows from Lemma 4.8.
(vi) For any group scheme G = SpecR[X1 , . . . , Xr]/I of ûnite type over SpecR,

we computeG[Fq] = SpecR[X1 , . . . , Xr]/(I, Xq
1 , . . . , X

q
r ). By the conormal sequence

[Har77, Proposition II.8.12] for the closed immersion G[Fq] ⊂ G, this implies that
ωG = ωG[Fq]. _e inclusion G[Fq] ⊂ G[zd] from (ii) therefore implies that G[Fq] =
(G[z id])[Fq], and hence ωG = ωG[z id] = ωG[Fq] for all i. Moreover, since G[Fq] is a
ûnite locally free strict Fq-module scheme over S by (v), we can compute ωG[Fq] as
coker FMq(G[Fq]), where (Mq(G[Fq]), FMq(G[Fq])) is the associated ûnite Fq-shtuka
from _eorem 5.2. In particular, FMq(G[Fq]) = M q(Fq ,G[Fq]) = 0 and this implies that
coker FMq(G[Fq]) = Mq(G[Fq]) is a ûnite locally free OS-module.

In the remainder of this section we will show that to li� a z-divisible local Ander-
son-module is equivalent to li�ing its Hodge ûltration. Let S ∈ NilpFq[[ζ]] and let G be
a z-divisible local Anderson module over S satisfying (z − ζ)d ⋅ ωG = 0. Let (M , FM)
be its eòective local shtuka. _en (z − ζ)d ⋅ coker FM = 0 and we consider the map
VM from Lemma 9.2. _e injective morphism FM induces by diagram (9.1) an exact
sequence of OS[[z]]-modules

0Ð→ cokerVM
FMÐ→ M/(z − ζ)dM Ð→ coker FM Ð→ 0.
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In particular cokerVM is a locally free OS-module of ûnite rank. Conversely, VM
induces the exact sequence of OS[[z]]-modules

(9.2) 0Ð→ coker FM
VMÐ→ σ∗q M/(z − ζ)dσ∗q M Ð→ cokerVM Ð→ 0.

Deûnition 9.7 (cf. [HJ19, §5.7]) We call

H(G) ∶= H1
dR(G ,OS[z]/(z − ζ)d) ∶= σ∗q M/(z − ζ)dσ∗q M

the de Rham cohomology of G with coeõcients in OS[z]/(z − ζ)d . It is a locally free
OS[z]/(z − ζ)d-module of rank equal to rkM = heightG. _e OS[z]-submodule
VM(coker FM) ⊂ H(G) is called theHodge ûltration of the z-divisible localAnderson
module G.

Now let i∶ S′ ↪ S be a closed subscheme deûned by an ideal I with Iq = 0. _en
themorphisms Frobq ,S and Frobq ,S′ factor through i

Frobq ,S = i ○ j∶ S → S′ → S and Frobq ,S′ = j ○ i∶ S′ → S → S′ ,

where j∶ S → S′ is the identity on the underlying topological space ∣S′∣ = ∣S∣ and on
the structure sheaf this factorization is given by

OS
i∗Ð→ OS′

j∗Ð→ OS

b ↦ b mod I ↦ bq .

LetG′ be a divisible localAndersonmodule over S′ with (z−ζ)d ⋅ωG′ = 0, and denote
by (M′ , FM′) its local shtuka. We set H(G′)S ∶= j∗M′/(z− ζ)d j∗M′. _is is a locally
freemodule over OS[z]/(z − ζ)d and satisûes i∗H(G′)S = H(G′).

_eorem 9.8 _e functor G ↦ (i∗G ,VM(coker FM) ⊂ H(G)) deûnes an equiva-
lence between
(i) the category of z-divisible localAndersonmodulesG over S with (z− ζ)d ⋅ωG = 0,

and
(ii) the category of pairs (G′ , Fil ⊂ H(G′)S), where G′ is a z-divisible local Anderson

module over S′ and Fil ⊂ H(G′)S is anOS[[z]]-submodulewhose quotient is a �at
OS-module that specializes to the O′

S[[z]]-submodule VM′(coker FM′) ⊂ H(G′)
under i.

Proof We describe the quasi-inverse functor. Let (G′ , Fil ⊂ H(G′)S) be given and
let (M′ , FM′) be the local shtuka of G′. We deûne VM ∶M ↪ j∗M′ as the kernel of the
morphism j∗M′↠ H(G′)S/Fil. Since Fil ⊂ H(G′)S specializes to VM(coker FM′) ⊂
H(G′) we obtain i∗(H(G′)S/Fil) = H(G′)/VM′(coker FM′) = cokerVM′ . _is im-
plies i∗M ≅ M′ and σ∗q M = j∗ i∗M ≅ j∗M′. Moreover cokerVM is annihilated by
(z − ζ)d . _us there is an injective morphism of OS[[z]]-modules FM ∶ σ∗q M → M
with FMVM = (z − ζ)d idM and VMFM = (z − ζ)d idσ∗q M . From sequence (9.2) we
see that the cokernel of FM is a locally free OS-module. Clearly the z-divisible local
Anderson module G over S associated with the local shtuka (M , FM) specializes to
G′ and has Fil ⊂ H(G′)S = H(G) as its Hodge ûltration.
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Remark 9.9 We only treated the case where S′ ⊂ S is deûned by an ideal I with
Iq = 0. _e general case for d = 1 is treated by Genestier and Laòorgue [GL11, Propo-
sition 6.3] using ζ-divided powers in the style of Grothendieck and Berthelot.

10 Divisible Local Anderson Modules and Formal Lie Groups

In this section we clarify the relation between z-divisible local Anderson modules
and formal Fq[[z]]-modules; see Deûnition 1.1. We follow the approach of Mess-
ing [Mes72] who treated the analogous situation of p-divisible groups and formal Lie
groups.

Deûnition 10.1 Let G be an fppf-sheaf of abelian groups over S ∈ NilpFq[[ζ]]. We
say that G is F-torsion if G = limÐ→G[Fn

q ], and that G is F-divisible if Fq ,G ∶G → σ∗q G is
an epimorphism.

Recall that Messing [Mes72, Chapter II, _eorem 2.1.7] proved that a sheaf of
groups G on S is a formal Lie group [Mes72, Chapter II, Deûnitions 1.1.4, 1.1.5], if
and only if G is F-torsion, F-divisible, and the G[Fn

q ] are ûnite locally free S-group
schemes.

_eorem 10.2 When ζ = 0 in OS and G is a z-divisible local Anderson module over
S, then limÐ→

n
G[Fn

q ] is a formal Fq[[z]]-module. It is equal to G ∶= limÐ→
k

m Inf k(G),where

for any S-scheme T ,Messing [Mes72, Chapter II, (1.1)] deûned

(10.1) (Inf k G)(T) ∶= {x ∈ G(T): there is an fppf-covering {SpecR i → T}i and
for every i an ideal I i ⊂ R i with Ik+1

i = (0)such that the
pull-back x ∈ G(SpecR i/I i) is zero}.

Proof By [Mes72, Chapter II, _eorem 2.1.7] it suõces to show that limÐ→G[Fn
q ] is

F-torsion, F-divisible, and that the G[Fn
q ] are ûnite locally free. By construction

limÐ→G[Fn
q ] is F-torsion. By Deûnition 7.1(iv) there is locally on S an integer d with

(z − ζ)d ⋅ωG = (0), and then G[Fn
q ] ⊂ G[znd] by Corollary 9.4 and G[znd] is a trun-

cated z-divisible local Anderson module with order of nilpotence d and level nd by
Proposition 9.5. _erefore Proposition 9.6 shows that G[Fn

q ] is ûnite locally free, and
that Fq ,G ∶G[Fn

q ]→ σ∗q G[Fn−1
q ] is an epimorphism. Consequently,

Fq ,G ∶ limÐ→G[Fn
q ]→ σ∗q (limÐ→G[Fn

q ]) = limÐ→ σ∗q G[Fn−1
q ]

is an epimorphism and so limÐ→G[Fn
q ] is F-divisible, and hence a formal Lie group. _e

action of Fq[[z]] makes it into a formal Fq[[z]]-module.
To prove the last statement of the theorem, observe that for any S-scheme T ,

the homomorphism Fqn ,G ∶G(T) → (σ∗qnG)(T) is simply the map sending x to
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x ○ Frobqn ,T as can be seen from the following diagram:

T
Frobqn ,T //

x
��

Fqn ,G(x)

''

T

x
��

G
Fqn ,G //

Frobqn ,G

55

��

σ∗qnG //

��

G

��
S S

Frobqn ,S

// S

_erefore, the monomorphism G[Fn
q ] ↪ G deûnes an inclusion G[Fn

q ] ⊂ Inf q
n−1 G,

the ideals I i in (10.1) being the augmentation ideal inOG[Fn
q ] deûning the zero section.

We claim that this inclusion is an equality. So let x ∈ (Inf q
n−1 G)(T) and let R i and I i

be as in (10.1). _en Iq
n

i = (0) implies that Frobqn ,R i factors through R i → R i/I i
j→ R i .

So Fqn ,G(x)∣Spec R i = x ○ Frobqn ,R i = j∗(x∣Spec R i/I i ) = 0, that is, x ∈ G[Fn
q ]. _us we

have G[Fn
q ] = Inf q

n−1 G and limÐ→G[Fn
q ] = limÐ→ Inf k(G) ⊂ G which completes the

proof.

Our next aim is to extend the theorem to all S ∈ NilpFq[[ζ]]. For that purpose we
start with the following lemma.

Lemma 10.3 Let S be a scheme with ζN+1 = 0 in OS , and let G = G[znd] be
a truncated z-divisible local Anderson module over S with order of nilpotence d and
level nd with n ≥ N + 1. _en for any aõne open subset U of S and any quasi-
coherent sheaf F of OU -modules, the natural homomorphism for the co-Lie complexes
Ext1OU

(ℓ ●G[z(n−N−1)d]/U ,F)→ Ext1OU
(ℓ ●G[znd]/U ,F) is zero.

Proof We proceed by induction on N and begin with N = 0. If n = 1, then

G[z(n−N−1)d] = (0)

and there is nothing to prove. If n ≥ 2, we use [Mes72, Chapter II, Corollary 3.3.9]

for the sequence 0 → G[z(n−1)d] → G[znd] z(n−1)d
ÐÐÐ→ G[zd] → 0. So we must show

that ωG[znd] ↠ ωG[z(n−1)d] is an isomorphism, that ωG[znd] and ωG[zd] are locally free
OS-modules, and that rkωs∗G[z(n−1)d] ≤ rkωs∗G[zd] for all points s ∈ S. All three
statements follow from Proposition 9.6(vi). _is concludes the proof when N = 0.
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For general N we take the exact sequence 0→ ζF → F → F/ζF → 0. and consider
the following commutative diagram with exact rows.

Ext1OU
(ℓ ●G[z(n−N−1)d ]/U , ζF) //

��

Ext1OU
(ℓ ●G[z(n−N−1)d ]/U ,F) //

��

Ext1OU
(ℓ ●G[z(n−N−1)d ]/U ,F/ζF)

��
Ext1OU

(ℓ ●G[z(n−N)d ]/U , ζF) //

��

Ext1OU
(ℓ ●G[z(n−N)d ]/U ,F) //

��

Ext1OU
(ℓ ●G[z(n−N)d ]/U ,F/ζF)

Ext1OU
(ℓ ●G[znd ]/U , ζF) // Ext1OU

(ℓ ●G[znd ]/U ,F)

Since ζ ⋅ (F/ζF) = (0), the right vertical arrow can be computed by base change to
the zero locusV(ζ) ⊂ S of ζ . So it is the zero map by what we have proved above, and
hence the image of Ext1OU

(ℓ ●G[z(n−N−1)d]/U ,F) in Ext1OU
(ℓ ●G[z(n−N)d]/U ,F) is contained

in the image of Ext1OU
(ℓ ●G[z(n−N)d]/U , ζF). Since ζN ⋅(ζF) = (0), the lower le� vertical

arrow can similarly be computed by base change to the zero locus V(ζN) ⊂ S, and
hence it is the zero map by our induction hypothesis. _is proves the lemma.

_eorem 10.4 If S ∈ NilpFq[[ζ]] and G is a z-divisible local Anderson module over S,
then G is formally smooth.

Proof Let X′ be an aõne scheme over S and let X be a closed subscheme deûned
by an ideal of square zero. Let f ∶X → G be an S-morphism. We must show that f
can be li�ed to an S-morphism f ′∶X′ → G. As X is quasi-compac,t we have G(X) =
limÐ→
n

G[zn](X) = limÐ→
n

G[znd](X), and hence f ∶X → G[znd] for some n by Remark 7.2.

We cover X by a ûnite number of aõne opens U i , i = 1, . . . ,m such that the image of
U i in S is contained in an aõne open Vi . Since ζ is nilpotent on each Vi , there is an
integer N such that ζN+1 is zero on⋃Vi . Replacing S by S′ = ⋃Vi andG byGS′ we are
led to the case where ζN+1 = 0 in OS . But now Lemma 10.3 and [Mes72, Chapter II,
Proposition 3.3.1] show that f can be li�ed to an f ′∶X′ → G[z(n+N+1)d], and the
theorem is proved.

Lemma 10.5 Let G be a z-divisible local Anderson module over S with (z − ζ)d = 0
on ωG for some d ∈ N. Assume we are given an S-scheme X′ and a subscheme X
deûned by a sheaf of ideals I such that Ik+1 = (0) and ζN ⋅ I/I2 = 0 for some integer
N. Let N ′ be the smallest integer that is a power of p and greater or equal to N and d.
If an S-morphism f ′∶X′ → G satisûes f = f ′∣X ∶X → G[zn], then f ′ factors through
f ′∶X′ → G[zn+kN ′] ⊂ G.

Proof _e problem is local on X′ and hencewe can assume that X′ is aõne and thus
quasi-compact. But then f ′ ∈ G(X′) = limÐ→G[zm](X′) and hencewe can assume that
f ′∶X′ → G[zn′] for some n′ by Remark 7.2. We now use induction on k and the
sequence of closed subschemes V(I l) ⊂ X′ for l = 1, . . . , k + 1. _us we can assume
that I2 = 0 and k = 1.
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Since f ∈ G[zn](X), we have zn f = 0, and so zn f ′ ∈ G[zn′](X′) has the property
that its restriction to G[zn′](X) is zero. Since I2 = 0, the group of sections of G[zn′]
over X′ whose restriction to X is zero, is, by [SGA 3, III,_éorème 0.1.8(a)], isomor-
phic to the group HomOX(ωG[zn′ ] ⊗OS OX , I) under an isomorphism that sends the
zero morphism X′ → G[zn′] to the zero element, and the morphism zn f ′ to an ele-
ment that we denote by h ∈ HomOX(ωG ⊗OS OX , I). Since ζN kills I and N ′ ≥ N , we
obtain ζN ′ ⋅ h = 0. On ωG the assumption (z − ζ)d = 0 implies zN ′ = ζN ′

, and so the
section zN ′(zn f ′) is sent to zN ′ ⋅ h = ζN ′ ⋅ h = 0. _is implies zn+N ′

f ′ = 0, that is,
f ′ ∈ G[zn+N ′](X′).

Corollary 10.6 Let ζN = 0 in OS and let G and d be as in Lemma 10.5. Let N ′ be
the smallest integer that is a power of p and greater or equal to N and d. _en the k-th
inûnitesimal neighborhood of G[zn] in G is the same as that of G[zn] in G[zn+kN ′]. In
particular, Inf k(G) = Inf k(G[zkN ′]) and this is therefore representable.

Proof By deûnition [Mes72, Chapter II, Deûnition (1.01)], an S-morphism f ∶T ′ →
G belongs to the k-th inûnitesimal neighborhood of G[zn] in G, if and only if there
is an fppf-covering {SpecR i → T ′}i and ideals I i ⊂ R i with Ik+1

i = (0) such that
f ∣Spec R i/I i ∈ G[zn](SpecR i/I i). But then f ∈ G[zn+kN ′](T ′) by Lemma 10.5. _e
last statement is the special case with n = 0.

_eorem 10.7 LetG be a z-divisible localAndersonmodule over S ∈ NilpFq[[ζ]]. _en
G = limÐ→ Inf k(G) is a formal Fq[[z]]-module.

Proof As G clearly is an Fq[[z]]-submodule of G, we must show that it is a for-
mal Lie variety; see [Mes72, Chapter II, Deûnition 1.1.4]. By construction it is ind-
inûnitesimal. Since the question is local on S, wemay assume that there are integers
N and d as in Corollary 10.6. _en the sheaf Inf k(G) is representable for all k. By
_eorem 10.4 we know that G is formally smooth and by deûnition (10.1) of Inf k(G)
this implies that G is formally smooth. Let N ′ be the smallest integer that is a power
of p and greater or equal to N and d. _en G[zkN ′] satisûes the li�ing condition 2)
of [Mes72, Chapter II, Proposition 3.1.1] by _eorem 10.4 and Lemma 10.5. _ere-
fore, by [Mes72, loc. cit] G[zkN ′] satisûes condition 2) and 3) of [Mes72, Chapter II,
Deûnition 1.1.4], and hence is a formal Fq[[z]]-module.

Remark 10.8 We already know from_eorem 8.3 and Lemma 2.3 that ωG is locally
free of ûnite rank. _is now follows again from the theorem because ωG = ω G .

Nextwe pursue the questionwhen a z-divisible localAndersonmodule is a formal
Fq[[z]]-module and vice versa.

Lemma 10.9 Let B be a ring inwhich ζ is nilpotent, and let I be a nilpotent ideal of B.
Deûne a sequence of ideals I1 ∶= ζI + I2 , . . . , In+1 ∶= ζIn + (In)2. _en for n suõciently
large In = (0).
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Proof Let J = ζB + I. _en it is easy to check that In ⊂ Jn+1. Since ζ and I are both
nilpotent, so is the ideal J. _is implies In = 0 for n suõciently large.

Lemma 10.10 If S ∈ NilpFq[[ζ]] and G is a formal Fq[[z]]-module over S such that
locally on S there is an integer d with (z − ζ)d = 0 on ωG , then G is z-torsion.

Proof We must show G = limÐ→G[zn] and since this is a statement about sheaves, it
suõces to check it locally on S. _us we can assume S = SpecR with ζ ∈ R nilpotent
and G is given by a power series ring R[[X1 , . . . , Xd]]; see [Mes72, p. 26]. If T is
any aõne S-scheme, say T = SpecB, then an element of G(T) will be an N-tuple
(b1 , . . . , bd) with each b i nilpotent. Let I be the ideal generated by {b1 , . . . , bd}. Let
N ′ be a power of p with N ′ ≥ d. _en multiplication with zN ′

on G is given by power
series (zN ′)∗(X i) ∈ R[[X1 , . . . , Xd]] with linear term ζN ′

X i and without constant
term. _erefore each component of zN ′ ⋅(b1 , . . . , bd) belongs to ζN ′

I+I2 ⊂ ζI+I2 =∶ I1.
_en each component of znN ′ ⋅ (b1 , . . . , bd) belongs to the ideal In from Lemma 10.9,
and hence the lemma shows that (b1 , . . . , bd) is z-torsion.

_e next result is analogous toMessing’s characterization [Mes72, Chapter II, Pro-
position 4.4] for a p-divisible group to be a formal Lie group, and its proof also follows
similarly using _eorem 10.7.

Proposition 10.11 Let S ∈ NilpFq[[ζ]] and letG be a z-divisible localAndersonmodule
over S. _en the following conditions are equivalent.

(i) G = G.
(ii) G is a formal Fq[[z]]-module.
(iii) G[zn] is radicial for all n.
(iv) G[z] is radicial.

Corollary 10.12 For S ∈ NilpFq[[ζ]], there is an equivalence of categories between
that of z-divisible local Anderson modules over S with G[z] radicial and the category
of z-divisible formal Fq[[z]]-modules G with G[z] representable by a ûnite locally free
group scheme such that locally on S there is an integer d for which (z − ζ)d = 0 on ωG .

Proof By Lemma 10.10 and Proposition 10.11, both categories are identiûed with the
same full sub-category of fppf-sheaves of Fq[z]-modules on S, once we observe that
G[zn] ∶= ker(zn ∶G → G) is a strict Fq-module as the kernel of an Fq-linear homo-
morphism of formal Lie groups that are Fq-modules.

Corollary 10.13 Let S ∈ NilpFq[[ζ]] be the spectrum of an Artinian local ring. _en a
z-divisible formal Fq[[z]]-module, such that locally on S there is an integer d for which
(z − ζ)d = 0 on ωG , is a z-divisible local Anderson module with G[z] radicial and
conversely.
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Proof _is follows fromCorollary 10.12, because theG[zn] are automatically repre-
sentable by ûnite locally free group schemes by [Mes72, Chapter II, Proposition 4.3].

_e next result is analogous to Messing’s characterization for a p-divisible group
to be ind-étale, [Mes72, Chapter II, Proposition 4.7]. Its proof follows verbatim.

Proposition 10.14 Let S ∈ NilpFq[[ζ]] and letG be a z-divisible localAndersonmodule
over S. In order that G = 0, it is necessary and suõcient that G is (ind-)étale.

We have the following lemma for z-divisible local Anderson modules over S sim-
ilarly to and with the same proof as [Mes72, Chapter II, Proposition 4.11].

Lemma 10.15 Let S ∈ NilpFq[[ζ]] and let 0 → G1 → G2 → G3 → 0 be an exact
sequence of z-divisible local Anderson modules over S. _en 0 → G1 → G2 → G3 → 0
is also exact.

Finally, there is a criterion when G is itself a z-divisible local Anderson module in
analogy to Messing’s criterion [Mes72, Chapter II, Proposition 4.9].

Proposition 10.16 Let S ∈ NilpFq[[ζ]] and letG be a z-divisible localAndersonmodule
over S. _en the following conditions are equivalent.
(i) G is a z-divisible local Anderson module.
(ii) G is an extension of an (ind-)étale z-divisible local Anderson module G′′ by an

ind-inûnitesimal z-divisible local Anderson module G′.
(iii) G is an extension of an (ind-)étale z-divisible local Anderson module G′′ by a

z-divisible formal Fq[[z]]-module G′.
(iv) For all n,G[zn] is an extension of a ûnite étale group by a ûnite locally-free radicial

group.
(v) G[z] is an extension of a ûnite étale group by a ûnite locally-free radicial group.
(vi) _emap S → Z, s ↦ ord(G[z]s)ét =∶ separable rank (G[z]s) is a locally constant

function on S.

Proof _e proof proceeds in the same way as [Mes72, Chapter II, Proposition 4.9]
using Corollary 8.4 and Lemma 10.15 in (i)⇔ (ii), Corollary 10.12 and ωG = ωG′ in
(ii)⇔ (iii), and Lemma 4.10 in (iv)⇒ (iii).
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