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Abstract

Let H = —A + V be a Schrodinger operator with some general signed potential V. This paper is mainly
devoted to establishing the L9-boundedness of the Riesz transform VH~!/2 for ¢ > 2. We mainly prove
that under certain conditions on V, the Riesz transform VH~'/? is bounded on L? for all ¢ € [2, py) with
a given 2 < py < n. As an application, the main result can be applied to the operator H = -A + V, - V_,
where V. belongs to the reverse Holder class By and V_ € L% with a small norm. In particular, if
V_ = —y|x["? for some positive number y, VH~!/? is bounded on L7 for all g € [2,1/2) and n > 4.
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1. Introduction

Let H=—-A+V be a Schrodinger operator on R", where A is the Laplace operator
and V is a real-valued signed potential. Denote V =V, — V_, where V. and V_ are the
positive and negative parts of V, respectively. It is well known that there exist many
interesting works about the L? boundedness of the Riesz transform VH~!/? associated
to H. Let us recall some important progresses by the following Table 1. We first
introduce some notation for the table: P(x) is a nonnegative polynomial, K’ denotes
the local Kato class potential (see also [24]) and L"* (1 < r < o) denotes the weak
L™ (R") space, that is,

L= = {f Wl = supylir € B 1) > )1 < oo}.
y>
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TasLE 1. The L? boundedness for Riesz transforms.

Potentials Results Papers
V= Rj=H'2A; and R, = H'2A% (j= [25]
1,...,n) are bounded on LY for 1 < g <
oo, where Aj = d,, + xj and A* = -0, +
p J j
xj.
V = P(x) VH™'/2is bounded on L7 for 1 < g < co. [26, 28]
VeBgandn >3 VH™'2 is bounded on L7 for 1 < ¢ < [22]
nf/(n—0)ifn/2 <@ <nandforl <g<
o0 if 6 = n.
0< VGLlloc VH™ 2 is of weak-type (1,1) and is [I11, 18, 23]

bounded on L? for 1 < g < 2.

VeByandn > 1 Let 6>1 and 6 >n/2. VH Y2 is [4]
boundedon LY for 1 < g <nf/(n—0) +¢&
forsome e >0if 6 <nandforl < g < oo

if 6 > n.
V <0 satisfies (A;) VH~'? is bounded on L7 for PL <g<2 [I]
and for 1 < g < n if further V € L">* n
K.
V = —u(n — 2)*1x|"?/4 VH™'Y? is bounded on L7 for P <q< [14]
andn >3 np,/(n+ py).

Also, By denotes the reverse Holder class for some 6 € (1, o), which consists of a
nonnegative locally integrable function w satisfying

(|Tle| fB |w<x>|"dx)”asc(é fB ol de)

for every ball B ¢ R" and some constant C > 0 independent of 6 and the ball B. For a
real number p > 0, the index p,, is defined by

2n/(n—=2)(1 - /1 —w) ifn>3,
Pu= . (1.1)
00 ifn=1,2.

By reviewing Table 1 above, although much progress has been made, yet for
a signed potential or the cases g > 2, it seems that there is still room for further
investigation. It is well known that the space L/>* plays an important role in many
studies of Schrodinger operators with critical potentials (see [5, 13]). A typical
example is the inverse square potential V(x) = —u(n — 2)*|x|72/4 € L">*, which is
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widely studied in modern mathematical physics and quantum mechanics (see for
example [7, 12, 19-21, 27] and references therein). Notice that the inverse square
potential does not belong to the Kato class K;° and hence we could not apply
[1, Theorem 4.1] to determine whether the Riesz transform of H = —A + V with signed
potential V € L/>* is bounded on L? for any g > 2 or not. In the present paper, we are
mainly devoted to the L¢ boundedness of the Riesz transform VH~!/? for g > 2 with
such kind of critical potentials.

To this end, in the following we need to introduce some new conditions on V.
First of all, a real-valued potential V = V, — V_ is said to satisfy (A;) (which is also
called the strongly subcritical condition) if there exists y € (0, 1) such that for all
f € WH(R") satisfying [, V.|f? dx < oo, the following inequality holds:

(A1) : f V_If(0)F dx < M(f VOO dx + f V. (lf (o) dX)-
Rn Rn Rn

If V satisfies (A;), the forms

Q.9 =Q(f9) - [ Vs dx (1.2)

with

Q.(f,8) = f Vf(x)Vg(x) dx + f Vi) f(x)g(x) dx (1.3)

Rn n
are well defined and closed on the domain
m®=0@9=&ewmm%j“muquM<w}

Thus, H, :=-A+V, and H :=—-A+V are nonnegative self-adjoint operators
associated with the forms Q, and Q, respectively. Denote by D(H,) and D(H) their
domains.

Next, the potential V is said to satisfy (A,) and (A3) for some py > 2, respectively,
if there exists a constant py > 2 such that

(A2): IVH; o < 0
and
(A3): IIV-U + Hy) M- < oo,

where H, with domain D, (H.) is the generator of the Schrodinger semigroup e on
L? (see Lemma 3.1 in Section 3 below). It should be emphasized that our conditions
are satisfied by a large class of signed potentials V with certain nonzero positive part
V. (see Remark 1.2 below), whereas assumptions in Assaad [1] are only considered
for V < 0 or for |V] in Assaad and Ouhabaz [2].

Our main result in this paper is as follows.
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TueoreM 1.1. Let n > 3 and H = —A + V and V.. be the positive and negative parts of
V, respectively. Assume that (A) holds for some u € (0, 1) and (A,) and (A3) hold for
some 2 < pg < n. Then there exists a constant 6,, depending on po such that when

IV_llzne < 6y (1.4)

the Riesz transform VH™'? is bounded on LY(R") for all q € (P> Po) with p,, defined
by (1.1).

Before we prove Theorem 1.1, several remarks about (A;) and (A3) are given as
follows.
Remark 1.2. Let V =V, — V_, where V. denote the positive and negative parts of V.

(i) It follows from Table 1 that VH;I/ 2 is of weak type (1, 1), which, combined with
(Az), implies that it is bounded on L?(R") for all 1 < p < pg. On the other hand,
(A3) is actually equivalent to the following perturbation inequality:

WV-fllro < allHy fllro + Dl fllero,  f € Dpy(Hy) (1.5)
with some positive constants a, b > 0. This is because
IV_fliro S WV-U + H) ™' (T + Hy) fllro
< V- + Ho) Nz (HH fllro + 11 fllio)

and
IV + Hy) ™ fllero < allH (2 + Hy) ™' flloro + I + Hy) ™ fllro
< Cllfllzros
where H.(I + H,)™! and (I + H,)™! are bounded on L by bounded functional
calculus.

(i) If V, =0, clearly, the classical Riesz transform V(-A)~!/? is bounded on L” for

all 1 < p < oo and then (A;) holds for all 2 < py < co. Moreover, let V_ € L"/>>;
it follows from the weak-type Holder inequality (3.3) and Sobolev’s embedding
theorem that for 1 < p < n/2,

IWV-fllr < CIV-lr=llAf Lo (1.6)

Therefore, if V, =0, V_ € L'/>* and n > 4, (1.5) and (1.6) imply that (A3) can
hold for all 2 < pg < n/2.

(iii) If V, # 0, then there exist several important nonnegative potential classes such
that (A,) holds. Let n > 3, V, € By for some 8 > n/2 and

g = nf/(n—-0) ifn/2<6<n,
" oo if 6 > n.

It follows from [22] and [4] that (A;) holds for all 2 < pg < 6*. In particular, if
V., is a positive polynomial, (A;) holds for all 2 < py < co. Moreover, if V, € By
with 0 > n/2 > 2 and V_ € L'>*, we have that (A3) holds for 2 < py < n/2 (see
Lemma 4.4 below).
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Notice that if V. belongs to some reverse Holder class By and V_ € L>* then (A,)
and (A3) hold for some ¢y > 2. Therefore, we have the following conclusion.

THeEOREM 1.3. Let n >4 and H = —A + V. — V_. If V, satisfies (Bg) for 0 > n/2, then
there exists a constant 6 > 0 such that when

IV_llpmze <0,
the Riesz transform VH™'/? is bounded on L1 for all q € (p;“ n/2).

Now we consider the Schrodinger operator with inverse square potential |x|~2. By
applying Theorem 1.3, the following corollary holds.

CoroLLARY 1.4. Let n>4 and H = —A + V. — y(n — 2)*|x|72/4 with V, € By for
6 > n/2. Then there exists a constant § € (0, 1) such that when 0 <y < 9, the Riesz
transform VH™'? is bounded on L1 for all g € (py,n/2).

Remark 1.5. Let V,. = 0in Corollary 1.4. Recently, Hassell and Lin [14] have obtained
the sharp interval for the boundedness of VH~!/2 on L based on a different method.
Compared with their work, we here deal with a class of potentials V with nonzero
positive parts V..

The paper is organized as follows. In Section 2, we establish the off-diagonal
estimates for some families of operators related to the Schrodinger semigroup e,
As an application, we prove that the Riesz transform VH™!/2 is of weak-type (1, 1)
when n = 1. Section 3 is devoted to the study of the L7 regularity of {V{Ve "},
for g > 2. In Section 4, we will give the proofs of Theorem 1.1, Theorem 1.3 and
Corollary 1.4.

2. The off-diagonal estimates and their application

2.1. The off-diagonal estimates. Let us begin with the definitions of the LF-L4
estimates and the LP—L? off-diagonal estimates for a general family of operators.

Derinition 2.1 (LP—L? off-diagonal estimates for a family of operators). We say that
the family of operators {S,},~¢ satisfies the LP—L? off-diagonal estimates for some
P,q € [1,00) with p < g if there exist constants C, ¢, 8 > 0 such that for all closed sets
E,FcR"t>0and f € L> N L? supported in E, the following estimate holds:

_ _J2
IS: fllzacry < CP 247120 = ERC|| 1] (2.1

where, and in the sequel, d(E, F) denotes the semidistance induced on sets by the
Euclidean distance. In particular, if (2.1) holds for p = ¢, then we say that {S;};¢
satisfies the L off-diagonal estimates.

DeriniTION 2.2 (LP—L7 estimates for a family of operators). We say that the family of
operators {S;},~o satisfies the LP—L? estimates for some p, g € [1, co) with p < g if

IS:flle < CE" 22| £,
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where C > 0, independent of ¢, and f € L> N L”. Obviously, if {S,};»o satisfies the
LP-L? estimate, {S;};0 is bounded on L? uniformly in ¢. In this case, we say that S; is
bounded on L7”.

The following lemma is due to Auscher [3].

Lemmva 2.3. If {T;}s0 satisfies LP—L9 estimates and {S;}~¢ satisfies L1-L" estimates,
then {S,T,},>¢ satisfies LP—L" estimates.

The statement of the lemma remains valid with ‘estimates’ replaced by ‘off-
diagonal estimates’.

As we know, the off-diagonal estimates play an essential role in the studying
of the Riesz transforms associated to operators. For the Schrodinger operators we
considered, Assaad [1] and Assaad and Ouhabaz [2] have investigated the off-diagonal
estimates (see Theorem A); one can also see the results for second and higher order
elliptic operators in divergence form in [3] and [10], respectively.

THEOREM A. Let H=—-A+V, where V, € L}OC(R”) and V satisfies (A}).

G)  {e ™o, (tHe ™) ,0 and (NtVe ™) g satisfy the L? off-diagonal estimates.

(1) (e )0, {tHe ™) n0 and {(N1Ve ™). satisfy the L1—L? estimates and the L—L?
off-diagonal estimates for all q € (p),, 2], where p,, is given by (1.1).

(iii) {e™}o and (tHe ™},o satisfy the L>~L4 estimates and the L>~L4 off-diagonal
estimates for all g € [2, p,,).

(iv) {e ™™}, are uniformly bounded on L4 for all q € (p;l,pﬂ).

For the family {tHe "},., we build a bridge connecting the L7 boundedness, L/—L?
estimates and the L9—L? off-diagonal estimates by the following proposition.
ProrosiTion 2.4. Let g € [1,2) and H = —A + V, where V, € LIIOC(R”) and V satisfies
(A1)

() If{tHe ™} is bounded on L9, then it satisfies the Li—L? estimates.

(i) If{tHe M} satisfies the LI—L?* estimates, then, for all r € (q,2), it satisfies the
L'-L? off-diagonal estimates.

(iii) If {tHe ™M)} satisfies the Li-L?* off-diagonal estimates, then it is bounded on
LA

Moreover, The statements (i), (ii) and (iii) still hold when 2 < q < oo, replacing LI—L?

by L>~L? everywhere.

Proor. We first consider the statement (i). Recall the Gagliardo—Nirenberg inequality

£, < CIVARIARS,

where @ + 8 =1 and (1 + y,)a =y, with y, = n/g — n/2. On the other hand, it follows
from the analyticity of e™ on L? that e f € D(H?) for all f € L?, which means that
He ™M f e D(H) ¢ W'2. Thus,

IHe™ f117, < CIVHe™ fIRSI1He ™ 17, (2.2)
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holds for all # > 0 and f € L?> N L4. By the condition (A;) and (1.2),
IVHe ™ f1I7, < 1/(1 — ) (HHe ™™ f, He™™ f)

d
=-1/(2-2p) EnHe"aniz. (2.3)

Assume that f € L?> N L4 with ||f||z« = 1. Then it follows from the L? boundedness of
tHe ™ (2.2) and (2.3) that

@(t) < —C¢' ()t %, (2.4)

where ¢(1) = [|[He™" f|2,. Notice that by (2.4),
d -1/ )
—lp@)' "] > crPle,
o le(n) "]

Integrating between ¢ and 2¢, we find that ¢(f) < Ct>77%, which implies the statement
().

By interpolating the LI—L? estimates with the L? off-diagonal estimates, we can
prove (ii) immediately.

The proof of (iii) can be concluded by invoking Auscher [3, Lemma 4.3]. Hence,
we finish the proof of Proposition 2.4. O

Now let us focus on the off-diagonal estimates for n = 1. It has been proved in
Assaad and Ouhabaz [2] that e~ satisfies the LP—L2 off-diagonal estimates for all
p € (1,2]. Here, we can obtain the L'-L? off-diagonal estimates for e, tHe " and
ViVe ™™ which will be useful for the boundedness of VH™'/% on L!(R).

PrOPOSITION 2.5. Let H=—-A+V, where V, € L!

loc

(R) and V satisfies (Ay).

() {e™}mo, {tHe ™) oo and (NtVe ™},. satisfy the Li-L?* estimates and the L1—L?
off-diagonal estimates for all g € [1,2].

(i) (e ™}s0 and {tHe ™M} satisfy the L>~L1 estimates and the L>~L off-diagonal
estimates for all q € [2, oo].

Proor. We first prove (ii). Let 4 >0 and E(R) be a set consisting of all bounded
Lipschitz functions ¢ on R satisfying ||V|l;~ < 1. Let H,4 := e**He™ be the operator
associated to

Qu(f.8) :=Qe™f.eYg), f.geDQ,
where Q is defined by (1.2). Since V_ satisfies (A1),

(2 +Qup)(f, ) 2 QU ) Z IV Al

Thus, H,4 generates an analytic semigroup on L? and

2
I(tH ) el p2_p2 < Ce
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for all k € Ny = N U {0}. Notice that for all f € L>(R), f, := e ™u f € D(H,4) = D(H) C
W'2(R) and the embedding inequality

llullzo < CI=A)"ull?, |l 5
holds for all u € W'?(R), where # = 1/2 — 1/g and 2 < g < co. Then, for 2 < g < oo,

Ifille < CI=D)"2FILIANES < CQ £ + Hagfon ENPPNAMY
< Ct—(1/4—1/2q)ec'/121||f”L2,

which means that
e fllo < Cr 120 1 (2.5)

forall2 < g < oco.

Now, for any compact subsets E, F C R, and f € L? supported in F, we choose
¢(x) = d(x, F) in (2.5) to obtain that

—tH —(1/4-1/2q) —Ad(E,F)+cA?
lle™™ fll gy < Cr1/A1/20) g Ad(EF)ved N2y
which implies that
—tH —(1/4-1/2¢) —d*(E,F
le™™ fllpaqe) < Ar~ VA 12D e ERat )], (2.6)

for some constants A, a > 0. For arbitrary closed sets E, F C R, since E = | J;_, E; and
F =J;, E¢, where both {E,};? | and {F,};? | are increasing monotone sets of sequences
and then by a limitation procedure, it is easy to see that (2.6) holds for an arbitrary
closed set. Hence, we prove that e~"# satisfies he L>~L? off-diagonal estimates for
all g € [2,00]. The results for {tHe "}, and {vtVe "}, can be obtained by the
following identities:

ViVe ™ = \iVe H2eHI2 111 H = 1o tHI2 g tH]2

and Lemma 2.3.
We turn to prove (i). In fact, by using duality and the above identities again, (i) can
be easily concluded. Hence, we finish the whole proof. O

REMARK 2.6.

(i) It follows from the proof of Proposition 2.2 in [1] that all conclusions of
Proposition 2.4 also hold for the operator e"*. Moreover, Proposition 2.4 is
still true for e if L denotes the homogeneous elliptic operator in divergence
form with second and higher orders, respectively (see [3] and [10]).

(ii)) When n = 1, by the Sobolev embedding theorem and duality, we can show that
e M satisfies the L'-L? estimates, which, combined with the L? off-diagonal
estimates of ¢ and [8, Theorem 4.2], would also imply the L'-L? off-diagonal
estimates for e,
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2.2. The weak-type (1, 1) estimate of the Riesz transform when n = 1. An
important application of the LI—L? off-diagonal estimates is to show the boundedness
of Riesz transforms VH™'/? on L7 for ¢ <2. In fact, Assaad [1] and Assaad and
Ouhabaz [2] proved the following theorem.

THEOREM B. Let H=—-A+V, where V, € Llloc(R”) and V satisfies (A1). Then VH™/?
is bounded on L1 for all q € (p;,, 2], where p,, is defined by (1.1).

It was also mentioned in [1] that the lower bound pl’l in Theorem B is sharp; it is
of interest to concern the boundedness of VH~'/2 on LP«. When n = 1, by using the
L'-L? off-diagonal estimates for e~ (see Proposition 2.5), we can prove that VH~!/2
is of weak-type (1, 1). However, it is not clear to us what would happen on L+ when
n>2.

Tueorem 2.7. Let n=1 and H=-A+V, where V, € LIIOC(R) and V satisfies (Ay).
Then VH™'/? is of weak-type (1, 1).

Proor. By Proposition 2.5, we know that the families of operators {V{Ve "}, and

{e7},¢ satisfy L'-L? estimates and L'-L? off-diagonal estimates when n = 1. Thus,
Theorem 2.7 follows trivially from the same procedure which was involved in the
proof of [1, Theorem 3.2]. O

3. The L?-regularity of ViVe 2

Before studying the family of operators {V{Ve "}, we give a quick comment
on the regularity of the semigroup e#. Denote by X, the open sector {z € C\{0} :
|arg z| < u} for p € [0,7) and by H*(X,) the space of all bounded holomorphic
functions on X,. Since H. is a nonnegative self-adjoint operator associated to Q.
defined by (1.3), it is well known that its heat kernel K(z, x, y) is nonnegative and

satisfies the Gaussian upper bound (see [18]). That is,
0 < K(t, x,y) < (4nt)™ 2l
Moreover, we have the following lemma (see [6, 15—18] and so on).

Lemma 3.1. Let H, be the nonnegative self-adjoint operator associated to Q. defined
by (1.3). Then we have the following statements.

(i)  The positive contractive semigroup e "+ on L? has an analytic extension
e ) ex, -

(i) e "M+ extends to an analytic semigroup on L4 for all 1 < g < co. Let H, , be its
generator; then H, , is densely defined and closed on L? with domain D,(H., ;).
Furthermore, the sector of analyticity and the spectrum of the generator H, 4 are
g-independent for 1 < g < co.

(iii) Forallve[0,m)and 1 < g < oo, H, has an H*(Z,) calculus on L1. That is, there
exists a constant ¢, 4 > 0 such that for all F € H*(Z,),

IF(H a1 £ ey gllFll=cs,)- 3.1
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RemaRrk 3.2. By (ii) of Lemma 3.1, it is easy to see that ="+« are consistent for all
q € [1, 00) on . (R") (Schwartz function spaces). Thus, for the sake of convenience,
we denote H, and e~'#+ for all g € [1, o).

In the sequel, we denote by ¢ = ng/(n — g) the Sobolev embedding index of ¢ for
qge(1,n).
Lemma 3.3. Let n > 3 and H = —A + V, where V satisfies (A)) for some p € (0, 1).

Assume that the family {Nt1Ve ™} is bounded on LP for some 2 < p <n. Then
{e7},5¢ is bounded on L4 for all2 < g < p*.

Proor. For given 2 < p < n as in the assumption, interpolating by the Riesz—Thorin
theorem the L? and L? boundedness of ViVe | we have that tVe " is bounded on
L" for all 2 < r < p; it then follows from Sobolev’s embedding theorem that

e ||, <Ct'2 2<r<p. (3.2)

Noticing that there exist constants ngp € N and 2 < py < p, such that p* = npg/
(n — ngpo) < oo and e satisfies L>~L7° estimates (see Theorem A), let py = (pr—1)*
(k=1,2,...,n9); by (3.2),

—(no+1)tH —tH —tH —tH
lle™ DA e < lle ™™ Nz o lle™ lppo—pon = < lle™™ o1 _pmg
< Cf(n/4fn/2p*)
which, combined with (i) of Remark 2.6, can finish the proof. O

Before proving the main theorem of this paper, we introduce the Sobolev constant
and the weak-type Holder constant in the following ways. Let s, (1 < p < n) be the
constant such that

L Neroim-r < $plIV fllLe.

Let h,,, be the constant such that the weak-type Holder inequality (see [I,
Lemma 4.1])

Ifgller < hpgrll flles=lIgllze (3.3)
holds, where f e L, ge L?and 1/p=1/g+ 1/rforallr, p,q € (1, 0).

ReEmARk 3.4. Notice that if V, € L}OC(R") and V_ satisfies the assumption (1.4), then,
by (3.3), we have for f € D(Q) and n > 3,

f V_@UfP dx < V2 AV flle < BVl 12
< SIV-llprlIVAR: < W $36,,Qe(f. ) (3.4)

where h = hyypn-2, in (3.3). Equation (3.4) implies that V satisfies (A;) with u <
n:=0 pohzs% €(0,1) if 8, < (hs»)™2. Thus, the constant y in condition (A;) can be
understood as the best constant such that (A;) holds.
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Now we study the L” boundedness of {vtVe "}, for some p > 2. Note that if
the potential V satisfies the condition (A;) only, the possible interval for L” (p > 2)
boundedness of {ViVe ™} is [2, np,/(m — p,)) (n > 3), which is not confirmed yet.
However, if extra conditions (A;) and (A3) are satisfied, we can prove the following
result.

ProposiTiON 3.5. Letn >3 and H=—-A+ V withV € L}OC(R”). Assume that (A1) holds
for some u € (0,1) and (Ay) and (A3) hold for some 2 < py < n. Then there exists a
constant 6,, > 0 such that when

IV Nl < 6y,
we have that \{Ve ™™ is bounded on L (R").

Proor. Let H, be defined as in Lemma 3.1. We first show that both VY/2(I + tH,) 1/
and (I + tH,)™ "2 VY2 are bounded operators on LP°. To this end, notice that for all
t>0,let F/(z) = Vitz/1 + tz with Rz > 0 and v = /2; by (iii) of Lemma 3.1, we have
F.e H*(X,)) and

WE(Hollo -0 = 1HY 2@+ HO) ™00 < epllFallie < cpys (3.5)

where ¢, = ¢q/2p, in (3.1). Then it follows from (3.5) and the weak-type Holder
inequality that
1/2, - - 1/2 77-1/2 12,,- _
V2 + Hoy ™ Pl < IVEPHT oo \HY 2@+ H 70100
1/2 7-1/2
<eplVE2HT oo
1/2 -1/2
< Cpop IV N 2l - moineno

1/2 -1/2 1/2
< Cpohpo sl)o(sp{) ||VH+ ”LP—LI’ < Cﬂoép{) ’

where @, := IVH;"lr0 105 hpy = Bpgnpojn—pon A0 Cpy = Cpobipy Spopo- Let 1/po +
1/pj = 1; by (i) of Remark 1.2, we have that VH;I/ 2 is bounded on L. Then the same
procedure above can be applied to obtain

VIR 4 HO TPl <IVEPHT P WP+ HO) TP
<Cpol2
and
VI + tH) Pl SOVEPHPI 0 HHSP A+ tH ™
< Cpopi ',
where = IVH; |l s g = Byt npyjnepyn and Cp = cpp iy s, . By duality,
I+ 2™ PV oo = VAR 4+ tHO) TPy < Cop?e '
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and

C, 2.

-1 —1/2y,1/2 1/2, -1 -1/2
G~ + H) ™ PVl = IV + HOT Py < Cy

We denote A =1-V_(r'! + H,)™'. It is easy to see that the operator A is well
defined on L by (A3). Let

L= @+ tH) PV + H) ™
and J; = I A. Notice that for each k,

L=A+tH) (V' +H)™ - (Vo + H)TY
=+ tH,) " 2VIPVIRE p H) T2
(N HYTRVIRPVIRE L gy
o ((  HYTPVIRYI2 BTG + HL) VR,

Thus,
IZellzro-zr0 < N+ tHO) ™2V 0o VPG + HO) 210
x|+ H) TPV e + HO 7 P oo, (3.6)
Similarly to (3.5),
I+ H) ™ llpo_p < cpt'2. 3.7)

Thus, it follows from (3.6) and (3.7) that
Tkllro-1r0 < €y (C o, CpoBp)s (3.8)

which means that Z/{:o I; converges to an operator 7" on L if we choose d,, <
(CPBCPO)‘I. Thatis, T = Y};7, Ik in the sense of L. Thus,

14 4
rar- Sl oo, - 5

k=0
for all f e LP, which implies that TAf = limy_,c Zizo Jif. On the other hand, for
every f € L, it follows from (3.8) that

<

LPo

A fllro

£
Ik) Af
= LPO—LP0

= g1 1Lro
o

{
D IS - M+ tH )P f
k=0

< po(Cp,Cpyp) 1 fllro. (3.9)

Then, by choosing ¢, < (Cl,,éC,,O)‘1 in (3.9),

4
(+H) ™ f = lim k}; Ief
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in the sense of L”, which leads to the fact that (I + tH,)™'/>f = TAf for all f € L.
Thus, we can write

V(I +tH) ' =V +tH, —1V.)!
= V(I + tH) A+ tH)  PA - Vo + H) )
= V(A +tH,) " *PTA0- V("' + H,)™)™!

= V(I +tH, )2 Zlk. (3.10)
k=0

It follows from (3.5) and (A») that
IV + tH) ™ Pllo—rro < IVH - IHL X+ tH )™ oo
< cpppt 2 (3.11)
Thus, by (3.10), (3.11) and choosing 6,,, < (CPE)CPO)‘l in (3.8),
IVA + tH) Yl pro—pro < CY2 (3.12)
If p, > po, it follows from (3.12), Theorem A and Proposition 2.4 that
Ve lzro—ro < IVQA + tH) ™ Nlro—po |+ tH)e ™ oo _ppo < C1712.

However, when p, < po, we need a more sophisticated discussion. First of all, it
follows from the fact that VH~1/2 is bounded on L? and the functional calculi of H on

L? that
IVA + tH) Mo pp S IVH Pl |\ H'PA 4+ tH) 2o p2
<cr', (3.13)
By interpolating (3.12) with (3.13),
IVA + tH) Np—ry < Cr'2, 2<r < po. (3.14)

Notice that both e™"* and tHe " are bounded on L" forall 2 < r < p, (see Theorem A);
then, for 2 < r < p, < po,

Ve ™l < IV + tHY i I + tH)e ™y < C'2,

which, combined with Theorem A and Lemma 3.3, implies that e is bounded on

L" for all 2 < r < p;,. Moreover, by (i) of Remark 2.6, Proposition 2.4 and the identity
tHe™™ = ¢7"H2tHe M2, we have that tHe™™ is bounded on L” for all 2 < r < py.
Therefore, for all 2 < r < p;, (we assume that p;, < po, otherwise the proof would be
concluded), it follows from (3.14) that

IVe ™ Nlp—rr < VA + tH) Ny I + tH)e ™ < CY2

Now let ry € (2, p,) be chosen later and ry = r;_; = nri_1/(n — r;-1); we can find a
suitable ry € (2, p,) and a integer ko such that pg = r, < n. Then, by applying the
same argument as above, we obtain that tHe™™ and e™™ are bounded on L’ for all
2 < r < p;, which, combined with (3.14), again implies that ViVe ™ is bounded on
L?. Hence, we finish the proof. O
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Remark 3.6. It follows from the proof above that the constant 6,, can be expressed
. . _1
explicitly by 6,, < (Cy, Cp,)”", where
CP(') = CPf]hP[p"P{)/"—P{),"SPf)aP[) and Cl’o = cpohPoﬂPo/n—Po,nspoa’Pu‘

Moreover, C,, (p € (p;, po)) can be obtained by interpolating all the constants in C);
and Cp,.

4. The L? boundedness of the Riesz transform for g > 2

4.1. The proof of Theorem 1.1. Let H = —A + V satisfy (A;)—(A3) and V_ € L"/>*;
we will study the Riesz transform VH~!/2 on L? for ¢ > 2. To do this, we first introduce
the following theorem which deals with general Calderén—Zygmund operators. For a
ball B c R" and A > 0, we denote by A(B) the ball with the same center and radius 4
times that of B and set

Si(B)=4B, S;B)=2"*'B\2/B for j>2.
Denote by M the Hardy-Littlewood maximal operator

1
M) = sup — f Ol dy,
xe8 |Bl Jp

where B ranges over all open balls (or cubes) containing x.

TaeorEM C (Auscher—Coulhon-Duong—Hofmann). Let g € [2, ). Suppose that T is
a sublinear operator acting on L*(R") and {A,} ¢ is a family of linear operators acting
on L2(R"). Also, assume that

1 1/2
(@ jl; IT(A - Anp) f(x)P dx) < COMAFN () @1

and

|B|

forall f € L?, all balls B and all y € B, where r(B) is the radius of B. Then, if2 < q < q
and Tf € L1 as f € L1, T is of strong type (q,q). That is, ||T fllrs < c||fllLe for all
f € L*> N LY, where c depends only on n, q, gy and C.

1 1/q0
(— f ITAp) f ()] dx) < CMAT 1PN () 4.2)
B

LemMaA 4.1. Assume that (N1Ve ™). satisfy L* off-diagonal estimates. Then there
exists a constant C > 0 such that for all balls B with radius r > 0, f € L*(R") with
suppf € Si(B) and j > 2,

— 2 _ i
IVH' 2@ = e "M £l 125 < C2 2Mj”f||L2(Sj(B))-

Proor. The proof for the operator VH™/2(I — e H)M s exactly the same as the one
with p = 2 in Auscher [3, Lemma 5.4], where the only fact involved in the proof is
that {VtVe ™)}, satisfy LP—L? off-diagonal estimates. One can also see the proof in
Assaad [1, Theorem 3.1] and Assaad and Ouhabaz [2, Theorem 3.6]. O
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Now we investigate the L?>-L7 (g > 2) off-diagonal estimates of the family
{VtVe ™}, which essentially connect the L? boundedness of the Riesz transform
for g > 2.

Prorosition 4.2. Let p € (2,00) and n > 3. Assume that H=—-A+V, where V, €
Ll (R") and V satisfies (A;) for some u € (0, 1). Then the following statements hold.

loc

() If{(NtVe ™). is bounded on LP, then it satisfies the L>~L? estimates.

(i) If (ViVe ™),y satisfies the L>~LP estimates, then it satisfies the L*~L9 off-
diagonal estimates for2 < g < p.

(iii) If {(ViVe ™). satisfies the L*~L? off-diagonal estimates, then it is bounded on
LP.

Proor. The proof is based on the idea described in Auscher [3, Proposition 3.9]; we
omit the details. O

ProrosiTioN 4.3. Let H=—-A+V, where V, € LIIOC(R”) and V satisfies (A;) for some
une,1).

() IfVH™ Y2 is bounded on L? for 2 < p < oo, then {\tVe )}, satisfies the L>~L1
off-diagonal estimates for all 2 < g < p.

(i) If (ViVe ™). satisfies the L>~LP off-diagonal estimates for 2 < p < co and
n >3, then VH™'? is bounded on L with 2 < q < p.

Proor. We first prove (i). By the assumptions, it is easy to see that VA ™/ is bounded

on L" for all 2 < r < p, which, combined with Sobolev’s embedding theorem, implies
that

WH' 2 fll,» < CIVH "2 fll <Cllfllr, 2<r<p, r<n. (4.3)

We choose constants ky € N and 2 < ry < p, such that p = nry/(n — koro) and let
re = (ree)* fork =1,2,..., ko; it follows from (4.3) that

H™*/2. [ [, (4.4)
Now write
e—tH — H_ko/2€_IH/2(HkO/23_tH/2). (45)

Notice that H*/?¢~"H/2 is bounded on L? with bound Ct%/? and ¢~"/? satisfies the
[*>—L" estimates (see Theorem A); then, by (4.4) and (4.5), we obtain that e satisfies
the L>—L” estimates. Write

Ve—tH — VH—l/ze—tH/Z(Hl/Ze—tH/Z);

it follows that {ViVe ™}, satisfies the L>-L” estimates. By applying (ii) of
Proposition 4.2, we conclude that (ViVe ™}, satisfies the L2-L¢ off-diagonal
estimates for all 2 < g < p. Hence, we finish the proof of (i).
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We turn to prove (ii). For given 2 < p < oo, let B be an open ball and r = r(B) its
radius and A, = I — (I — e " #)M where M € N with M > n/4. By applying Theorem C,
we need to show that (4.1) and (4.2) hold for T = VH~'/? and ¢, where gy satisfies
2 < g < go < p. We will finish the proof in the following two steps.

Step 1. Note that M > n/4; to get (4.1), it suffices to show that for f € L?(R") N
AR,

_ 2 ) 1 1/2
IVH2(0 - ¢ H>Mf||Lz(B>SC|B|”2Zg<J>(|2j+, 3 fz HBIflzdx) (4.6)
=1

with g(j) = 2/®/>72M)_Let S;(B) (j > 1) be defined as in Theorem C; by Minkowski’s
inequality,

IVH 2= e M) Fllagy < D IVH A= e )M (s, Pll 2.

=1

For j = 1, by the L* boundedness of VH~!/? and e,

1/2
IVHV2(1 - e HyM (XSI(B)f)IILZ(m<CI4BI]/2( P dx) .

|4B|

When j > 2, since H is the operator defined in Theorem 1.1, it follows that \iVe H
satisfies the L? off-diagonal estimate. Thus, Lemma 4.1 can be applied to get

IVH2(@ = e Y (s ) Ollizsy < 2720 Fllizcs o
which implies (4.6) immediately.

Step 2. Notice that A, = 3!, C mee . We first prove that

2 o /40 1/2
|B| flv P (x| dx) <CZg(J) |2J+‘B|f |Vf(x)|2dx) 4.7)

forall £=1,..., M with }, g(j) < co. Let §;(B) (j > 1) be defined as in Theorem C.
For j = 1, by Propositions 3.5 and 4.2, we have that V¢tVe " also satisfies the L*~L”
estimate. Thus,

/40
|B| f|V€ v HC\/S,(B)f)(X)| dx) < C|B|™ Va0~ a0 ]| .

When j > 2, by Propositions 3.5 and 4.2 again, we have the L>-L? off-diagonal
estimate for ViVe ™ which leads to

- /40 —1+(n/qo—n 22
|B| f|ve {r H(XS (B)f)(x)| dx) <C|B| 1/(IO},. 1+(n/qo /2) 2% ”f”LZ(S B)-
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On the other hand, for every j > 1, by Hardy’s inequality, we have for n > 2,

) 1/2 ) 1 i 1
(Lj(B) LfCol dx) < 2/r( O Lj(B) 1€ dx)

) 1/2
< ([ s R 1P )
R!Z
< C2jr||Vf||L2(sj(B))-

Thus,
1 f —tr2H f|do )l/qo N2 L 12
— [ |vetrH P ax) T <y 22Nl (— IV ()P dx) ,
(|B| B| f| ; |21+IB| 2+ B f
which implies (4.7) by choosing large enough M. Now this applied to f = H™!/%g
gives us (4.2). O

Tue proor oF THeOREM 1.1. The proof for g € (pj,, 2] is essentially the same as the one
in [2] (see also [1, 3]), where the LP—L? off-diagonal estimates for {vtVe "}, and
{e7},. are involved. Thus, we consider the case for 2 < g < pg only. It follows from
Proposition 3.5 that the family {VtVe "}, is bounded on L for the given py in
Theorem 1.1, which, combined with Proposition 4.2, means that {(VitVe ™}, satisfies
the L? — L off-diagonal estimates for all 2 < r < po. Thus, we can finish the proof of
Theorem 1.1 by applying Proposition 4.3.

4.2. Applications. In this section, we will give the proofs of Theorem 1.3 and
Corollary 1.4, which are actually important applications of Theorem 1.1. First of all,
we consider Theorem 1.3. Let us begin with the following lemma.

Lemva 4.4. Let n >4 and H=—-A+V, —V_, where V. € By for 8 > n/2 and V_ €
L% Then the condition (Az) holds for all 2 < py < n/2.

Proor. It was proved in Shen [22, Theorem 0.3] that if V.. € By with 8 > n/2, then, for
alll<p<é,

IAG=A + V)™ fllpr-rr < C), (4.8)

where the constant 61, depends on n, p and the constant in the reverse Holder inequality
of V.. Then it follows from (1.6) and (4.8) that for all 1 < p < n/2,

IV_fllr < CIIV-llpesllAfll < CINV-llpeslAGA + Vi)™ (<A + Vi) fll
<CI=A+ VoSl

which, combined with (1.5), implies that (A3) holds for all 2 < pg < n/2. O
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THE PrOOF OF THEOREM 1.3. For the Schrodinger operator H defined as in Theorem 1.3,
by Remark 3.4, it is easy to see that there exists u € (0, 1) such that (A;) holds if we
choose suitable 6,,. Moreover, by the results in [4], we know that VH;I/ 2 is bounded
onl? forall 1l < p<nf/(n—0)+¢eforsomee>0asn/2<6<nandforl <p< oo
as 0 > n (see also Table | above), which means that (A;) holds for all 2 < py < n/2.
Thus, by Lemma 4.4 and Theorem 1.1, VH~'/? is bounded on L for all ¢ € (p},,n/2)
if we choose ¢, in (1.4) appropriately.

It remains to show that the constant 6, is bounded uniformly for all 2 < pg < n/2.
In fact, it follows from the proof of Proposition 3.5 that 6,, < (Cj, C o)\, where

Cpy = Cpphpynpyin—pynSpy@py, - and Cpy = Cpolpg npo/n—ponSpo@py-

On the other hand, it is easy to see that C, and C,, are finite. Then, by Remark 3.6,
we have that ¢, is uniformly bounded for all 2 < py < n/2, which finishes the proof.

TuE PROOF OF CorROLLARY 1.4. If V, € By and V_ = y(n — 2)%|x|"%/4, then, by Hardy’s
inequality (see [9]),

=274 [ o drs [ 90Pdr < @uls )

which means that the potential V satisfies (A;) for u =7y € (0,1). Then, by using
Theorem 1.3, there exists a constant 6 > 0 independent of py such that when

IV_llpze = y(n = 2)%/4]|[x72 =y(n-2)%d}"* /4 <3,

n /2,00

that is, y < & := 4d,*"5/(n — 2)?, where d,, denotes the volume of the unit ball in R",
the Riesz transform VH~!/? is bounded on L9 for all g € (p’y, n/2).
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