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TIME AVERAGES FOR CONTINUOUS FUNCTIONS
ON DISTAL FLOWS

CARMEN NUNEZ

We study the time averages of continuous functions along the trajectories of the
distal projective flow induced by an ergodic family of Schrodinger equations. General
conditions guaranteeing that the set of nonconvergence points is a residual subset are
found. Applications to the study of the ergodic structure of the projective flow are
given.

1. INTRODUCTION

This paper is concerned with the study of the time averages of continuous functions
h along the trajectories of a real flow R x X —> X, (t, x) *-t x-t on a compact metric space
X; that is, we shall consider the set of x's such that the limit

exists, as well as the value of this limit. Johnson [5] shows that, when the flow on X
is minimal, then either the limit exists for all points of X or the integral diverges for
a residual subset of X. We intend to extend this result to flows with a more compli-
cate topological structure: more precisely, to distal flows for which the set of minimal
components has a simple geometrical structure.

Our model will be the flow induced on the real projective bundle Q x P'(R) (where Q.
is a compact metric space with a continuous flow and P'(R) denotes the real projective
line) by a family of second-order linear Schrodinger equations, under the assumptions
that the flow on fi is minimal and all the solutions are bounded. This flow is distal, and
the set of its minimal components (with the Hausdorff metric) can be identified with the
unit circle (see below for details). The complete description of the ergodic and topological
structures appears in Novo and Obaya [7] and Arnold, Cong and Oseledets [1], and it
will allow us to prove that the set K of nonconvergence points is residual in all the cases
in which the union of the minimal components contained in KR — K is a rare subset.
This is the first purpose of the paper. The results will be used in the analysis of the set
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of definition and the continuity of a family of quadratic functions, which are associated
with the perturbations of the potential and closely related to the ergodic and topological
components of the projective flow.

Let us describe this flow more precisely. Let Q be a compact metric space and
E : Q x R —> fi, ( ( , t ) H ^ i a continuous flow on fi. Given a real function Fo € C(Q) we
consider the family of equations

(1.1) -x" + ro(t-t)x = o, fefi.

Let x(t, £, tp) be the solution of (1.1) along the trajectory of the point £ with initial data
x'(0,£,<p) + iz(0,£, ip) = eiip. As usual, PX(R) and P'(C) denote the real and complex
projective lines; the symbol l\ stands for the normalised restriction of the Lebesgue
measure of R to P1(R) (which we identify with the quotient space R/TTZ), and $ is the
continuous skew-product flow induced by (1.1) on the projective bundles Kc = fi xPX(C)
and A"R = fi x PX(R). We fix a E-ergodic measure mo on fl and define mi as the product
measure m0 ® !i on a complete a-algebra of K&.

Throughout this paper we shall assume that the flow (fi,E) is minimal and there
exists £o S Cl such that the solutions of the corresponding equation (1.1) are bounded,
which implies the boundedness of the solutions for every £ € f2. According to the results
of [7], our assumptions also guarantee the existence of a ^-invariant measure on KJH
which is absolutely continuous with respect to mx (see Obaya and Paramio [9] for the
facts concerning the existence and methods of construction of this kind of measure).
It is known that either this is the unique ergodic measure projecting onto m0, or KR
decomposes into a family of ^-ergodic k-sheets, with 1 ^ k < oo. Therefore, when
the projective flow is not uniquely ergodic, its ergodic components are ergodic fc-sheets,
which are, roughly speaking, ^-invariant measurable subsets of /CR (or Kc) with the same
number of points (k) in the fibre for almost every £ € J7, and on which the <l>-ergodic
measures are concentrated (see also Furstenberg [4]).

Furthermore, as is shown in [7], (KR,$>) admits an absolutely continuous invariant
measure with continuous density function. The first consequence of this fact concerns the
topological structure of the real projective bundle: the flow is distal, and hence either it
is minimal or KR decomposes into minimal subsets; more precisely, into closed ergodic
fc-sheets (see Ellis [3] and Sacker and Sell [10]). Whereas, in the first case, the minimal
character of K% does not preclude its decomposition into nonclosed ergodic ^-sheets, in
the second case the ergodic and topological structures of the projective bundle coincide
(ergodic and minimal subsets are the same). Moreover, as we shall detail in Section 2,
all the components are identical, and we can generate all of them from a single one in a
continuous form.
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As stated before, the second purpose of the paper is the study of the limits

(1.2) qr(Z,<p)= Hm ± [ V(^t) x2(t,C<p) dt

for F € C(Q). Our hypotheses also guarantee that the limit exists for almost every
(£, ip) € A"R with respect to any ^-invariant measure and define a fibre-quadratic function

<7r(f, V?) = ar(£) C 0 S V + br(€)sin2<p + 2cr(£) sin ip cos <p.

The ergodic components of the projective bundles and the functions qr are closely related:
the equation qr = 0 determines two conjugate complex 1-sheets (if qr > 0 or qr < 0), two
real 1-sheets (if qr takes positive and negative values) or a unique real 1-sheet. Obviously,
these sheets are closed (and hence minimal) when qr is continuous. Also, if qr > 0 or
qr < 0, l/|<?r| is the density function of an absolutely continuous ^-invariant measure.

The functions qr are also fundamental in the study of the behaviour of the solutions
of the perturbed equation -x" + ro(£-t)x = ET(£-t)x for small E e C. Nunez and
Obaya [8] prove the nontangential Z^-convergence of the Weyl m-functions at E = 0
for F > 0 and obtain the limits from the expression of gr- The boundedness of the
solutions is not required. However, the result is stronger in the bounded orbit case:
if qr € C(K^) and is strictly positive or negative, then the perturbed equations admit
exponential dichotomy for small nonreal E, the corresponding Weyl m-functions converge
nontangentially at E = 0, and the convergence is uniform (see [8] for details).

These facts point out the interest in analyzing the continuity of qr- When the
flow (Cl, H) is uniquely ergodic, all the functions qr are continuous except in the case of
decomposition of KR into nonclosed ergodic 1-sheets. In the general case, if K denotes
the set of points of nonconvergence for (1.2), the function qy is continuous (or almost
always equal to a continuous function) if and only if K = 0, and in this case the limit
(1.2) is uniform (see [8]). In this work we prove that if K is not empty then it is a residual
subset of A!R. However, n(K) = 0 for any ^-invariant measure fj,.

2. T I M E AVERAGES OF CONTINUOUS FUNCTIONS

The main result of this paper (Theorem 2.3) is based on the following one, which
generalises [5, Theorem 3.7]. An alternative and shorter proof is presented here.

THEOREM 2 . 1 . Let X be a complete metric space and E : R x X -> X, (t, x) >->
x-t a continuous Bow on X. Suppose that X is a minimal compact set or it decomposes
into a family of minimal compact sets. Let g € C(X) be a function satisfying the following
condition: for every minimal subset M C X there exist two points X\,x% £ M and a
sequence of real numbers (£n)n6N with lim tn = oo such that

n-»oo
7- /
In Jo

(hi) lim — / g(xi-s)ds =
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(h2) the family < / g(x2-s) ds\ t € K > is unbounded.

Then the set

if1 /"' 1
X\ = < x G X | limsup / g(x-s)ds = oo and lim inf / g(xs) ds = - c o >

L t-»oo j-t '-*00 y_( j
is residual in X.

P R O O F : For e a c h T ^ O we def ine

r /•' "I
dT • X — > [ 0 , 1 ] , a; H-> i n f e x p < / g ( x - s ) d s > .

te[o,r] { J - t )

Then {rf̂  I T ^ 0} is a decreasing family of continuous functions, and hence the set C of

continuity points of d — lim dr is residual in X (see Choquet [2]). From the definition

of d it is easy to check that for every x € X and s € R,

(2.1) d(x-s)^exp(2\s\\\g\\oo)d(x).

We prove that C is contained in the E-invariant set {x € X \ d(x) = 0}. Assume, by
way of contradiction, that d(xo) > 0 for a point XQ € C. Then there exist, an open
neighbourhood V of x0 and a constant KX > 0 such that d(x) > «i for every x € V.
Let M C X be the minimal set containing Xo. We can find t i , ^ , . . . ,£n such that
M C VtiUVt2U.. .\JVtn. This property and (2.1) guarantee that d(x) ^ m exp(-2t ||</||oo)
for every a; 6 M, where ? = m a x ^ ^ n |tj|. Therefore, there is K2 € R such that for every
x £ M and t ^ 0, J_tg(x-s) ds ̂  — «2, and, consequently,

/"* /"t/2 / \
(2.2) g(x-s)ds= g((x-{t/2))-s)ds>-K2.

JO J-t/2 V '

On the other hand, from hypothesis (hi) we deduce the existence of X3 € M such that the
family {f*g(x3-s) ds \ t € M} is bounded (see [5, Lemma 3.5]). This fact, the minimal
character of the flow on M and (2.2) allow us to prove that {Jo* g(x • s) ds \ t € R} is
bounded for every x € M, which contradicts condition (h2).

We conclude that there is a residual set of points in X for which d(x) = 0 or,
equivalently, lim inf f_tg(x-s) ds — —00. The same arguments applied to —g provide a

new residual set on which lim sup f^t g (x-s)ds — 00. The intersection of both sets, also
t—K»

residual in X, is the set X\ of the statement. D

Let h be a continuous function on KR. AS stated in the introduction, our aim is to
study the ̂ -invariant set of points of convergence of the time averages,

(2.3) Ch - Ui, v)eK*\ Yirn^ ̂  f h(9{t, £, <p)) dt exists J .
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Note that if a minimal set M C A"R is not contained in C/,, Johnson and Moser [6, Lemma
4.4] implies the existence of two $-ergodic measures \i\ and \ii concentrated on M such
that

(2.4) [ hfaridin? [ h(t,<p)dit2.
JM JM

This remark and an argument similar to the one of [5, Theorem 4.3] (combined with
Theorem 2.1 above) lead us to the following result:

THEOREM 2 . 2 . If (KR, $) is minimal and h € C(KR), then either Ch = KR or
the set Ku - Ch is residual in K^.

In order to establish the analogue when (K&, $ ) is not minimal, we recall several results
from [7] concerning the minimal components of the real projective flow (which, as said
before, are closed $-ergodic fc-sheets, with k ^ 1). Let us take a positive continuous
density function p. According to [9], the function p provides the homeomorphism

Hp = (Id, , jf'
which takes the flow $ to a skew-translation. Let M be any one of the /c-sheets and put
TV = HP(M). Then N is an closed ergodic /c-sheet for the transformed flow, and the k
elements of each fibre are equidistant (recall that P1(R) = R/ (TTZ)) . Besides, if for each
6 e [0, ir/k) the set Ns is defined by {(£, i\> + S) \ (f, ip) € TV},

(2.5) KR= \J Ms, where M6 = H~l(Ns).
6€[0,n/k)

That is, the family of minimal components in which K®. decomposes is precisely
T = {Ms,6 G [0,TT//C)}. Furthermore, if we consider the Hausdorff metric in J7, the
map [0, n/k) —¥ J-, 6 i-> Ms induces a homeomorphism between the quotient space
K/((7r/Jfc)Z) and the metric space T.

In particular, if Mg and Mj are different $-ergodic A;-sheets, the map

(2.6) R-S_s :KR^KR, (f, <p) ^ H;1 (f, Hfe, <p) + S - 6)

is a homeomorphism which transforms Ms into My.

THEOREM 2 . 3 . Assume that A"R decomposes into a collection of closed ^-ergodic
k-sheets, and represent this family of components by {Ms\ 5 6 [O,ir/k)} as in (2.5).
Given a continuous function h on K R , define Ch by (2.3) and denote

A = {6 G [0, n/k) | M5 C Ch} and M = ( J M5 = \J Ms.
<5€A MSCC

Then,
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(i) ifM is a rare set, then KR - C/, is residual in K&;

(ii) the set M is rare in KR if and only if A is rare in [0, n/k).

P R O O F : Assume that M is a rare set. We fix 5 € [O,ir/k) such that the A;-sheet

Ms is not contained in M; then there exist two $-ergodic measures fis,i and ns,2 concen-

trated on Ms satisfying (2.4). For each <5 6 [0, n/k) we define two ^-invariant measures

concentrated on Mg by

/ / ( £ , <p) d"s,i = [ f° Rl-s(t, V>) d»s,i for all / G C(KR) , 1 = 1,2,

where Rs_5 is the homeomorphism given by (2.6), which transforms Ms into My. The
functions

f = 1,2

are continuous, ^-invariant, and take constant values h^. on each fc-sheet My. Thus the

set Bs = {(^,<p) € -KM | Vi(?>y) i1 ^ ( ^ . v ) } is an open subset of KR containing Ms.

Note that Bs = IJ Mj, a union of A;-sheets.

We prove that the set Ch n B« is of the first Baire category on Bs (and hence on
Ku). Define g,5,i(£, <p) = h(£, ip) — hsti(£, <p), which is a continuous function on B&\ then,
for an arbitrary fc-sheet Mj C Bs,

9s,i(€,>p)disgl = 0 and / 9s,i(^,f)di^2 = h\2 - h^l / 0.

We deduce from the Birkhoff ergodic theorem that gx satisfies the hypotheses of Theorem
2.1. This provides a residual set B\ C Bg such that for every (£,<p) € B\ there is a
sequence (tn)nen of real numbers with lim tn = co satisfying Jj j g6,i($(s,€,<p)) ds = 0.
The same argument applied to the function gs,2{€, f) = h(€, <p) — hspii, f) gives a residual
set B2 C Bs with the analogous property. Thus, for each (£, <̂ ) € Si n B2 we find two
sequences (£n)ngN a n d (£Ji)n€N of real numbers with limit co such that, if (£, <p) 6 Mj,

Mix J-
" = hl1 and ^

and therefore the points of the residual set B\ D 5 2 do not belong to Ch- That is, C/, fl Bj
is of the first category: ChC\Bs = (J Fs,m, where every FStm is a rare set on KR.

m€N

For each me N, the union of the fc-sheets Ms whose distance to M is greater than
or equal to 1/m is a ^-invariant compact set that we denote by Km (if M = % then
Km = Ku for every m € N). Since /Cm C (J Bs, it admits a finite subcovering. Note
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also that KR - M — (J Km, so finally we find a countable family {<5n | n € N} such that
__- m€N

KR - M C |J BSn. We deduce that
neN

= M\j(\J{ChnBtn))=M\j(\J
VeN ' \i€Ni€Nm6N

which is a countable union of rare sets. That is, K^ — C^ is residual in KR, and (i) is
proved.

To check (ii), note that it suffices to show that the set \J N{ (with Ns = Hp(Ms))
<5eA

is rare in K& if and only if A is rare in [0, •w/k). We denote by N the closure of the set
N, and by int(./V) the set of its interior points. By considering the topological structure
of KR described above, is intuitively clear and not difficult to prove that

which implies the result. D

We can deduce from this Theorem the character of the set of definition of the limits
9r(£,<£) for a continuous function F on fi.

COROLLARY 2 . 4 . Suppose that T € C{Q) and the limit qr(£, tp) given by (1.2)
does not exist for every (£, <p) € A'R. Then there is a residual subset K c K^ of
nonconvergence points.

PROOF: Let us write $(£, £, tp) = (£-t,ip(t,£:ip)y The density function p of a
^-invariant measure satisfies the relation

(2.7) p(4(«, £, ip)) = p{i, <p) | (x(t, €, <p), x'{t, £, ip)) |2

and, besides,

(2.8) x{t, £, tp) = sin ip{t, Z, V>)| (x(t, Z, ip), x\t, Z, ip)) |

(see [9]). We take a continuous positive density function p and define h(Z,<p) =
sin2>pp{£,<p), which is also continuous. Then, by (2.7) and (2.8),

lirn -?- fTr(Z-t)x2(t,Z,tp)dt=-^-\im ±- f' h(*(t,Z,<p))dt.
T-*cx> 21 J_T p(£, ip) T-ioo 21 J_T

We denote by C the set of convergence points for both limits. By hypothesis, C ^ K%-

Once again, the proof depends on the topological structure of the real projective

flow. When (K-&, $) is minimal, then the result follows from Theorem 2.2.

https://doi.org/10.1017/S0004972700032421 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032421


452 C. Nunez [8]

Suppose now that the minimal components are closed <3>-ergodic A;-sheets, with k ^ 1.

It is easy to check that

x(t, i, V) = «"<* ~ *»> x(t,*,Vl) + ^ f e ^ 4 X(t, g> n) •
sin(^i - ip2) sin((/j! -tp2)

From this equality one can easily deduce that, given f € fi, if the limits (1.2) exist for

three distinct points (£, ip\), (£, <p2) and (£,y?3), they exist for (£,y) for every tp g P ' (E)

(see [8]). Consequently, if k — 1 the set C contains at most two different 1-sheets; when

k = 2 it contains at most a unique 2-sheet; and no fc-sheet can be contained in C in

case k ^ 3. Under these conditions, we only have to apply Theorem 2.3 to complete the

proof. D
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