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On a conjecture of Rudin on squares in arithmetic progressions

Enrique González-Jiménez and Xavier Xarles

Abstract

Let Q(N ; q, a) be the number of squares in the arithmetic progression qn + a, for n = 0,
1, . . . , N − 1, and let Q(N) be the maximum of Q(N ; q, a) over all non-trivial arithmetic

progressions qn + a. Rudin’s conjecture claims that Q(N) = O(
√
N), and in its stronger form

that Q(N) = Q(N ; 24, 1) ifN > 6. We prove the conjecture above for 6 6 N 6 52. We even prove
that the arithmetic progression 24n+ 1 is the only one, up to equivalence, that contains Q(N)
squares for the values of N such that Q(N) increases, for 7 6 N 6 52 (N = 8, 13, 16, 23, 27, 36, 41
and 52).

Supplementary materials are available with this article.

1. Introduction

A well-known result by Fermat states that no four squares in arithmetic progression over Z
exist. This result may be reformulated in the following form: in four consecutive terms of a
non-constant arithmetic progression, there are at most three squares. Hence, it is natural to
ask how many squares there may be in N consecutive terms of a non-constant arithmetic
progression.

Following Bombieri, Granville and Pintz [2], given integers q and a, q 6= 0, we denote by
Q(N ; q, a) the number of squares in the arithmetic progression qn+ a, for n = 0, 1, . . . , N − 1
(there is a slight difference between our notation and the one in [2], since our arithmetic
progressions begin with n = 0 instead of n = 1). Denote by Q(N) the maximum of Q(N ; q, a)
over all non-trivial arithmetic progressions. Notice that Fermat’s result is equivalent to
Q(4) = 3.

As a consequence of Fermat’s result, Szemerédi [27] proved, using one of his well-known
results on arithmetic progressions, an old conjecture by Erdős [14]: Q(N) = o(N). This bound
was improved by Bombieri, Granville and Pintz [2] to Q(N) = O(N2/3+o(1)), and by Bombieri
and Zannier [3] to Q(N) = O(N3/5+o(1)). The so–called Rudin’s conjecture ([23, end of § 4.6])
claims that Q(N) = O(

√
N), and in its stronger form (which we call Strong Rudin’s conjecture)

that:

Q(N) = Q(N ; 24, 1) =
√

8
3N +O(1) if N > 6.

Notice that Q(5; 24, 1) = 3, but Q(5; 120, 49) = 4 (since 72 = 49, 132 = 169, 172 = 289, 409,
232 = 529). (It has been proved in [18] that the first quadratic number field where there are
five squares in arithmetic progression is Q(

√
409); and that the unique non-constant arithmetic

progressions of five squares over Q(
√

409), up to equivalence, is 72, 132, 172, 409, 232.) Therefore
Q(5) = 4, because Q(5) cannot be 5 by Fermat’s result.

We will prove that the arithmetic progression 24n + 1 is the only one, up to equivalence,
that contains Q(N) squares for the values of N such that Q(N) increases in the interval
7 6 N 6 52 (N = 8, 13, 16, 23, 27, 36, 41 and 52). This result suggests a Super-Strong Rudin’s
conjecture: let GPk be the kth generalized pentagonal number and assume a, q ∈ Z, with
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a conjecture on squares in arithmetic progressions 59

gcd(q, a) squarefree and q > 0; if N = GPk+1 > 8 for some integer k, then Q(N) = Q(N ; q, a)
if and only if (q, a) = (24, 1).

The following theorem summarizes the main results of this article.

Theorem 1. Let N be a positive integer; then:
(S) Q(N) = Q(N ; 24, 1) if 6 6 N 6 52;

(SS) if 8 6 N = GPk + 1 6 52 for some integer k, then Q(N) = Q(N ; q, a) with gcd(q, a)
squarefree and q > 0 if and only if (q, a) = (24, 1).

1.1. Notation

Given any finite subset I = {n0, . . . , nk} ⊂ Z, we will always list its elements in increasing
order. We denote by ZI the set

{(q, a) ∈ Z2 | gcd(q, a) squarefree, q 6= 0 and qi+ a is a square ∀i ∈ I},

and by zI = #ZI its cardinality.
Given q and a integers, q 6= 0, we denote by S(q, a) the set {i ∈ N | qi+ a is a square} and,

given N > 2, we denote by SN (q, a) the set S(q, a)
⋂
{0, 1, . . . , N − 1}. We have:

(i) S(24, 1) = {GPk}k∈Z the progression of generalized pentagonal numbers (GPk
= k(3k − 1)/2 is the sequence A001318 in [24]);

(ii) S(8, 1) = {Tk}k∈N the progression of triangular numbers (Tk = k(k+1)/2 is the sequence
A000217 in [24]).

We define the following two operations on finite subsets I ⊂ Z: for any i ∈ Z, the translated
subset I+i = {j ∈ N | j−i ∈ I}; and, for any r ∈ Q∗ such that ri ∈ Z for all i ∈ I, the expanded
subset rI = {ri | i ∈ I}. Denote also by Is, the symmetric of I, as Is = −I + (n0 + nk). We
say I is symmetric if Is = I.

We say that two finite subsets I and J of Z are equivalent, denoted I ∼ J , if there exists
I = I0, I1, . . . , Ik = J finite subsets of Z such that either there exists j ∈ Z such that Ii+1 =
Ii + j or there exists r ∈ Q∗ such that Ii+1 = rIi, for all i = 1, . . . , k − 1. This is clearly an
equivalence relation.

Given a finite subset I of N, we will denote by nI the positive integer
∑
i∈I 2i. We have a

bijection between the set of finite subsets of N and N (the empty set corresponding to 0).
We say that a finite subset I of N is primitive if 0 ∈ I, the elements of I are coprime and

nI 6 nIs . Notice that any finite subset of Z is equivalent to a unique primitive one.

2. Preliminary results and elementary cases

Let I = {n0, n1, . . . , nk} ⊂ Z be a finite subset such that k > 1 and let K be a field. We denote
by CI the curve in Pk(K) defined by the system of equations

CI : {(ni+2 − ni+1)X2
i−1 − (ni+2 − ni)X2

i + (ni+1 − ni)X2
i+1 = 0}i=1,...,k−1.

If the characteristic of the field K is not 2, the curve CI contains 2k trivial points TI
corresponding to the values X2

i = 1 for all i = 0, . . . , k.
The following proposition collects some known and useful facts about the curves CI that

will be used in the following. For a proof see [2].

Proposition 2. Let I = {n0, n1, . . . , nk} ⊂ Z be a finite subset such that k > 1 and let CI
be the associated curve. Then:

(1) if K is a field with characteristic 0, then the curve CI is a non-singular projective curve
of genus gk = (k − 3)2k−2 + 1;
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60 e. gonzález-jiménez and x. xarles

(2) if k > 2, then for any i ∈ I, the natural map CI → CI\{i} is of degree 2 and it is ramified

on the 2k−1 points with Xi = 0;
(3) if J is another finite set with I ∼ J , then CI ∼= CJ , with the isomorphism being the

identity or the natural involution in Pk given by

[x0 : . . . : xk] 7→ [xk : . . . : x0];

(4) consider the map ι : CI → Pk defined by ι([x0 : . . . : xk]) = [x20 : . . . : x2k]; there is a
natural bijection between ι(CI(Q) \ TI) and ZI .

Thus, in order to compute the set ZI we are reduced to computing the set of rational points
of the curve CI .

Observe that, if I ⊂ N only has three elements, the corresponding curve CI is a genus 0
curve. Since it has some rational point, CI(Q) = P1(Q) and hence zI =∞.

Now we are going to compute Q(N) for the first values of N by considering the subsets
I ⊂ N of cardinality 4. In this case the curves CI have genus 1, and they are isomorphic to an
elliptic curve, since they always have some rational points (for example, the points in TI).

Proposition 3. Given any subset I of {0, 1, . . . , 6} with four elements, we have that zI =∞
unless I is equivalent to one of the following five subsets, in which case zI = 0:

{0, 1, 2, 3}, {0, 1, 3, 4}, {0, 1, 4, 5}, {0, 2, 3, 5} and {0, 1, 5, 6}.

Proof. To prove that zI = 0 for the given finite sets I in the proposition, one only needs to
show that CI(Q) = TI . Or, equivalently, that #CI(Q) = 8. Using standard transformations
(see Section 3), one may put the corresponding elliptic curves in Weierstrass form, and then
compute the Antwerp–Cremona reference [1, 13]. We obtain the elliptic curves 24a1, 48a3,
15a3, 120a2 and 240a3 respectively. All of them have rank 0 and torsion subgroup isomorphic
to Z/2Z ⊕ Z/4Z. Hence #CI(Q) = 8 in these cases. For all the other cases, one easily shows
that the rank of the corresponding elliptic curve CI is 1. Therefore, they have an infinite
number of points. 2

Observe that all the subsets in the proposition with zI = 0 are symmetric subsets. We will
see that this is true for any subset with four elements.

Corollary 4. We have Q(6) = Q(7) = 4 and Q(8) = 5.

Proof. First of all, we clearly have that 4 = Q(5) 6 Q(6) 6 5. Suppose we have a primitive
subset I of 5 elements inside {0, 1, 2, 3, 4, 5} such that zI > 0. If I does not contain 5 then
I \ {5} = {0, 1, 2, 3, 4}, which contains J = {0, 1, 2, 3}. Since zJ = 0 by Proposition 3, zI = 0.
So we should have I = {0, 1, 2, 3, 4, 5} \ {i} for 0 < i < 5, and we have four cases.

If i = 1 or i = 4, then I contains {2, 3, 4, 5} ∼ {0, 1, 2, 3} or {0, 1, 2, 3} respectively, so we
are done. If i = 2 or i = 3, then I contains {0, 1, 3, 4} or {1, 2, 4, 5} ∼ {0, 1, 3, 4}, and hence,
by applying another case of Proposition 3, we conclude.

Now, we are going to prove that Q(7) = 4. We proceed with the same strategy. We consider
I a primitive subset of {0, . . . , 6} with five elements and we can deduce that zI = 0 if we find
a subset J of I with four elements appearing in the list of Proposition 3, hence with zJ = 0.
We may suppose that I = {0, i, j, k, 6} for some 0 < i < j < k < 6. We have ten cases, but
only six cases to consider up to symmetry. The first case {0, 1, 2, 3, 6} is Fermat’s; the second
case {0, 1, 2, 4, 6} contains {0, 2, 4, 6} ∼ {0, 1, 2, 3}, hence is sorted out again by Fermat’s
result; {0, 1, 2, 5, 6} contains {0, 1, 5, 6}, {0, 1, 3, 4, 6} contains {0, 1, 3, 4}, {0, 1, 3, 5, 6} contains
{0, 1, 5, 6} and the last subset {0, 2, 3, 4, 6} contains {0, 2, 4, 6} ∼ {0, 1, 2, 3}.

https://doi.org/10.1112/S1461157013000259 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000259


a conjecture on squares in arithmetic progressions 61

Now, since Q(8) 6 Q(7) + 1 = 5, to prove Q(8) = 5 we only need to exhibit an arithmetic
progression with five squares in the first eight terms, and the arithmetic progression 1 + 24n
does the job. Note that S8(24, 1) = {0, 1, 2, 5, 7}. 2

So, the first strategy to detect subsets I with cardinality larger than 3 and zI = 0 is to find
a subset J of I with four elements such that zJ = 0. This can be done by considering the
associated elliptic curve EJ and by showing that it only contains the (eight) trivial points TJ .
In the next section we will study some necessary conditions for this to happen.

3. Four squares in arithmetic progressions

Consider I = {n0, n1, n2, n3} ⊂ Z, with n0 < n1 < n2 < n3, and let CI be the corresponding
elliptic curve. Let us denote

m0 =
n1 − n0
n2 − n1

and m1 =
n3 − n2
n2 − n1

.

Note that they are both strictly positive rational numbers and that the set I is symmetric if
and only if m0 = m1. Dividing by n2 − n1, the equations of CI become

CI :

{
X2

0 − (m0 + 1)X2
1 +m0X

2
2 = 0,

m1X
2
1 − (m1 + 1)X2

2 +X2
3 = 0.

We are going to find the Weierstrass equation for these elliptic curves. First, we parametrize
the first equation by

[X0 : X1 : X2] = [(m0 + 1)− 2(m0 + 1)t+ t2 : (m0 + 1)− 2t+ t2 : (m0 + 1)− t2],

where t = (X2 −X0)/(X2 + X1). Next, we substitute X0, X1, X2 in the second equation and
we obtain a quartic equation of the curve, depending on a parameter t:

CI : X2
3 = t4 + 4m1t

3 − 2(m0 + 4m1 + 2m1m0 + 1)t2 + 4m1(m0 + 1)t+ (m0 + 1)2.

A Weierstrass form of CI is given by

EI : y2 = x(x−m0m1)(x+m0 +m1 + 1).

Denote by φ : CI −→ EI the Q-isomorphism that gives this Weierstrass form. Then, if we
denote φ(TI) by FI , we have #FI = 8, where the set FI is described by Table 1.

Lemma 5. The set FI is a subgroup of EI if and only if I is symmetric. Furthermore, if I
is not symmetric, then zI > 0.

Proof. First, observe that the opposites of the non-Weierstrass points on FI do not belong
to FI unless m0 = m1. Since m0 and m1 are strictly positive numbers, −Q5 = (−m0,
−m0(m1 + 1)) ∈ FI if and only if it is equal to Q4. This shows one implication. For the other

Table 1. FI = φ(TI) = φ([±1 : ±1 : ±1 : ±1]).

i Pi Qi = φ(Pi)

0 [1 : 1 : 1 : 1] O = [0 : 1 : 0]
1 [−1 : 1 : −1 : 1] (0, 0)
2 [−1 : 1 : 1 : −1] (m0m1, 0)
3 [−1 : −1 : 1 : 1] (−m0 −m1 − 1, 0)
4 [1 : 1 : −1 : 1] (−m1,−m1(m0 + 1))
5 [1 : −1 : 1 : 1] (−m0,m0(m1 + 1))
6 [−1 : 1 : 1 : 1] (m0(m0 +m1 + 1),−m0(m0 + 1)(m0 +m1 + 1))
7 [1 : 1 : 1 : −1] (m1(m0 +m1 + 1),m1(m1 + 1)(m0 +m1 + 1))
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one, suppose that m0 = m1. Then one easily checks that the non-Weierstrass points have order
4, and their doubles are equal to the point (m0m1, 0). That is, FI ∼= Z/2Z⊕ Z/4Z. 2

Remark 6. One may use the isomorphism φ in order to find explicitly which arithmetic
progressions correspond to the points −P4,−P5,−P6,−P7. Suppose I is primitive, in particular
n0 = 0, so it is of the form {0, n1, n2, n3}, with n1, n2 and n3 coprime. Then the arithmetic
progression a+ nq given by{

a = ((n1 + n2 − n3)2 − 4n1n2)2,

q = 23(n1 + n2 − n3)(n1 − n2 − n3)(n1 − n2 + n3)

has squares for n = 0, n1, n2, n3. Using this construction, we show in Table 2 the arithmetic
progression (q, a) for all the equivalence classes of 4-tuples I ⊂ {0, . . . , N − 1}, for 5 6 N 6 7,
such that CI(Q) 6= TI . Note that in all of these cases rankEI(Q) = 1.

Remark 7. If I is not symmetric, the subgroup generated by FI is infinite, unlessm2
1+m1+1

is a square and m0 = −(m1 + 2 − 2
√
m2

1 +m1 + 1)/3 (or if m2
1 + m1 is a square and m0 =

m1 + 2
√
m2

1 +m1, which becomes the other case after one interchanges m0 and m1). In this
case the curve EI is Q-isomorphic to the curve

Et : y2 = x(x+ 1 + 4t)(x+ 16t3(t+ 1)), for some t ∈ Q,

and
〈P : P ∈ FI〉 = FI ∪ {−P4,−P5,−P6,−P7} ∼= Z/2Z⊕ Z/6Z.

Furthermore, the points −P4,−P5,−P6,−P7 correspond to the arithmetic progression with
a = 0 and q = 1. Thus, if we suppose that I is primitive then there exist s1, s2 ∈ Z such that
n1 = s21, n2 = s22 and n3 = (s1 ± s2)2.

We have seen that if I ⊂ Z has four elements, a necessary condition for zI to be 0 is I being
symmetric. In the following, we obtain more necessary conditions, some of them under the
Parity Conjecture.

Observe that the number of symmetric subsets with four elements contained in {0, 1, . . . , N}
may be explicitly computed in terms of N (and it is the sequence A002623 in [24], with
n = N − 3), and it is almost equal to a polynomial of degree 3 in N :

N3

12
− 7N2

8
+

35N

12
− 49

16
+

(−1)N

16
.

Since the number of subsets with four elements is a polynomial of degree 4 in N , there are
2/N +O(N−2) symmetric subsets among all the subsets with four elements. We do not know

Table 2. The arithmetic progression (q, a) for all the equivalence classes of 4-tuples
I ⊂ {0, . . . , N − 1}, for 5 6 N 6 7, such that CI(Q) 6= TI .

N I An arithmetic progression (q, a) such that I ⊂ S(q, a)

5 {0, 1, 2, 4} (120, 49)

6
{0, 1, 2, 5} (24, 1)
{0, 1, 3, 5} (168, 121)

7

{0, 1, 2, 6} (840, 1)
{0, 1, 3, 6} (8, 1)
{0, 2, 3, 6} (280, 529)
{0, 1, 4, 6} (24, 25)
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how many of the equivalence classes of subsets with four elements are symmetric, but we
suspect it is of the same order.

Suppose now I is primitive and symmetric, that is I = {0, n1, n2, n1 +n2} with 0 < n1 < n2
coprime integers. Then we have a Q-isomorphism ψ : CI −→ E′t where

E′t : y2 = x(x+ 1)(x+ t2) and t = n2/n1

such that ψ(TI) = {O, (0, 0), (−1, 0), (−t2, 0), (±t,±t(t+ 1))}.
A first remark is that there are plenty of symmetric subsets I with four elements with

zI > 0, and even with an infinite number of elements. For example, in the case that the torsion
subgroup has more than eight elements, which, by Mazur’s theorem, only occurs if the torsion
subgroup of Et(Q) is isomorphic to Z/2Z⊕ Z/8Z, or, equivalently, some of the four 4-torsion
points given by the points with x-coordinate equal to ±t are the double of some rational point.
We use the standard formulae (or a 2-descent argument) to obtain that this happens if and
only if the x-coordinate and the x-coordinate +1 are both squares.

Lemma 8. Let t be a positive rational number; then

E′t(Q)tors ∼=


Z/2Z⊕ Z/8Z if t =

(
s− 1

4s

)2

, for some s ∈ Q,

Z/2Z⊕ Z/4Z otherwise.

In fact, we may exactly characterize which primitive sets have their corresponding elliptic
curve with torsion subgroup of order 16, and even which arithmetic progressions correspond
to these new torsion points.

Corollary 9. Let I = {0, n1, n2, n1 +n2} be a primitive symmetric subset of N. Then the
elliptic curve EI has torsion isomorphic to Z/2Z ⊕ Z/8Z if and only if n1, n2 and n1 + n2
are squares. The torsion points of EI correspond to the constant arithmetic progression along
with the arithmetic progressions with a = 0 and q = 1 and with a = n1 + n2 and q = −1.

Proof. Since t = n2/n1 is a square, both n1 and n2 are squares. Since t+ 1 = (n1 + n2)/n1
is also a square, n3 = n1 + n2 is also a square. Trivially, the arithmetic progression with
(a, q) = (0, 1) verifies that ani = a+niq = ni are squares, and the one with (a, q) = (n1+n2,−1)
verifies that ani = a+ niq = n3−i are also squares, and they correspond to the torsion points
of order 8. 2

If one wants an infinite number of points in the general symmetric case, there is a two–
parametric subfamily of E′t, with other rational points aside from the trivial ones, which give
generically rank 1 elliptic curves.

Example 10. Let z1 and z2 be non-zero rational numbers, and consider

t =
1

4

(
z1 +

1

z1
+ z2 +

1

z2

)
and x =

−(z1 + z2)2

4z1z2
.

Then x(x+ 1)(x+ t2) is a square. Moreover, if z1, z2 6= ±1, z1 6= ±z2 and z1 6= 1/z2, then we
obtain a non-trivial point in E′t.

Now we are going to give a conjectural criterion to be sure that the curve E′t has odd rank.
Recall that the Parity Conjecture claims that any elliptic curve E defined over Q (or a general
number field) has root number W (E) = −1 if and only if its group of rational points has odd
rank (and, in particular, E has infinitely many rational points). Notice that W (E) is easily
computable, even in a family. In our case we have an explicit description.
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Proposition 11. Let 0 < a < b be coprime integers, and let Ea,b be the elliptic curve
defined by

Ea,b : y2 = x(x+ a2)(x+ b2).

Then W (E) = −1 if and only if α(a, b) ≡ µ2(a, b) (mod 2), where

α(a, b)=#{p odd prime | p divides ab}
+ #{p prime | p divides (b2 − a2) and p ≡ 1 (mod 4)},

µ2(a, b) =

0 if ab ≡ 4 (mod 8), or if

[
ab ≡ 1 (mod 2) and

(b2 − a2)

8
≡ 1 (mod 2)

]
,

1 otherwise.

Proof. Recall that the root number W (E) of an elliptic curve E over Q is equal to the
product of local root numbers Wp(E), where p runs over all the prime numbers and infinity.
One always has W∞(E) = −1, Wp(E) = 1 if the curve has good or non-split multiplicative
reduction at p, and Wp(E) = −1 if the curve has split multiplicative reduction at p. Since a
and b are coprime integers, Ea,b is minimal at any odd prime. The reduction is good if p does
not divide ab(b2 − a2), and it is split multiplicative if p divides ab, or if p divides b2 − a2 and
−1 is a square modulo p. Hence we obtain W (E) = (−1)βW2(E), where β = α(a, b) + 1.

Now, to compute W2(E), we need to carry out a more detailed analysis, since the reduction
can be additive in this case. First, one shows by a change of variables that the curve Ea,b is
isomorphic to the curve given by the equation y2+xy+ry = x3+rx2 (this is the so–called Tate
normal form), where r = ab/4(a+ b)2. Given s ∈ Q, we denote by v2(s) the 2-adic valuation
of s. The curve has good reduction at 2 (hence W2(E) = 1) if and only if v2(r) = 0, so if
v2(a) = 2 or v2(b) = 2. It has split multiplicative reduction (hence W2(E) = −1) if v2(r) > 0,
that is, if v2(a) > 2 or v2(b) > 2, and it has additive reduction otherwise.

When the valuation of r is negative, we will consider the original equation of the curve Ea,b,
which is an integral model. We will need the following standard invariants and coinvariants of
the Weierstrass equation:

j = j(Ea,b) =
28(a4 + b4 − a2b2)3

a4b4(a+ b)2(a− b)2
, c4 = 24(a4 + b4 − a2b2),

∆ = 24a4b4(a+ b)2(a− b)2, c6 = 25(a2 + b2)(2b2 − a2)(2a2 − b2).

Now, if v2(r) = −1, then v2(a) = 1 or v(b) = 1. Therefore the curve has potentially good
reduction (since v2(j) = 4), and we can look at the tables in [19]. We obtain v2(∆) = 8,
v2(c4) = 4 and v2(c6) = 6, hence this information is not enough to obtain the sign. We
consider c′6 = c6/2

6 and c′4 = c4/2
4, and we compute 2c′6 + c′4 (mod 16). After a case by case

computation one obtains that 2c′6 + c′4 ≡ 7 (mod 16), so we are in the case I∗1 . Next, one
computes that 2c′6 + c′4 ≡ 23 6= 7 (mod 32), so W2(E) = −1.

Now, if v2(a) = v2(b) = 0, we need to take into account the valuations v2(a+b) and v2(a−b).
First we need to determine when the curve Ea,b has potentially multiplicative reduction in order
to apply the formulae by Rohrlich [22]. This is equivalent to the case v2(j) < 0. Since in our
case v2(j) = 8 − 2v2(a − b) − 2v2(a + b), we have potentially multiplicative reduction if and
only if v2(a − b) + v2(a + b) > 4. In this case, W2(E) is computed as follows: if s ∈ Q, we
denote s2−v2(s) by s. Then, we obtain that W2(E) ≡ −c6 (mod 4). But observe that

c6 = (a2 + b2)(2b2 − a2)(2a2 − b2) ≡ (a2 + b2) ≡ 1 (mod 4),

hence W2(E) = −1 in this case.
Finally, we need to consider the potentially good reduction case, with v2(a) = v2(b) = 0. In

this case, we have v2(a− b) + v2(a+ b) = 3. Therefore, we obtain that v2(∆) = 10, v2(c4) = 4
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and v2(c6) = 6. One easily shows that the necessary condition c6 ≡ 1 (mod 4) for the case I∗2
in the tables of [19] is always satisfied, so we obtain that W2(E) is 1 in this case.

Therefore we obtain W2(E) = 1 if and only if v2(ab) = 0 and v2(a2 − b2) = 3, or
v2(ab) = 2. 2

Corollary 12. Let 0 < n1 < n2 be coprime integers and I = {0, n1, n2, n1 + n2}. Assume
that the Parity Conjecture holds for the curve En1,n2 , and that α(n1, n2) ≡ µ2(n1, n2) (mod 2).
Then zI =∞.

Remark 13. Cohn [10] studied the special symmetric case {0, 2, n, n+2} when n 6 100. The
corollary above gives an arithmetic sufficient condition to determine if there is an arithmetic
progression with squares at the positions {0, 2, n, n + 2} for any positive integer n. This
condition is that the number of odd primes dividing n has the same parity as the number
of primes congruent to 1 mod 4 dividing n2 − 4. The disadvantage is that this condition
assumes the Parity Conjecture for the elliptic curve E2,n. Note that we may suppose that n is
odd since in the even case we can reduce {0, 2, n, n+ 2} to {0, 1, n/2, (n+ 1)/2}.

4. Five squares in arithmetic progressions: the technique

We will see in Section 5 that the results of Section 3 are not enough to show Rudin’s conjecture
even for small values of N . In this section we will study how to prove, for some subsets I with 5
elements, that zI = 0 even if it is not zero for any subset J of I with four elements. Moreover,
we will be able to determine ZI in some cases.

In order to prove these type of results, we need to be able to compute the rational points
of some genus 5 curves whose Jacobians are products of elliptic curves, all of them of
rank greater than 0. Hence it is not possible to apply the classical Chabauty method (see
[8, 11, 15, 21, 25, 26]). We will instead apply the covering collections technique, as developed
by Coombes and Grant [12], Wetherell [28] and others, and specifically a modification of what
is now called the elliptic curve Chabauty method developed by Flynn and Wetherell in [16]
and by Bruin in [5]. In fact, we will follow the same technique we applied in [17], though a
similar technique to the one we used in [18] to study five squares in arithmetic progression
over quadratic fields could also be used.

First, we fix the notation. We consider a primitive subset I ⊂ N with five elements, and
denote by CI the associated curve as in Proposition 2. We want to show that zI = 0, which is
equivalent to show that CI(Q) only contains the trivial points TI . Since the genus of CI is 5,
its set of rational points is always finite, hence we may even try to explicitly compute it.

Observe that CI has five different maps to the elliptic curves corresponding to CJ , for
J a subset of I with four elements. As we have already seen in the previous section, the
corresponding elliptic curves have all their 2-torsion points defined over Q, a fact that we will
use to build unramified coverings of CI .

The method has two parts. Suppose we have a curve C over a number field K, and an
unramified map χ : C ′ → C, of degree greater than one, may be defined over a finite extension
L of K, along with a nice quotient C ′ → H, for example a genus 1 quotient. We consider the
different unramified coverings χ(s) : C ′(s) → C which consist of all the twists of the given one.
Now, by a classical theorem of Chevalley and Weil [9],

C(K) =
⋃
s

χ(s)({P ∈ C ′(s)(L) : χ(s)(P ) ∈ C(K)}),

the union being disjoint. Moreover, only a finite number of twists have rational points (the
relevant ones), and the (in principle larger) finite set of twists which have points locally
everywhere can be explicitly described. The method depends first on being able to compute
explicitly a finite set S of twists containing the relevant ones, and second, on being able to
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compute all the points P ∈ C ′(s)(L) such that χ(s)(P ) ∈ C(K) for all s ∈ S, by considering
their images in H(s)(L).

C ′

χ

��

π

��
C H

s //
C

′(s)

χ(s)

��

π(s)

��
C H(s)

In our case, the coverings we are searching for will be defined over Q, but the genus 1 quotients
of such coverings are, in general, not defined over Q, but over a quadratic or biquadratic
extension. The way we will construct the coverings (factorizing quartic polynomials) will also
give us the genus 1 quotients and the field where they are all defined.

In order to construct explicitly the coverings of the curve CI , we first rewrite the curve as the
projectivization (and normalization) of a curve in A3 given by equations of the form y21 = p1(x)
and y22 = p2(x), where p1(x) and p2(x) are separable degree 4 polynomials with coefficients
in Q. This is possible because of the special form of the curve (essentially, because it has two
degree 2 maps to elliptic curves that correspond to involutions that commute with each other),
and in our case we will see it can be done in ten different ways.

Next, we will consider a factorization of the polynomials pi(x) as product of two degree 2
polynomials pi,1(x) and pi,2(x) defined over a quadratic field K. This factorization pi(x) =
pi,1(x)pi,2(x) determines an unramified degree 2 covering χ : F ′i → Fi of the genus 1 curve Fi
given by y2i = pi(x), as we describe in the next proposition, which summarizes some well-known
results.

Proposition 14. Let F be a genus 1 curve over a number field K given by a quartic model
of the form y2 = q(x), where q(x) is a degree 4 monic polynomial in K[x]. Thus, the curve F has
two rational points at infinity, and we fix an isomorphism from F to its Jacobian E = Jac(F )
defined by sending one of these points at infinity to the zero point of E. Then:

(1) any 2-torsion point of the curve E defined over K corresponds to a factorization of the
polynomial q(x) as a product of two quadratic polynomials q1(x), q2(x) ∈ L[x], where
L/K is an algebraic extension of degree at most 2;

(2) given such a 2-torsion point P , the degree 2 unramified covering χ : F ′ → F
corresponding to the degree 2 isogeny φ : E′ → E determined by P can be described as
the map from the curve F ′ defined over L, with affine part in A3 given by the equations
y21 = q1(x) and y22 = q2(x) and the map given by χ(x, y1, y2) = (x, y1y2);

(3) given any degree 2 isogeny φ : E′ → E, consider the Selmer group Sel(φ) as a subgroup of
K∗/(K∗)2. Let SL(φ) be a set of representatives in L of the image of Sel(φ) in L∗/(L∗)2

via the natural map. For any δ ∈ SL(φ), define the curve F ′(δ) given by the equations
δy21 = q1(x) and δy22 = q2(x), and the map to F defined by χ(δ)(x, y1, y2) = (x, δy1y2).
Then

F (K) ⊆
⋃

δ∈SL(φ)

χ(δ)({(x, y1, y2) ∈ F ′(δ)(L) | x ∈ K or x =∞}).

In order to apply the method to a 5-tuple I ⊂ N, we first explain how to construct models
of CI such as the ones described above. We first need to choose a subset J = {n0, n1, n2} ⊂ I
with three elements, which determines a partition I = J t{n3, n4} of I, the ni not necessarily
ordered; the following constructions will depend on that choice. Second, we write the equations
of CI in the form

CI :


X2

0 = (m0 + 1)X2
1 −m0X

2
2 ,

X2
3 = −m1X

2
1 + (m1 + 1)X2

2 ,

X2
4 = −m2X

2
1 + (m2 + 1)X2

2 ,
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where

m0 =
n1 − n0
n2 − n1

, m1 =
n3 − n2
n2 − n1

and m2 =
n4 − n2
n2 − n1

.

Next, we parametrize the first equation as in Section 3:

[X0 : X1 : X2] = [(m0 + 1)− 2(m0 + 1)t+ t2 : (m0 + 1)− 2t+ t2 : (m0 + 1)− t2],

and we substitute in the other two equations, to obtain the new equations of the curve,
depending on the parameter t:

CI :
{
y21 = p1(t), y22 = p2(t)

}
,

where, for i = 1, 2, yi = X2+i and

pi(t) = t4 + 4mit
3 − 2(m0 + 4mi + 2mim0 + 1)t2 + 4mi(m0 + 1)t+ (m0 + 1)2 .

For i = 1, 2, we have that the genus 1 curve Fi : y2i = pi(t) is Q-isomorphic to the elliptic curve

Ei : y2 = x(x−m0mi)(x+m0 +mi + 1).

Now, we need to choose factorizations of the polynomials pi(t) as a product of two quadratic
polynomials over some quadratic extension K/Q. We describe in the next elementary lemma all
these factorizations, relating them to the corresponding 2-torsion points in the corresponding
elliptic curve Ei.

Lemma 15. For i = 1, 2, let

Di,1 = mi(1 +mi), Di,2 = (1 +mi)(mi +m0 + 1), Di,3 = mi(mi +m0 + 1),

and choose a square root αi,j =
√
Di,j . Then the polynomial pi(t) factorizes over Q(αi,j) as a

product of two quadratic polynomials pi,j,+(t) and pi,j,−(t), depending on j, where

pi,1,±(t) = t2 + 2(mi ± αi,1)t∓ 2αi,1m0 − 2mim0 −m0 − 1− 2mi ∓ 2αi,1,

pi,2,±(t) = t2 + 2(mi ± αi,2)t+m0 + 1,

pi,3,±(t) = t2 + 2(mi ∓ αi,3)t−m0 − 1− 2mi ± 2αi,3.

These factorizations correspond, by Proposition 14, to the 2-torsion points in Ei(Q) with
x-coordinate equal to ri,1 = m0mi, ri,2 = −m0 −mi − 1 and ri,3 = 0.

By the previous lemma and Proposition 14, one can construct Galois covers of CI with
Galois group (Z/2Z)2, depending on the choice of the subset J ⊂ I above and the choice of
j1, j2 ∈ {1, 2, 3}. The coverings can be described as the projectivization (and normalization)
of the curve in A5 given by

C ′ : {y21,+ = p1,j1,+(t), y21,− = p1,j1,−(t), y22,+ = p2,j2,+(t), y22,− = p2,j2,−(t)},

which is a curve of genus 17, along with the map χ : C ′ → CI defined as

χ(t, y1,+, y1,−, y2,+, y2,−) = (t, y1,+y1,−, y2,+y2,−).

These coverings can be defined over Q, although we choose to show them in this form defined
over the field Q(α1,j , α2,j), which is at most a biquadratic extension of Q, in order to consider
appropriate genus 1 quotients of them.

Next, we choose one genus 1 quotient of the form

H±,± : z2 = p1,j1,±(t)p2,j2,±(t).

There are four such quotients, but depending on the degree of the field Q(α1,j , α2,j) all of
them might be conjugate over Q or there may be two conjugacy classes if the degree is 2 and
all of them may be independent if the degree is 1.
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For any element δ = (δ1, δ2) ∈ (Q∗)2, we consider the twist C ′(δ1,δ2) of the cover χ, given by

C ′(δ1,δ2) :

δ1y
2
1,+ = p1,j1,+(t), δ1y

2
1,− = p1,j1,−(t)

δ2y
2
2,+ = p2,j2,+(t), δ2y

2
2,− = p2,j2,−(t)

 ,

along with the map

χ(δ1,δ2)(t, y1,+, y1,−, y2,+, y2,−) = (t, δ1y1,+y1,−, δ2y2,+y2,−).

We obtain

C(Q) ⊆
⋃
δ∈D

χ(δ)({(t, y1,+, y1,−, y2,+, y2,−) ∈ C ′(δ)(Q(α1,j1 , α2,j2)) | t ∈ P1(Q)}),

for some finite subset D ⊂ (Q∗)2. Proposition 14 allows us to describe the set D in terms of
the Selmer groups of some isogenies. For any such δ = (δ1, δ2), consider the quotients

H
(δ1δ2)
±,± : δ1δ2z

2 = p1,j1,±(t)p2,j2,±(t)

which, in fact, only depend on the product δ1δ2. We obtain

{t ∈ Q | ∃Y ∈ Q(α1,j1 , α2,j2)4 such that (t, Y ) ∈ C ′(δ)(Q(α1,j1 , α2,j2))}

⊆ {t ∈ Q | ∃w ∈ Q(α1,j1 , α2,j2) such that (t, w) ∈ Hδ
±,±(Q(α1,j1 , α2,j2))}.

The following commutative diagram illustrates, for a choice of (j1, j2) and a subset J =
{n0, n1, n2} ⊂ I, all the curves and morphisms involved in our problem.

C ′(δ1,δ2)

{{

��

##

,,
C

��

��

��

H
(δ1δ2)
±,±

π

qq

F
′(δ1)
1

((

,,

F
′(δ2)
2

vv

rr

F ′1 // F1

��

F2

��

F ′2oo

P1

The vertical map from C to P1 is the composition of the natural map from C to the conic
given by the equation X2

0 = (m0 + 1)X2
1 −m0X

2
2 with the isomorphism to P1 given by the

parameter t.
Let ΥI be the group of automorphisms of the curve CI generated by the automorphisms

τi(xi) = −xi and τi(xj) = xj if i 6= j, for i = 0, . . . , k. In the next lemma we describe a finite
set S ⊂ (Q∗) enough to cover all the possible rational values of t giving rational points of CI ,
modulo ΥI .

Lemma 16. Let I ⊂ N be a 5-tuple. Fix a subset J = {n0, n1, n2} ⊂ I and j1, j2 ∈ {1, 2, 3}.
For any i = 1, 2, denote by φi : E′i → Ei the 2-isogeny corresponding to the 2-torsion
point (ri,ji , 0) ∈ Ei(Q). Consider the field L = Q(α1,j1 , α2,j2) and let SL(φi) be a set of
representatives in L of the image of Sel(φi) in L∗/(L∗)2 via the natural map. Finally, denote

by S̃L(φ1) a set of representatives of Sel(φ1) modulo the subgroup generated by the image of
the trivial points TI in this Selmer group. Consider the subset S ⊂ Q∗ defined by

S = {δ1δ2 | δ1 ∈ S̃L(φ1), δ2 ∈ SL(φ2)}.
Then, for any point P = (t, y1, y2) ∈ CI(Q), there exists τ ∈ ΥI and δ ∈ S such that
τ(P ) = (t′, y′1, y

′
2) with t′ ∈ π(Hδ

±,±(L)) for any sign choice (±,±).
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Proof. We described in the previous paragraph that any point P = (t, y1, y2) ∈ CI(Q) lifts
to a point in C ′(δ1,δ2)(L) for some δi ∈ Sel(φi), for i = 1, 2. Hence it determines a point in
Hδ1δ2
±,± (L) with the first coordinate in P1(Q).
If P ∈ CI(Q) has image δ1 in the Selmer group Sel(φ1), then τ(P ) has image δ1δτ , if δτ is

the image of τ(T ) in Sel(φ1) for some trivial point T with corresponding δ1 = 1. This is true
because the automorphisms that belong to ΥI correspond to the translations by trivial points
in the corresponding elliptic curve, if we fix (as we did) the zero point to be a trivial point (see
Lemma 11 in [29] for a proof in a special case). But the action of ΥI in CI(Q) is transitive on
the set of trivial points TI . 2

Now, the method allows us to know for sure if we are able to compute, for some choice
of a subset J = {n0, n1, n2} ⊂ I and j1, j2 ∈ {1, 2, 3}, and for any δ ∈ S, all the points
(t, w) ∈ Hδ

±,±(Q(α1,j1 , α2,j2)) with t ∈ Q for some choice of the signs (±,±).
This last computation can be done in two steps as follows.
(1) We first need to determine if there is some point in Hδ

±,±(Q(α1,j1 , α2,j2)). In the special
case δ = (1, 1), the point at infinity is always a rational point. But, in general, this curve
(which has points locally everywhere for our choices of δ) may have no rational points
if it represents an element of the Tate-Shafarevich group of its Jacobian. We use the
method described by Bruin and Stoll in [6] and their implementation in Magma [4] to
determine if this happens.

(2) Second, we choose an isomorphism with its Jacobian Jac(Hδ
±,±) and then we use the

elliptic curve Chabauty technique as developed by Bruin [5] to compute this set if the
rank of its group of Q(α1,j1 , α2,j2)-rational points is less than the degree of Q(α1,j1 , α2,j2)
over Q. We also need to determine a subgroup of finite index of this group to carry out
the elliptic curve Chabauty method. All this is also implemented in Magma.

Hence we have 90 possible choices of J , j1 and j2, and we need to find one of them where we
can carry out these computations for all the elements δ ∈ S. In practice, we only consider the
case where the field Q(α1,j1 , α2,j2) is at most a quadratic extension of Q, essentially because
of the computation of the rank and/or a subgroup of finite index in Jac(Hδ

±,±)(Q(α1,j1 , α2,j2))
is too expensive computationally for number fields of higher degree.

4.1. The algorithm at work

We have implemented in Magma V2.18-8 the algorithm developed above. In the following we
describe this algorithm in a few examples. For these 5-tuples I ⊂ N we show how it works.
In the case that the output of the algorithm is true then we obtain ZI , otherwise we give
detailed information about the reasons why the algorithm does not work.
• I = {0, 1, 2, 4, 7}: this is the first case having no rank zero elliptic quotients. First, we need

to choose a subset J ⊂ I, and two values j1, j2 ∈ {1, 2, 3} such that the field L = Q(α1,j1 , α2,j2)
is of degree less or equal to 2. The subset J = {1, 4, 7} and the pair (j1, j2) = (2, 1) do the job.
In this case L = Q(

√
10) and we have the following factorizations:

p1,2,+(t) = t2 − 10/3t+ 2, p2,1,+(t) = t2 + 1/3(−2
√

10− 10)t+ 1/3(4
√

10 + 14),

p1,2,−(t) = t2 − 6t+ 2, p2,1,−(t) = t2 + 1/3(2
√

10− 10)t+ 1/3(−4
√

10 + 14).

Note that in fact in this case we have Q(α1,2) = Q. The next step is to compute the set S
(see Lemma 16). We have S = {1, 2, 3, 6}. Now for any δ ∈ S, we must compute all the points
(t, w) ∈ Hδ

±,±(Q(
√

10)) with t ∈ P1(Q) for some sign choice (±,±), where

Hδ
±,± : δw2 = p1,2,±(t)p2,1,±(t).

For δ = 1, 6, we have that rankZH
δ
+,+(Q(

√
10)) = 1, therefore we can apply elliptic curve

Chabauty to obtain the possible values of t. For δ = 1 (respectively δ = 6) we obtain t = ∞
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(respectively t = 0). For the values t =∞ and t = 0 we obtain the trivial points [1 : ±1 : ±1 :
±1 : ±1] ∈ CI(Q). For δ = 2, 3, using the method described by Bruin and Stoll [6] we obtain
Hδ
−,+(Q(

√
10)) = ∅.

The following table shows all the previous data, where the last column shows the arithmetic
progression associated to the corresponding t.

δ Signs Hδ
signs(L) = ∅? rankZH

δ
signs(L) t (q, a)

1 (+,+) No 1 ∞ (0, 1)
2 (−,+) Yes − − −
3 (−,+) Yes − − −
6 (+,+) No 1 0 (0, 1)

I = {0, 1, 2, 4, 7}, J = {1, 4, 7}, (j1, j2) = (2, 1), L = Q(
√
10)

Looking at the previous table, we obtain CI(Q) = {[1 : ±1 : ±1 : ±1 : ±1]}; and therefore
zI = 0 if I = {0, 1, 2, 4, 7}.
• I = {0, 1, 2, 5, 7}: this is the Rudin sequence. Let J = {2, 5, 7} and (j1, j2) = (3, 2). Then

we have L = Q(
√

14) and S = {±1,±2,±5,±10}. The following table summarizes all the
computations made in this case.

δ Signs Hδ
signs(L) = ∅? rankZH

δ
signs(L) t (q, a)

1 (+,+) No 1 ∞ (0, 1)
−1 (+,+) No 1 − −
2 (+,−) No 1 3 (24, 1)
−2 (+,−) No 1 − −
5 (+,−) No 1 5/6 (24, 1)
−5 (+,−) No 1 − −
10 (+,+) No 1 0 (0, 1)
−10 (+,+) No 1 − −

I = {0, 1, 2, 5, 7}, J = {2, 5, 7}, (j1, j2) = (3, 2), L = Q(
√
14)

We have that CI(Q) = {[1 : ±1 : ±1 : ±1 : ±1], [1 : ±5 : ±7 : ±11 : ±13]}. That is,
ZI = {(24, 1)} for I = {0, 1, 2, 5, 7}.
• I = {0, 1, 3, 7, 8}: in this example there are several rational solutions t. Looking at the

table below we obtain ZI = {(120, 1)}.

δ Signs Hδ
signs(L) = ∅? rankZH

δ
signs(L) t (q, a)

1 (+,+) No 1 ∞, 1
4, 5/6

(0, 1)
(120, 1)

−1 (+,+) No 1 0, 3/2
9/5, 3/8

(0, 1)
(120, 1)

2 (+,+) Yes − − −
−2 (+,+) Yes − − −

I = {0, 1, 3, 7, 8}, J = {1, 3, 7}, {j1, j2} = {3, 3}, L = Q(
√
7)

In this case we have obtained CI(Q) = {[1 : ±1 : ±1 : ±1 : ±1], [1 : ±11 : ±19 : ±29 : ±31]}.
• I = {0, 1, 4, 7, 8}: in this case we have at least two possible choices of J and (j1, j2) where

the algorithm works obtaining zI = 0. In the first case L = Q(
√

2).

δ Signs Hδ
signs(L) = ∅? rankZH

δ
signs(L) t (q, a)

1 (+,+) No 1 0,∞ (0, 1)
3 (+,+) No 1 − −
7 (+,+) No 1 − −

21 (−,+) No 1 − −

I = {0, 1, 4, 7, 8}, J = {1, 4, 8}, {j1, j2} = {2, 2}, L = Q(
√
2)
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The second case is more remarkable, since we get L = Q and the corresponding elliptic curves
have rank 0, as the table below shows.

δ Signs Hδ
signs(L) = ∅? rankZH

δ
signs(L) t (q, a)

1 (+,−) No 0 1,∞ (0, 1)
2 (+,+) Yes − − −
−3 (+,+) No 0 0, 2 (0, 1)
−6 (+,+) Yes − − −

I = {0, 1, 4, 7, 8}, J = {1, 4, 7}, {j1, j2} = {2, 1}, L = Q

• I = {0, 3, 5, 6, 10}: this is the second 5-tuple where the algorithm does not work. The first
one is I = {0, 1, 2, 6, 10} and the reason is that ten CPU hours was not enough to finish the
computations for I. In the following table appear all the subsets J ⊂ I and pairs (j1, j2) such

that L = Q(
√
D) for some D ∈ Z. Note that in all the previous cases, p1(t) and p2(t) do not

factorize over Q. Therefore it is enough to check the signs (+,+) and (−,+). For δ = 1 we
have computed an upper bound of the rank (denoted by rank∗) of the Mordell-Weil group of
the Jacobians of the curves H1

+,+(L) and H1
−,+(L), which is greater than 1 in all those cases.

Therefore we can not apply elliptic curve Chabauty and the algorithm outputs false.

J {j1, j2} D rank∗ZH
1
+,+(Q(

√
D)) rank∗ZH

1
−,+(Q(

√
D))

{0, 5, 10} {2, 3} −6 2 2
{0, 3, 6} {2, 3} 10 2 2
{0, 6, 10} {2, 3} −1 3 2
{0, 3, 5} {2, 3} 2 2 3

I = {0, 3, 5, 6, 10}

• I = {0, 2, 4, 5, 11}: this example shows one case where, for all subsets J ⊂ I of three
elements and for all j1, j2 ∈ {1, 2, 3}, we have that L = Q(α1,j1 , α2,j2) is a biquadratic extension
of Q.
• Note that, for all the 5-tuples I ⊂ N where our algorithm has worked out, we have

obtained zI = 0 or zI = 1, except in the case I = {0, 13, 24, 33, 49}. The table below shows
that ZI = {(24, 49), (−1, 49)}, that is zI = 2.

δ Signs Hδ
signs(L) = ∅? rankZH

δ
signs(L) t (q, a)

1 (+,+) No 1 ∞, 0
−12,−2/11

(0, 1)

(−1, 49)
6 (+,+) No 1 −12 (−1, 49)

10 (+,−) No 0 2, 12/11 (−1, 49)
11 (+,−) No 0 2, 12/11 (−1, 49)
14 (+,−) No 1 12/11 (−1, 49)
21 (+,+) No 1 16/3

−12
(24, 49)

(−1, 49)
35 (+,−) No 0 2, 12/11 (−1, 49)

154 (+,−) No 0 2, 12/11 (−1, 49)

I = {0, 13, 24, 33, 49}, J = {0, 13, 24}, {j1, j2} = {2, 2}, L = Q(
√
165)

In this case we have obtained

CI(Q) = {[1 : ±1 : ±1 : ±1 : ±1], [49 : ±36 : ±25 : ±16 : ±0], [49 : ±361 : ±625 : ±841 : ±1225]}.

5. Summary of the computations

One of the main objectives of this article is to prove the Strong Rudin’s conjecture up to
N = 52. For this purpose, we have developed a method based on the computation of the
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rational points of the curves CI associated to finite subsets I ⊂ N. In Section 1.1, we have shown
that under the natural equivalence we can restrict our computations to primitive subsets I.

First, let us consider the case of finite subsets I ⊂ N∩{0, . . . , 51} of cardinality 4. There are
270 725 of those subsets, but only 9077 equivalence classes. We have proved in Section 3 that
the corresponding curves are elliptic curves over Q. The following table shows the number of
curves having a given rank.

rank 0 1 2 3 4
# curves 199 4692 3778 406 2

If we restrict our attention to the symmetric case, we only have 402 equivalence classes.

rank 0 1 2
# curves 190 191 2

The next step is to compute the subsets of five elements. There are 2 598 960 of those subsets
of {0, . . . , 51}, 117 449 equivalence classes. Then we remove all the subsets I in the previous
list with a subset J such that CJ(Q) is an elliptic curve of rank 0 and it has only eight
torsion points, since in that case zI = 0. After this sieve, 111 338 subsets remain. Now, in
Section 4, given a subset I ⊂ N with five elements we have developed a method that allows
us to determine CI(Q) in some cases. The method consists of first choosing a subset J ⊂ I of
three elements and j1, j2 ∈ {1, 2, 3}. There are 90 possible choices. The next step is to compute
the finite set S, then to compute, for any δ ∈ S, all the points (t, w) ∈ Hδ

±,±(Q(α1,j1 , α2,j2))
with t ∈ P1(Q) for some sign choice (±,±). This method has worked out in 26 589 genus 5
curves CI . For those, there are 26 165 cases such that CI(Q) = TI and 424 cases such that
CI(Q) 6= TI . For the remaining cases, 84 749, our method does not work for different reasons.
First, we have bounded our computations for the cases where the fields Q(α1,j1 , α2,j2) are
at most quadratic extensions of Q, since the algorithms on Magma we are using are better
implemented in these number fields. There are 34 548 cases where all the 90 possible choices
give biquadratic fields. For the remaining cases, there are 1033 such that Magma crashed for
some unknown reason or there had not been enough time (maximum of ten CPU hours); we
describe below the reasons for the remaining 49 168 cases. For a given case, we need to decide
if Hδ

±,±(Q(α1,j1 , α2,j2)) is empty or not. Then a first reason why our method does not work is:

(BS) Magma does not determine if Hδ
±,±(Q(α1,j1 , α2,j2)) is empty or not.

Now, assuming that we have computed a rational point on Hδ
±,±(Q(α1,j1 , α2,j2)), there may

be two further reasons:
(Rank) An upper bound for rankZ Jac(Hδ

±,±)(Q(α1,j1 , α2,j2)) is greater than one. Then, in
principle, we can not use the elliptic curve Chabauty method.

(noMW) Magma does not determine a subgroup of finite index on the elliptic curve
Jac(Hδ

±,±)(Q(α1,j1 , α2,j2)).
Notice that more than one reason could apply to a given 5-tuple I, making any of the 90
possible choices fail to compute CI(Q) by our method. The next table shows the number of
cases for the corresponding reasons.

(Rank) : 37394 (Rank)+(noMW) : 988
(BS) : 630 (BS)+(Rank) : 8526 (Rank)+(noMW)+(BS) : 1523
(noMW) : 11 (noMW)+(BS) : 96

All these computations (110 305 5-tuples such that the algorithm has finished in less than ten
CPU hours) took around 68 days of CPU time on a MacPro4.1 with 2 x 2.26 GHz Quad-Core
Intel Xeon.

The first case where we have not been able to determine CI(Q) is I = {0, 1, 2, 6, 10}, since
ten CPU hours was not enough. The second one is I = {0, 3, 5, 6, 10}. In this case, our method

https://doi.org/10.1112/S1461157013000259 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000259


a conjecture on squares in arithmetic progressions 73

does not work since for all the elliptic quotients defined over quadratic fields the rank upper
bound is greater than 1.

6. Consequences and comments

The main goal of this article is to give new evidence for Rudin’s conjectures. First, given a
positive integer N > 6, the strong version claims that Q(N) = Q(N ; 24, 1). Our strategy to
prove this conjecture is recursive, that is, if we know Q(N) for some N then we attempt to
compute Q(N + 1). We have that Q(N) 6 Q(N + 1) 6 Q(N) + 1. Therefore we must compute
ZI for any I ⊂ {0, . . . , N} such that #I = Q(N) + 1. Note that if zI = 0 for any such tuples
I, then Q(N + 1) = Q(N). Otherwise Q(N + 1) = Q(N) + 1.

In Section 2 we proved Q(6) = Q(7) = 4, and Q(8) = 5 since Q(8; 24, 1) = 5. Following the
same strategy we have even proved that Q(9) = Q(10) = Q(11) = 5. But it is not enough
to show that Q(12) = 5, since for I = {0, 1, 2, 5, 9, 11} all the genus 1 quotients associated to
subsets of I of four elements have positive rank. However, by using the methods in Section 4,
we prove that for J = {0, 1, 2, 9, 11} we have zJ = 0, therefore zI = 0.

Now, in the general case, the strategy we have followed is to consider all the primitive subsets
I of five elements in {0, . . . , 51} where we are not able to compute CI(Q), either using the
genus 1 quotients or by the methods in Section 4, as we have described in Section 5. Using
this list we recursively compute the list NC(k) of all the primitive subsets I of k elements,
k > 6, such that we are not able to compute CI(Q), by finding all the primitive subsets I
of k elements whose subsets of k − 1 elements are equivalent to a subset in NC(k − 1) (see
Table 3). Note that we have determined CI(Q) for all the subsets of {0, . . . , 51} with more
than ten elements.

Furthermore, using the subsets I with five elements where we have explicitly determined
CI(Q) such that CI(Q) 6= TI , we have explicitly computed, for N > 8, all the arithmetic
progressions (q, a) such that #SN (q, a) = Q(N) except† for N = 11, 12. In Table 4 we
summarize these results.

The computations from Table 4 allow us to prove what we have called the Super-Strong
Rudin’s conjecture up to level 52: consider 8 6 N = GPk + 1 6 52 for some integer k, then
Q(N) = Q(N ; q, a) with gcd(q, a) squarefree and q > 0 if and only if (q, a) = (24, 1).

We finish this section by discussing some points concerning the number of non-constant
arithmetic progressions having their squares in a subset I ⊂ {0, . . . , N} with #I > 5. One
consequence of our computations is that, for the subsets I of {0, . . . , 52} with #I > 5 for which
we are able to compute zI , we have obtained that zI 6 1, except for one case where zI = 2.
But it is easy to see that there are plenty of subsets I with zI > 2.

Table 3. First primitive subsets (in the natural order explained in Section 1.1) with k elements for
which we are not able to determine CI(Q), together with the number of such subsets.

k I ⊂ {0, . . . , 51} Number of I

5 {0, 1, 2, 6, 10} 84 749
6 {0, 1, 2, 7, 12, 15}‡ 289 752
7 {0, 1, 6, 8, 11, 19, 23} 299 855
8 {0, 1, 3, 11, 17, 22, 23, 30} 69 241
9 {0, 2, 4, 13, 14, 19, 30, 33, 41} 2082

10 {0, 2, 7, 14, 17, 24, 37, 40, 43, 48} 2

‡ Note that I = {0, 1, 2, 7, 12, 15} ⊂ S16(24, 1). Therefore (24, 1) ∈ ZI , but
we are not able to compute the exact value of zI .

†For the 5-tuples {0, 1, 2, 6, 10}, {0, 3, 5, 6, 10}, {0, 2, 4, 5, 11}, {0, 2, 5, 7, 11}, {0, 1, 5, 8, 11} and {0, 1, 6, 8, 11}
we have not been able to compute the rational points of the corresponding genus 5 curves.
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Lemma 17. Consider ai, qi ∈ Z. Then:
(1) if q1q2 is not a square, then the set S(q1, a

2
1) ∩ S(q2, a

2
2) is infinite;

(2) S(q1, a
2
1) ∩ S(q2, a

2
2) ∩ S(q3, a

2
3) is finite;

(3) if the Bombieri–Lang conjecture is true, there exists some r such that, for any set of r
pairs (qi, ai) of coprime integers,

⋂r
i=1 S(qi, a

2
i ) has at most four elements.

Proof. The set S(q1, a
2
1) ∩ S(q2, a

2
2) may also be described by the set of integer solutions of

the equation
x21 − q1q2x22 = q22a

2
1 − q1q2a22,

which is a Pell type equation with a solution. Hence it has an infinite number of solutions.
In the case where we have three pairs, we look for integer solutions of an equation giving a

genus 1 curve, so it has a finite number of them by Siegel’s theorem.
If we have more than three pairs, the resulting curve will be of genus bigger than 1. So,

suppose we have r pairs such that J =
⋂r
i=1 S(qi, a

2
i ) has more than four elements, so there

is a subset I ⊂ J with five elements in it. This means that the corresponding curve CI will
have genus 5, and with #CI(Q) > 16r + 8 (and, if qi 6= 0 for all i ∈ I, in fact > 16(r + 1)).
But thanks to the results from [7], the Bombieri–Lang conjecture implies there is an absolute
bound for the number of rational points of genus 5 curves over Q. Hence such an r is upper
bounded. 2

Example 18. Using the ideas of the previous lemma, it is easy to construct one-parametric
families of subsets I ⊂ N with five elements along with two different and non-constant

Table 4. In the first column k is an integer, in the second GPk, in the third the integers N between
GPk + 1 and the next generalized pentagonal number, in the fourth the value Q(N), and in the last
column the arithmetic progressions qn+ a with gcd(q, a) squarefree and q > 0 such that they have

Q(N) squares for n ∈ {0, . . . , N − 1}.

k GPk N Q(N) Arithmetic progressions (q, a)

−2 7

8

5

(24, 1)
9–10 (24, 1), (120, 1)
11 (24, 1), (120, 1), (8, 1)
12 (24, 1), (120, 1), (8, 1), (24, 25), (120, 49), (40, 1), (168, 1)

3 12
13–14

6
(24, 1)

15 (24, 1), (24, 25), (120, 1)

−3 15

16–18

7

(24, 1)
19–20 (24, 1), (120, 49)

21 (24, 1), (120, 49), (120, 1)
22 (24, 1), (120, 49), (120, 1), (24, 25), (8, 1)

4 22
23

8
(24, 1)

24–25 (24, 1), (120, 49)
26 (24, 1), (120, 49), (24, 25)

−4 26
27–31

9
(24, 1)

32–34 (24, 1), (120, 1)
35 (24, 1), (120, 1), (24, 25)

5 35
36–39

10
(24, 1)

40 (24, 1), (24, 25)

−5 40
41–49

11
(24, 1)

50 (24, 1), (120, 49)
51 (24, 1), (120, 49), (24, 25)

6 51 52 12 (24, 1)
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arithmetic progressions taking squares in I. For example, for any integer s > 1, we have that

S(s− 1, 1) ∩ S(s+ 1, 1) ⊃ {0, 4s, 4s(4s2 − 1), 8s(8s4 − 6s2 + 1), 8s(32s6 − 40s4 + 14s2 − 1)}.

As a consequence, we get a one-parametric family of genus 5 non-hyperelliptic curves (of
the form CI) having at least 3 · 16 = 48 points.

Remark 19. If the Bombieri–Lang conjecture holds true then, thanks to the results from
[7], we have that there exists a bound B(g,Q) such that any curve of genus g defined over Q
satisfies #C(Q) 6 B(g,Q). For the special case g = 5, Kulesz [20] found a biparametric family
of hyperelliptic curves of genus 5 with 24 automorphisms over Q with at least 96 points, and
for some special value he was able to find a genus 5 hyperelliptic curve C defined over Q with
#C(Q) = 120. For the non-hyperelliptic case, we have that the curve CI associated to a 5-tuple
I ⊂ N is of genus 5 and has 16 automorphisms over Q. Example 18 shows a one-parametric
family of genus 5 non-hyperelliptic curves with at least 3 · 16 = 48 points. Furthermore, we
found the following curves associated to 5-tuples I ⊂ N such that #CI(Q) > 5 · 16 = 80. For
this search, we looked for 5-tuples such that they have points corresponding to S(24b, a) with
a = 1 + 24k square for some b, k ∈ N. Table 5 shows the results we have obtained.

Table 5. Some 5-tuples I with zI > 4.

I Arithmetic progression (q, a) such that I ⊂ S(q, a)

{0, 2, 13, 23, 2233} (240, 1369) (72, 25) (120, 3481) (168, 625)
{0, 5, 19, 70, 1020} (72, 1) (120, 2209) (552, 961) (24, 169)
{0, 5, 33, 70, 1183} (1344, 169) (72, 1849) (816, 961) (24, 169)
{0, 17, 52, 147, 290} (120, 1681) (96, 49) (24, 961) (264, 2401)

Note that the Bombieri–Lang conjecture implies that, for k > 5, a constant c(k) should exist
such that zI 6 c(k) for all I ⊂ N with #I = k. In particular, zI 6 c(5) for all I ⊂ N. The
previous examples show that c(k) > 2 and c(5) > 4 (but we believe c(5) > 4).
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France, 2012).

22. D. E. Rohrlich, ‘Variation of the root number in families of elliptic curves’, Compositio Math. 87 (1993)
119–151.

23. W. Rudin, ‘Trigonometric series with gaps’, J. Math. Mech. 9 (1960) 203–227.
24. N. Sloane, ‘The On-Line Encyclopedia of Integer Sequences’, http://oeis.org/.
25. M. Stoll, ‘Independence of rational points on twists of a given curve’, Compos. Math. 142 (2006) 1201–

1214.
26. M. Stoll, ‘Finite descent obstructions and rational points on curves’, Algebra Number Theory 1 (2007)

349–391.
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