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ABSTRACT. An analysis of the linear stability of marine ice sheets uncoupled
from associated ice shelves is presented. The principal feature is a zero eigenvalue
associated with infinitesimal shifts along the line of neutral equilibrium in phase space,
termed the “equilibrium manifold™. A finite-difference scheme is constructed which

respects this stability property.

The zero eigenvalue appears to allow modelling errors to accumulate rather than
dissipate as occurs in land-based ice sheets. The practical significance of this is that
even rather [ine spatial grids may allow substantial numerical error to accumulate,

1. INTRODUCTION

Ever since a handful of extremely influential articles
(Hughes, 1973: Weertman, 1974; Thomas and Bentley,
1978) were published in the 1970s, marine ice sheets have
been widely regarded as being unstable. Stability is an
elusive concept and it is not surprising that this instability
has been discussed in rather different terms by a number
of different authors. What all of these analyses have in

common is the absence of a discussion of the stability of

marine ice sheets in terms of two of the most widely used
notions ol stability, asvmptotic stability and Lyapunov
stability (e.g. Hale and Kogak, 1991).

In this paper we shall consider the limited but
important technical objective of the linear stability and
evolution of marine ice sheets which do not contain any
ice streams and are modelled as being decoupled from
their ice shelves. We do this by considering a normal-
mode stability analysis, which informs about the linear
stability of marine ice sheets.

A marine ice-sheet system consists of two or three
parts, a grounded ice sheet, floating ice shelves and
perhaps an intervening ice stream. In the grounded sheet.
shear-flow dominates, while in the floating shell, the low
is extensive. In the sheet, the vertical shear-stress gradient
balances the longitudinal verteal normal-stress gradient,
while in the ice-shell” shear-stress gradients and long-
itudinal deviatoric stresses gradients balance the vertical
normal-stress gradient. Clearly, there must be an inter-
mediate zone in the grounded ice where longitudinal
stresses play an important role.

We shall follow the view of Hindmarsh (1993), who
regarded the transition zone as being of such limited
extent in the direction of flow as to be unable to affect the
(lows in the ice sheet and in the ice shelf, in much the
same way as the anomalous lows in the divide are not
believed to affect the large-scale flow. The transition zone
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is thus regarded as a passive boundary layer. Numerical
calculations (Herterich, 1987: Lestringant, 1994) and a
related analytical solution (Barcilon and MacAveal,
1993) support this view. Hindmarsh (1993) reviewed
Opposing views,

Those who argued that the transition zone is a passive
boundary laver are logically forced into the position that
the ice-shell Now does not allect the ice-sheet [low (apart
from cases where the ice shelf grounds) and that sensible
predictions can be made about marine ice sheets without
computing flows in any associated ice shelf. This is equally
true ol conlined and unconlined ice sheets, the point being

Hindmarsh, 1993) that back-pressure terms are of the
same order ol magnitude as the longitudinal stress-
gradient terms. These do not aflect grounded ice-sheet
low at leading order.

Indeed. it i1s possible to construct a grounding-line
advance formula based on kinematics (Salamatin, 1989;
Hindmarsh, 1993) which does not require any informa-
tion from an ice shell. Such a formula respects mass
conservation by stating that what leaves the ice sheet is
determined by the {flow in the ice sheet, using the usual
shear-stress formula, up to a zone a few ice-sheet
thicknesses upstream of the grounding line. This is exactly
the same as assuming that one can safely deseribe the
large-scale flow of grounded ice sheets ignoring the
anomalous mechanics near the margin, and indeed the
appropriate margin-advance formula (e.g. Hindmarsh
and others, 1987) 1s based on the same conservation/
kinematical principles as the marine ice-sheet grounding-
line advance formula.

While it is common in glaciology to assert that
longitudinal stresses must be modelled at the grounding
line, there has been no rigorous discussion of why, if this is
50, it is not also equally necessary at land-based margins.
The approach in this paper is entirely consistent with the
approach adopted by the author and co-workers in
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previous moving-grid modelling of land-based ice sheets,
both in its application of the margin/grounding-line
advance formula and in assuming that the anomalous
mechanics near the margin and grounding line form a
passive boundary layer, the mechanics ol which do not
affect the large-scale mechanics.

Even if ignoring ice streams is not a good model of
large marine ice sheets, one may note that ice rises are
simply mini-marine ice sheets. The crevassing between ice
shell and grounded ice is an indication of a lack of
coupling; certainly, there is no basis for assuming that
stress fields are differentiable across these zones, which
asks the question of how ice shelves are then supposed to
inflluence the mechanics of slowly moving grounded ice.
The only reason for supposing that increased longitudinal
stresses in the transition zone should destabilize the
grounding line is if one can show that no other stabilizing
mechanisms exist. A stabilizing mechanism based on
kinematics is outlined in section 3.

Ice rises are not drained by ice streams, meaning that
they are describable and presumably modellable in the
simple terms described above. For this reason alone,
modelling marine ice sheets without ice stream or ice shelf
is a valid and relevant scientific problem, and is a natural
first step to understanding the dynamics of more complex
ice sheets. It is an obvious question to ask whether the
large-scale flow of decoupled marine ice sheets is stable or
unstable. This paper explicitly shows that the dynamical
characteristics of the governing equation and the
corresponding finite-difference scheme are the same. Such
demonstrations are surely a prerequisite to claiming that
a given model informs at all about the stability of marine
ice sheets.

When one asks the next question, which is “Can we
characterize the asymptotic or Lyapunov stability of
marine ice sheets”, one runs into major difficulties.
Hindmarsh (1993) has shown that an infinity of equilibria
exists and has argued that this implied neutral equili-
brium or metastability. Thus, rather than lying on a point
or points in phase space, the set ol equilibria are non-
denumerable and lie on a line in phase space. In this
paper, we term the line in phase space, where the ice sheet
is in neutral equilibrium, the °
avoid calling it the equilibrium line).

The question then arises of whether this metastability
property is structurally stable, that is stable under small

‘equilibrium manifold™ (to

perturbation to the model equations, and also how the
issue of structural stability extends to the iterated maps
used to solve discretized representation of the partial
diflferential equations describing the evolution ol un-
coupled marine ice sheets. This issue of structural stability
is the reason why it is much more important, in the case of
marine ice sheets, to demonstrate the dynamical equiva-
lence of governing equations and a finite-difference
marching scheme. The dynamics of grounded ice sheets
are structurally stable except at bifurcation points,
meaning that dynamical equivalence is [ar easier to
obtain and is not really an issue.

Hindmarsh (1993) demonstrated some of the con-
sequences ol structural instability by comparing a semi-
analytical ice-sheet model based on the similarity
solution for ice-sheet spreading (Halfar, 1981) and a
numerical finite-difference scheme. The semi-analytical
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method produced valid solutions to the ice-sheet profile-
evolution equation used by Mahaffey (1976) and showed
metastability. This model had a reduced number of
degrees of [reedom (only certain spatial patterns of
accumulation could be accommodated). A numerical
finite-difference model (which could accept as many
degrees of [reedom of forcing as there were grid points)
showed different qualitative behaviour with the ice sheet
growing unstably. The rate of unstable growth was
strongly dependent on the spatial discretization interval,
suggesting numerical effects were vielding a [false
qualitative dynamics. Thus, the iterated map was not
structurally stable to discretization error and led to
spurious unstable behaviour which manifested itsell at
long wavelengths rather than the short wavelengths
typically associated with numerical instability.

The implication of this, taken with the argument that
ice shelves were not a necessary part of the calculation,
was that other marine ice-sheet models were also possibly
generating a spurious qualitative dynamics through
numerical error, and that the different qualitative
behaviour reported by different modellers could be a
consequence of differences in the numerical schemes. Also
implicit in this is that basic response of marine ice sheets
(or at least ice rises) to forcing is simply not known.

It is quite easy to find examples of numerical schemes
which give spurious dynamics — for example, a forward
Euler integration scheme on Newton's equations [or the
motion of a body orbiting under gravitational attraction
will not produce a stable solution. This is not too serious a
problem for systems whose dynamics are reasonably well
understood analytically. Such an understanding is not yet
present for marine ice sheets.

The purpose of this paper is to carry out a linear
stability analysis of the ice-sheet equation around a steady
solution and to construct a numerical scheme which has
the same stability properties, at least in the vicinity of the
equilibrium manifold.

2. STABILITY AND METASTABILITY

A dynamical system is characterized by an evolution
equation of the form
du
T fll(ur) |
dt
while an iterated map is characterized by an equation of
the form

ukc Lo fm (uﬁ)

where u is a vector. It can readily be seen that one
example of an iterated map is a finite-difference or finite-
clement marching scheme. The asymplotic stability of a
dynamical system or an iterated map is usually defined in
terms ol neighbouring trajectories in phase space which
are close at one point in time moving towards cach other
with an exponential decay, while unstable systems have
neighbouring points which move apart. The less restric-
tive Lyapunov stability simply requires that on average
trajectories do not diverge. Local linear stability for all
these cases can then be analysed by first computing a
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Jacobian matrix, i.e.
oty (3] b
il —= . . = =
S Ou " ol

The solutions for small perturbations u’ are

u' = ujexp(Jat)

for the dynamical system and u’* is

u/k = (Jm )kurll

for the iterated map. The stability of these linearized
systems can then be assessed by computing the eigenva-
lues of the Jacobian matrices using standard techniques
(e.g. Wilkinson, 1965).

For a dynamical system, Lyapunov stability occurs
when none of the eigenvalues has positive real parts, while
asymptotic stability requires that all the eigenvalues have
negative real parts (Hale and Kocak, 1991). Instability
occurs when one or more of the eigenvalues have positive
real part. For an iterated map, the conditions relate to the
modulus of the eigenvalue — instability occurs il any of
the eigenvalues have (complex) modulus greater than 1,
asymptotic stability il all the eigenvalues have modulus
less than 1.

Non-lincar systems have Jacobians which depend
upon the state vector u and, in general, we expect the
stability characteristics to change with u. Points in phase
space where the stability characteristics change are called
bifurcation points and for our purposes we shall consider
them as points in phase space having eigenvalues with
zero real parts.

Metastability is loosely considered to occur when
several equilibrium points exist but true metastability
occurs when there 1s a manifold of non-zero dimension
(i.e. a smooth object in phase space which is bigger than a
point, in this case a line) which represents equilibrium
configurations in phase space. We shall see that there
must exist a zero eigenvalue with an associated eigen-
vector which corresponds to movement along the
cquilibrium manifold.

[terated maps can possess equivalent manifolds where
the complex modulus of the eigenvalue has magnitude
exactly 1. Indeed, this is precisely the point of the paper;
can we design an iterated map which is a consistent finite-
difference representation of a related dynamical system,
both of which have equilibrium manifolds? As pointed out
in the introduction, no-one modelling marine ice sheets
hitherto has carried out the basic technical requirement of
proving the dynamical consistency of the numerical
scheme and governing equations. In consequence, the
quoted results simply tell us about the stability character-
istics ol their marching schemes. These may be the same
as the dynamical system; whether this is so or not is the

main issue considered in this paper.

3. BOUNDARY CONDITIONS AT THE GROUND-
ING LINE

Let us consider the force balance across a narrow
cgrounding zone, which requires that two boundary
conditions be satisfied, one prescribing the tangential
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traction and the other the normal traction. We also need
a kinematical condition, which here deseribes the speed of
translation of the grounding line.

Flotation occurs when the normal traction on the base
of the glacier equals the water pressure. Under reduced
model assumptions for both ice sheet and ice shell (e.g.
Morland, 1984, 1987), the upwards tangental traction is
1ignored. In this case, the normal traction is glaciostatic, so
flotation occurs when

pigH = pugf (1)
where f is the water depth, H is the thickness of the ice
sheet, g is the acceleration due to gravity and p;, py are
the densities of ice and water, respectively. The co-
ordinate system is illustrated in Figure 1. Numerical
calculations (Lestringant, 1994) indicate that the devia-
tion from hydrostatic conditions is small.

r
Ice Sheet
Seam ! Notional
1 |55
— Thickness H Deplhf ' lSL_shc_li
z=b(x,t)
| >
Span §
Base
Fig. 1. Hlustrating the coordinate system wsed. The

notional ice shelf indicates that the presence or absence of an
ice shelf does not affect this model of grounded ice.

The normal force F, from the ice sheet acung on the
transition zone 1s

I = / pigls —2) dz+2 / O Az
Jb Jb

sheet
rr

H2
=/t 2Ha

while the force from the ice shelf is
2

/iy - + 2Hashel |

-2 I
Here, o, represents the longitudinal deviatoric stress, s
the ice-surface clevation, b the ice-base elevation, z is the
vertical coordinate, x is the horizontal coordinate and the
superscripts “sheet™ and Ushell™ represent evaluations
sulliciently far upstream and downstream of the transition
zone [or the values of the longitudinal stress to be
computable using the appropriate standard reduced
models. These domains of validity are expected to occur
a few ice-sheet thicknesses [rom the grounding line, both
on the basis of order-of~-magnitude argument and [rom
looking at numerical solutions (Herterich, 1987; Lestrin-
gant, 1994).

The difference between these two forces is QH((T'._],'."”

&
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— sheet

—a*") and force balance i the (ransition zone s

satisfied by an increased tangential basal traction since
ice-shell average longitudinal stresses are in general larger
than those in ice sheets. This integral formulation does
not specify uniquely how the longitudinal stresses and
tangential traction increase in the transition zone, and
increases in hoth stresses will lead to increased velocity,
but the profile can still be steady. albeit with an increased
slope.

Those who argue that the transition zone is unstable
in effect say that the term Hd,u becomes very large
(which may be true) and that in consequence o\ H < 0,
leading to grounding-line retreat, and that this efect is
counteracted by buttressing [rom the ice shelf, which acts
to reduce the longitudinal stresses. However, buttressing
is not the only stabilizing mechanism. Consider the
continuity relation

OH +ud, H+ Hou=a

where @ is the average velocity in the ice. Any thinning
will immediately cause d. H to become more negative and
the term ud.H now acts in such a [ashion such as to
stabilize the system. This stabilization mechanism works
even il thinning leads to enhanced sliding velocities as a
result of a decrease in eflective pressure or the increased
shear stress. There may be an instability arising from the
sliding law (Budd and others. 1984) but it is not a
necessary consequence of the properties of the grounding
line. In short, statements arguing the instability of the
transition zone are not well borne out.

Il the transition zone is stable and is of the order of a
few ice-sheet thicknesses in length, the discharge and
discharge gradient will not increase a great deal from the
downstream end of the zone of validity of the reduced
model to the ice front. This is a consequence of continuity
and means that we can compute the discharge from the
slope and thickness at the grounding line as though the
shallow-ice approximation held good. This is equivalent to
the procedure adopted by all ice-sheet modellers at land-
based glacier margins and is valid because the moving-
boundary condition in both cases is consistent with the
shallow approximation and does not therefore require the
imposition of further boundary conditions. This principle
has been discussed further by Fowler (1992),

4. THE ICE-SHEET EQUATION IN A STRETCHED
GRID

The governing cquation we are considering is the ice-
sheet equation

OH = 0, (CH" |0,

”71(’)_,.5-) 4 (2)

where H(x, t) is the thickness of the ice sheet, s(z. t) is the
upper surface and a is the surface mass-balance exchange.
We deline a mass flux

q=—CH™|d.s|" ' 8,s. (3)

The horizontal. vertical and time coordinates are (x, z, f).
This equation describes the evolution of ice-sheet thick-
ness where the flow mechanism is either internal deforma-

https://doi.rfwgl 0.3189/50260305500013318 Published online by Cambridge University Press

tion according to some non-linearly viscous flow law or
sliding according to some Weertman-type law. We can
include both effects but it would make the present analysis
unnecessarily cumbersome.

Thus, the quantity C'is directly related to either a rate
factor Ay used in the viscous relationship

E = Aqo"

where F is a second invariant of the deformation rate and
o is a second invariant of the deviator stress (Glen, 1955)
or comes from a sliding relation of the form

4
Uy, = A_.;O'h .

where ay, is the basal shear stress. We construct the
following quantities for use in the general evolution

equation
o) B internal deformation
T 1 ¢ sliding

o n + 2 internal deformation
{+1 sliding
2(pg)” . i ]
('(7‘]? A,y internal deformation

C= v+ 2

(pg)’ As sliding

The derivation of the evolution Equation (2) using the
shallow-ice approximation is standard (Hutter, 1983;
Morland, 1984: Fowler, 1992} and what amounts to
essentially the same formulation has also been sketched by
Hindmarsh (unpublished).

Let us write down the moving-boundary condition for
a marine ice sheet. The flotation condition is

wH = pet
where f is the depth of the water at the grounding line
and, if we write this in total differential form, following
the moving grounding line,

PiH = p\\'.fll

which 1s
Pw

OH +GoH =—
Pi

(O:f + GO f)
and which yields an expression for the grounding-line
migration rate G,

(a.,.H = U..-f) B, =TT g — Be
i Pi

and using the continuity equation d;H + d.q = a we may

write

G I;T‘l\()f/ ot t‘“)»,‘q —

(c‘),‘H — b (‘).,.f) (4)

where all the quantities on the righthand side are
evaluated at the grounding line. If we ignore sell-
gravitating effects (which also allect the ice sheet) and
take sca level to be constant in space, we may write
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d,f = —d.b. This grounding-line advance formula was
given with incorrect sign on the bed-profile term by
(1993). Salamatin (1989)
similar (correct) equation but introduced an unnecessary
(for the purposes of constructing a simple model) extra

Hindmarsh constructed a

assumption of sliding in the transition zone. This total
differential construction is equivalent to procedures for
computing the migraton velocity of margins in land-
based ice sheets (Hindmarsh and others, 1987).

A crucial part of the procedure of assessing the
stability of iterated maps is the computation of the
Jacobian, which involves differentiation. Fixed-grid ice-
sheet models must have some rule for determining which
grids are occupied by ice and which are not, which are
essential parts of the time-stepping procedure. The use of
these rules within a computational algorithm would seem
to involve, in general, the use ol conditional execution
(i statements), These cannot be differentiated in any
meaninglul way. implying that the simplest way to carry
out a stability analysis is to use a moving-grid algorithm.

Thus, [ollowing for example Hindmarsh and others
(1987), we deline a normalized horizontal coordinate
£ = x/S, where S is the semi-span of the ice sheet and we
consider the case symmetric about the divide atr = =10
only. Thus, GG, = 5. The time coordinate corresponding
to t is denoted 7, and we choose 7= ¢.

Following Hindmarsh and others (1987). the evolu-
tion equation in stretched grid form may be written

SO.H — S€D:H + deq = Sa (5)

where, in our stretched coordinates the grounding-line
migration formula becomes

B 8 = Spyid-f + Beq — Sa (6)
where pyi = pw/pi and e = :H — pyiOcf.

5. NORMAL-MODE STABILITY ANALYSES

Linearizations of non-linear partial differential equations
and computation of their normal modes are commonly

used in fluid dynamics, in order to assess the linear
stability of the system (Pedlosky, 1986; Tritton, 1988).
The purpose of the analysis is to determine whether a
small perturbation grows. The Lax Equivalence Theorem
requires that a necessary condition for a finite-difference
(or finite-clement) scheme to be convergent to a given
partial differential equation as the discretization interval
tends to zero is that the finite-diflerence scheme, when
viewed as an iterative map, should have the same stability
properties as the differential equation. How these stability
properties are compared has already been discussed in
section 2. The stability of the governing equations and of
a particular numerical scheme (not necessarily the most
eflicient one) are examined in the following sub-sections.
It is shown that the numerical scheme has the same
stability properties as the governing equation on the
equilibrium manifold provided ume steps are kept short
enough. This is the first tme that a numerical model of a
marine ice sheet has been shown to bear this relation 1o
the governing equations,
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5.1. Perturbed marine ice-sheet equations

Let us expand the relevant variables as a series in a small
parameter g such that

S(7) = So(r) + uSi(r) + O(1%) ,
H(E. )= Ho(€,7) + uH (£, 7) + O(1) , )
al&,7) = ag(& 1) + pa (E.7) + O(p"’) ;
& T) = fol& ) + pfi(E7) + O(17)

where p < 1. We shall perturh around configurations
where Sy and Hy represent steady solutions. As discussed
above and in Hindmarsh (1993), we expect the zeroth
order solution to be non-unique, as we can choose any
divide thickness Hy and integrate the profile away from
the divide unul the flotation condition is satisfied.
Substitution of these expansions into the ice-sheet
equation yields to O(p) two equations; at zeroth order

(')ylu = Shay (8)
and at first order
S[:('JTH| = £S'|r')5Hu + l‘“)5q| = S”ru e S[(I[;. (U]

Assuming symmetry around the divide and introdu-
cing the notation

0= pwl(');jij(" - uJ“. (10)
L.')EJJ;{; = UEHjiiG -} [)“Ai(l)fb_','ﬂ (11)
§=0,1,

where superseript G indicates evaluation at the ground-
ing line, we obtain equations [or the grounding-line
migration rate at zeroth order

Sodo + Feqo” =0 (12)
and at first order
(')5-].(,-;.5-'1 = (8001 + Si¢0) + Feq” (13)

where superseript G indicates evaluation at the ground-
ing line.

We specily g, as follows. Consider the mass flux in
Equation (3) in the normalized coordinates

= —C'H”"(’)é(H +b) V_l("')f(H +b)/ 8" (14)
which, upon writing
q(&.7) = qu(&.7) + pq (€, 7) + O(p”) (15)
allows us to obtain ¢ at zeroth order
Stao = CH'|0cHy + 0] (16)
and at first order
1.[[ ()cf1| S]
= m—+v————rv—. 17
qi qn(m 1, HU{(”U ) v So) (17)

The zeroth order relationships (8) and (12) are
equivalent at the grounding line, a consequence of the
neutral equilibrium property. That is. for any positive
span Sy, there exists a corresponding solution Hj, such
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that Sn and d-Hy are zero (Hindmarsh, 1993). The
moving-boundary condition does not apply an extra
constraint. The absence of a unique solution can also be
deduced from the first-order Equations (9) and (13) by
setting . F = 0,5, = 0 and also ¢, = 0 (in investigating
the uniqueness of the zeroth-order solution there is no
first-order forcing by construction), yielding an ordinary
differential equation

(9{»:(]] = S|(10 (]8)

and an equivalent (from the definition of ¢; Equation
(10)) static margin condition

—S]GU + 35(11(; - 0

which, once we have specified the dependence of g; on
Hi, may be solved for Hy upon specification of S;.

Let us consider steady configurations of the first-order
perturbation. Substitution of Equation (17) into Equa-
tion (18) yields

85H1

(rzHl+/ L/Sl & ~+ const
Glm—FrV———c—v— | == :onst .
o Hy O:(Hy+b) So Sy o

where we have used the consequence of steady state and
continuity that

£
qo(§) = So [ agd€' .

0

Satisfaction of the zero flux condition at the divide £ =0

shows the constant of integration to be zero and we obtain

the first-order differential equation
H, BEHI - 51

il L Lo SR, Co 19
Bt Ry S Y W4

m
whose solution depends on the specific forms of Hy and
Si. Note that at the divide

H, _ S1(1+v)
Hy¢2 mS,
Let us consider the time-dependent case again. Since
gy is a linear function of §y,H; and 0:H, we can
construct a separable solution

Hy(& 1) = X(§T(),
S1(r) =54T(7)

(20)

where S.1(7) is an unknown amplitude of the first-order
span. The same time-dependence as H; follows because of
linearity. We use the construction

q (&) = Q(ET(7)

where

L, X 511)

Q=g
=qy| m— — = y—
o H J:(Ho + b) So

to write Equation (9) as

,I.‘ (Sﬂﬂin =i 6 Q)
A== : Al
T~ (SeX(€) — €50cHy) bl)
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where A is an cigenvalue of the problem. The boundary

conditions are
Q(0) = 0,pH (1) = py f1, (22)

i.e. a zero-[lux condition at the divide and an Archime-
dean condition at the margin. We can see immediately
from Equation (21) that solution of the equation

Sp](l() = HEQ = U,

(which is, apart from notation, exactly the same as
Equation (18)) vields a zero eigenvalue provided the
denominator of the righthand side is zero, which is
generally satisfied. This feature is obtainable for any
physically reasonable Sy, Hy, showing that the marine ice
sheet is neutrally stable.
eigenvalues and all the eigenvectors requires introduction
of the moving-boundary condition (13), which in

lomputation of the other

separable form is

T |8 0:Q%
A== M ) (23)
gF S(-l()ﬁ.](]

A convenient way of solving the eigen problem in
Equations (21) and (23) is to carry out a finite-difference
discretization and solve the resulting algebraic eigenvalue
problem. Hindmarsh (unpublished) discussed finite-dif-
ference discretizations for ice-sheet eigenvalue problems.
The eigen problems (21) and (23) are conveniently
rewritten

P ( ﬂ_‘_ voX  vSa ))
\°\H TaH +b) S

+ A(SoX - fSrlafHU) = Stag
mXG V0 X© V5
= Sado + & ("“ ( H o (Ho+b) s_[,))
— ABTh . 24}

The discretization used to compute the normal modes of
this equation set is given in Appendix A and in particular
a spectrum of eigenvalues A}, i € N are approximated by
a finite sequence. Results are discussed below.

5.2. Explicit time-stepping scheme and stability
analysis

We now examine the stability of a numerical marching
scheme to solve the marine ice-sheet evolution equation.
The evolution equation

O.H =a—8q/S + SEO:H/S

is discretized according to an explicit scheme where

superscript k refers to the time level and subscript @ refers

to the spatial point. This explicit scheme may be written
k k

(H +1 ‘qi—l)

i+1

k+1 _ ppk k Sk
Hj+ _H,. +Af|")", +A[S£ EAES}'

<

1
t A:c:_H (SA.)IM 1

rol—

—
bo
o

—
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where A, represents the time step,

by == (bt + 1Y) |ty - (- ).
(26)
and

5':&' = N—3 S ) 27
A5, — ) &

There is a virtual point such that Hfl = Hi" which
permits definition of F*

]
3

The stability of this scheme can
be assessed by computing its Jacobian (outlined in
Appendix B). The eigenvalues and eigenvectors can then
be calculated using standard techniques.

For stability, we require that the eigenvalues of the
)\:“‘ < 1. It is more useful to compare the
iterated-map eigenvalues A" with those for the dynamical

iterated map

system AL For a given mode i, the time solutions are
given by

T(t) = T;(0) exp(A{ 4;) ,
T}m(f] = T.(U)(A:“) .

for identical initial conditions, where superscripts d, and
m indicate the solutions for dynamical system and
iterated map, respectively. Dividing these equations and
taking logs yields

’11:](?] di m
lng(n“(to = AN A; — log(A") .

If the linearized dynamics of the iterated map and
dynamical system are equivalent, we therefore expect

1
3 = A—log(/\j”) , A —0. (28)
t

This provides a cross-check on our algorithms. Numerical
results comparing the dynamical system and the iterated
map are presented in the next section.

6. SOLUTION TO THE EIGEN PROBLEM
6.1. Some steady profiles

We need to construct some steady profiles about which to
perturb the ice sheet. This is easily accomplished by
integrating from the grounding line to the divide, as the
flux is known at any point. In all cases, we choose €' = 1.
At any grid centre i + 3, the flux equation

Hppy + Hp\™ B Hy — Hy\ g
2 A ) = b

is satisfied by solving the algebraic equation for Hy with
known Hj.). The grounding-line elevation is prescribed
by the flotation condition (1). Some profiles for =3,
m =5 are shown for different prescribed spans and

IIJ.'+1 = HA-
Ay

different prescribed accumulation rates are shown in
Figure 2. In all cases, the prescribed zeroth-order span
was Sy = 1. The three models 1,2 and 3 had flat bases
with b= (-1, -0.5,—0.25), respectively. The results
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Fig. 2. Steady marine ice-sheet profiles for different depths
to base. Horizontal axis &, vertical axis z, where 6 is an
operator representing a small change. Using  these
expressions, the N + 2 equalions comprising the iterated
map can thus be expressed in differentialed form as
Syt = Jnbyt. The stability properties of the iterated
map can be assessed by computing the eigenvalues of Jy,
using standard techniques ( Wilkinson, 1965).

agree with intuitive expectation; shallower water (i.e. a
smaller grounding-line thickness) leads to a greater slope
at the grounding line and a thicker ice sheet.

6.2. The eigenvalues

Eigenvalues for the dynamical scheme and equivalent
eigenvalues [or the iterated map have been computed and
are shown in Table 1. These show that there are two zero
eigenvalues and then a sequence of decreasing eigenva-
lues. The ecigenvalues can be interpreted as decay
constants with an associated scale inverse time-scale
[a]/[H]. The eigenvalues belonging to the governing
partial differential equation (PDE) and the iterated map
are identical to two significant figures. Note, in particular,
that the numerical scheme yields zero eigenvalues, giving
it the same neutral stability properties as the governing

Table 1. Table of computed eigenvalues. Column numbers
refer to the model, while the letter A refers to the eigenvalue
A;l computed from the perturbation of the dynamical system
and N to the equivalent quantity 1/ Ay log(A") computed
JSram the iterated map provided by the explicil marching
scheme, Discretization interval Ae = 0.005 and the time
7 o i - 2
step in the explicit marching scheme was Ay = A;.

A IA IN ZA 2N 34 3N

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 —1:9 139 4.9 4.9 6.5 —6:5

4 32 32 28 =28 —34: 54

3 =1Jgr =110 —79 —79 84 RS
111
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Fig. 3. Fust six eigenvectors for the perturbation about

. * . . .
model I represented in space () and with their associated
span projections (o).

equation. No positive eigenvalues, which would have
indicated physical or numerical instability, were found.

Scale theory and more detailed computations (Hind-
marsh, unpublished) suggest that the slowest relaxing
mode for land-based ice sheets should have eigenvalues
around m + v, while the eigenvalues reported here are
substantially less. This means that the linearized time
constant ol a marine ice sheet is substantally longer than
those for land-based ice sheets.

6.3. The eigenvectors

The eigenvectors for model 1 (specified in section 6.1) are
plotted in Figure 3.
components arranged in order of increasing &, with the
span-shift component at the righthand end. It should be
noted that the generating eigen problem is not self-adjoint
and that these eigenvectors are therefore not orthogonal.

Excepting one of the pair of ecigenvectors with

These show the eigenvector

associated zero eigenvalue, all the eigenvectors take on
a value of exactly zero at the grounding line. The second
eigenvector alone has a non-zero value at the grounding
line. One would expect one of the eigenvalues to have this
property, as this allows the solution to admit changes in
sea level, which necessarily cause the elevation at the
grounding line to change. That linear combination of the
first and second eigenvectors, which has value zero at the
divide, created the vector corresponding to a contraction/
expansion ol the coordinate svstem, which is what
happens during a sea-level rise.

The first cigenvector corresponds to a shift along the
equilibrium manifold. This was demonstrated numeri-
cally by comparing it with the solution to the lincar
ordinary differential equation (ODE) (19) for the shift
along the equilibrium manifold. Agreement was found to
four significant figures. The third eigenvector and all the
remainder have negative eigenvalues, indicating linear
stability. The third and first eigenvectors are colinear,
apart from their span component.

6.4. Stability

Hindmarsh (1993) demonstrated the neutral equilibrium
property for a model with a reduced set of degrees of
freedom but failed to demonstrate it with a numerical
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model. We have shown analytically that the uncoupled
marine ice-sheet model has a zero eigenvalue whenever
the steady solution lies on the equilibrium manifold. and
we have now devised a numerical model which exhibits
stability on the equilibrium manifold. The finite-differ-
ence model of Hindmarsh (1993), while consistent with
the partal differental equations, exhibited a slowly
growing long wavelength instability. This unphysical
instability has been tamed and has been shown to be
tamed in the present model. Nevertheless, marine ice
sheets possess a dynamical property, the zero eigenvalue
along the equilibrium manifold, which necessitates some
care in the construction of numerical models.

Since not all the eigenvalues are negative in sign, we
cannot say that the system is asymptotically stable.
Normally, in assessing the stability of systems with zero
eigenvalues, the second-order stability needs to be
considered. We have shown that there exists a zero
eigenvalue along the equilibrium manifold, with the
implication that in this sub-space stability has been
considered to all orders. We should be careful in
presuming, however, that this means the non-linear
stability of the system has been fully understood. Never-
theless, the results from the next section do not suggest
that anything highly anomalous is happening. The results
in the next section do not indicate instability, so we
should tentatively state that marine ice sheets are
Lyapunov stable,

7. INTEGRATIONS OF THE EXPLICIT SCHEME

We carry out some numerical integrations ol the steady
profile corresponding to model 2, where b= —0.5,
changing accumulation rate and sea level.

The algorithm has been tested by checking it against
numerical solutions of the lirst-order Equaton (13). The
equations have been expressed in dimensionless form and
the results apply to any combinations of the scales

i:f

3

i
*

Fig. 4. Elevation at the divide (vertical axis) as a_function
of lime (horizontal axis) for experimenl 1, where the
accumulalion rale was increased and decreased ( solid line)
and experiment 2, where sea level was raised and lowered
( dotted line ).
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[H]. [S].[C]. [e] chosen to satisfy

"
[a] [5]"*

In particular, we note that the time-scale [{] = [H]/]a].

In experiment 1 reported below, the discretization was
(L\,.AE) = (1()_;.2 % ll]fl')) while in experiment 2 the
discretization was (/_\,.. /_\g_) = (107?,107?). The scheme is
of accuracy O(4;, A).

7.1. Experiment 1: change in accumulation rate

% and the

The accumulation rate was increased by 25
system left to equilibrate for two time units. Subsequently,
the accumulation rate was restored to its original value.
The span increased from 1.0 to a new equilibrium value
1.024 and decreased after the accumulation rate was
reduced to a value 1.00, The divide thickness increased
from 1.35 to 1.40 and returned to 1.35 (Fig. 4). The key

point is that this change was essentially reversible.

7.2. Experiment 2: change in sea level

Sea level was raised by 20% over half a time unit and the
svstem left to equilibrate for two time units. Subsequently,
sea level was lowered to its original position over hall a
time unit and left to equilibrate over two time units.
Figure 4 shows the results; during the phase ol rising sca
level, the divide elevation decreased. I do not understand
why this should happen; the ice should be simply floated
off and the inland ice undisturbed, as in the shallow-ice
approximation the flow of the inland ice is not aflected by
the proximity of the grounding line. During the reverse
phase, the ice sheet has recovered its original configura-
tion almost exactly. A study of the effect of grid size on the
cyele showed that the minimum span increased rather
slowly with decreasing grid size and the result reported
here would almost certainly  be changed by further
subdivision ol the computational grid.

[t seems that small errors introduced, presumably by
the moving grid term SEIH /DL, are non-linearly
amplified by the flux relationship, which is very sensitive
to small changes in ice-sheet elevation. Since the marine
ice sheet is at best only Lyapunov stable, errors are not
dissipated as they are in land-based ice sheets and the
eftect is cumulative, leading to a steady drift from the true
solution as errors are injected into the {lux relation from
the moving grid term. In wruly dissipative systems, errors
decay and thus erroneous solutions decay on to the true

solution. An example of this is shown in figure 12 of

Hindmarsh and others (1987) and this has been discussed
on p.207 08.

8. CONCLUSIONS

This paper has been concerned with confirming the
dynamical consistency of a finite-difference scheme for
solving the uncoupled marine ice-sheet equation and
the governing equations. An uncoupled marine ice
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sheet is one where the influence of the ice-shell stress
fields is not apparent upstream of a narrow boundary
layer near the grounding line. The kinematical formula
for grounding-line advance and retreat used in this
paper respect mass conservation but, in the transition
zone (which has horizontal length scale of a few ice-
sheet thicknesses), the velocity is not computed
correctly for both conlined and unconlined ice sheets.
T'his does not mean that mass is no longer conserved.
The assumption used in this paper. which is based
upon strong computational evidence, is that the
incorrectly computed flow in the transition zone does
not aflect the large-scale {low of the ice sheet and that
the flow in this zone is stable in the sense that steady
ice-sheet profiles can be maintained.

The uncoupled marine ice-sheet system has been
shown to possess a zero eigenvalue corresponding to shifts
along the equilibrium manifold. This is the line in phase
space which defines corresponding equilibrium  thick-
nesses and spans, and should be contrasted with land-
based ice sheets, which simply have a number of points in
phase space where the thickness and span are in
equilibrium. An explicit finite-difference scheme has been
constructed which maintains long wavelength stability.
In particular, this scheme has been shown to possess an
equilibrium manifold. Like all explicit schemes [or ice-
sheet flow, this scheme shows instability at short
wavelengths when time steps are too long, but this
problem could presumably be rectified by use of an
implicit scheme, This is the first time that a numerical
model of a marine ice sheet has been shown o be
dynamically consistent with the governing equations.
Such demonstrations of consistency are a necessary
prerequisite for modelling studies of marine ice-sheet
stability. Moving-grid methods are the easiest way to
assess the stability of a numerical scheme for the marine
ice-sheet system.

Numerical integrations do not suggest the system is
non-linearly unstable but we have vet to devise a scheme
which computes the response to sca-level rise correctly.
Evidently, errors accumulate as a result of the zero
cigenvalue rather than dissipating as they do in other ice
sheets. This effect seems to manifest itsell more when the
ice sheet is being forced by sea-level changes than by
accumulation-rate changes.
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APPENDIX A

CONSTRUCTION OF THE ALGEBRAIC EIGEN-
VALUE PROBLEM FOR THE PERTURBATION
OF THE GOVERNING EQUATIONS

We divide the domain € € [0,1] into N intervals and
specify X at N + 1 points indicated by a counting index,
i € (0, N). The interval size is denoted by A¢ = 1/N. At

the grid centres, we compute

| X e X+ S,
Q”%:r" m + v = —
1o il B i g

H, * dE(Hu = h"?) =0

it m(Xf A ‘X't'-rl)
=y - o
28"

p( X! — X) B

— =

T - 1
Oc(Hy? +%) A, So
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. . ~ o . . .
and similarly for @7 and discretize according to

Blgfme® =

A
A S i+3 i—3\ 1ri i—% v
CI'J !Xr+l =8 (Cl] :_C” .)X.' _crU 2 i L
= A€

(Cvi‘*%Xﬁ-l _ (Cv;*‘é + Cvi‘%)‘}{i 4 Ci‘%Xr'—l)

g 7 ;
A
i+4 i-1
0" =4y ") 84
i ;
AE .5()
where
L q;%?'n ! qi%u
i~ ) it h
Ort= R
“0 R ¢ ) T
2H," O (H,* + b2

For the point i = 0 where the boundary condition is zero
flux (see Equation (22)) we simply use a symmetry
condition with a virtual point X=! = X! and coefficients

-4 i - -
Cu =0y Gy = Ci
to obtain
30y 0 :
3:Q" g =~ K] &y
/_“sg Ay Sp

We may then discretize Equation (24) for i € (0, N — 1)
according to

OEQ" — Saap + /\(Sl]Xi i (Ea&H()i S(.‘l) =0

and

({){(,?‘\'_i + S0y — )\(9{.]” Sq=0

and where
) J.\ o J_’\fl
Chfjee—————.
Ag
These relations can be written as a matrix eigenvalue
problem

Ay+ ABy=10

where yb = [X“. v g TR S.,l} and the eigenvalues
and eigenvectors computed using standard techniques
(Wilkinson, 1963).

APPENDIX B

STABILITY OF AN EXPLICIT MARCHING
SCHEME

In this Appendix, we carry out one step of the analysis of
the stability of the iterated maps in Equations (25) and
(27) by computing their Jacobians. The time index is
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superscript & and the space index is subscript . To this
end. we form

OF"F

itg

OHF

i+l

= —Df, (Mg +v)

where F is defined in Equation (26) and

DF*
2+ , = ke T
o~ P (Mg~ v)
where
2 NG 1) 3 p—1
DLé: ( {Hnl—l_Hf}) H.'L Hr' )
M. :E (Hf-H HA)
T2 (B A
This allows us to write
OHM A8k A OF
OHY, T 2ASET Ai(ghy ()Hf‘il
HH;'.‘+1 A! aF .,‘:_T ().Fff'_%
OHf AL\ 8H  BAY
which, upon defining
, A
h=———%\|
AL’+1(SA.)V 1
vields
QHI AySFE i
()Hf;tl - 2A: 5% * #YD"I-'E (y F Alii%) '

‘ k+1
0;—;;{',; =1-19 (V(Df;;. Bl Df%)
}_ ! 3

N (Df My~ DLLI”" _'l')) -

Symmetry around the divide vields a special form at i = 0
which is

JHM! ;
8][1]”“ = 2v"Di‘ (1/ + M_l‘) ,
: 3 3
AHEH :
{6# =i — ‘ZU"Di" (r/ - M%) -
0 = :

We can also write down

5)2 el o (HY, — HY
d“[{-l“k - A’ 5!.".{ ( i+1 : i‘)—l)
as "-’—“‘{( gk)*
o F‘
i Af (LJ' i ) .'+- r—-
AH' l( S;,)l"'
and
ot _  (Hh, L)
ask Tt 248k

The next step is to consider the span-evolution equation
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and form

st 1
OHy  (AeS%)"(HY — HY_,)
OFy_, 1
' ( ok~ HE - Hg‘,_,)‘
ost 1
OHY_,  (AeS%)"(HY — HY_,)

(7
B ;

1
- (AcsH)" (Y - HE ) (

G‘[J,J 1
- ;
om,, " HL - HL_ )

d Sk dF K
o ,‘\r o)

or

If we note
ot
()H* —Di,_%(ﬂf_\.,é + y)
and
aF}

- S L
()HA\ i - _Di\'—:g(fu_\r_;j — y) .

we can write

a8k 1

OHY,  (AcS¥)"(HE — HY )
1
(28 s ) )
oSt 1
eHY_,  (HY —HE )
_ ( — Dy (Myy—v) + Dy (My_y+0)
N N-1
v (P(is )
OHY_,  (AcSM(HY —HE )’
og¢  (Fhy—Fby) -+ 1)A" (84"
ash — (A:S*)" (HY, — HE )
Finally, we note that

RS

and that we can compute

. . Sk ()S‘ )

881 = 65K 1+ Ay | + 7 ASHE, j (N - 2,N)
a5 OH d

where 6 is an operator representing a small change. Using

these expressions, the N +2 equations comprising the

iterated map can thus be expressed in differentiated form

as

k1 k
oy =y
The stability properties of the iterated map can be

assessed by computing the eigenvalues of J,, using stan-
dard techniques (Wilkinson, 1965).
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