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Oblique instability of a stratified oscillatory
boundary layer
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The instability and dynamics of a vertical oscillatory boundary layer in a container filled
with a stratified fluid are addressed. Past experiments have shown that when the boundary
oscillation frequency is of the same order as the buoyancy frequency, the system is
unstable to a herringbone pattern of oblique waves. Prior studies assuming the basic
state to be a unidirectional oscillatory shear flow were unable to account for the oblique
waves. By accounting for confinement effects present in the experiments, and the ensuing
three-dimensional structure of the basic state, we are able to numerically reproduce the
experimental observations, opening the door to fully analysing the impacts of stratification
on such boundary layers.
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1. Introduction

There has been considerable interest in how a stratified ambient affects the stability and
dynamics of several canonical flows, such as plane Couette (Facchini et al. 2018), plane
Poiseuille (Le Gal et al. 2021), Taylor–Couette (Molemaker, McWilliams & Yavneh 2001;
Le Bars & Le Gal 2007) and the Stokes oscillatory boundary layer (Robinson & McEwan
1975). The impacts of stable stratification on boundary layer instability and transition have
been extensively studied in the context of atmospheric boundary layers. In this setting, the
boundary in question has typically been modelled as flat and horizontal, with stationary
external forcing (Mahrt 2014). The stability of boundary layers on inclined walls with a
stratified ambient fluid have also been studied, for instance in the experiments of Hart
(1971), where a plate forming a lower boundary of a container with linearly stratified fluid
was tilted at 42◦ from the horizontal and oscillated in its own plane in the direction of
maximum slope. When the forcing amplitude was small and the forcing frequency was
comparable to the buoyancy frequency, the boundary layer flow became unstable. Using
perturbation analysis, Candelier, Le Dizès & Millet (2012) studied the inviscid stability
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of stably stratified, non-inflectional, unidirectional stationary boundary layer flows on a
wall inclined with respect to gravity. They found the boundary layer flow to be unstable
for any inclination, and the growth rate of the instability to be greatest when the wall
was vertical, i.e. when the shear and the stratification were orthogonal. Note that their
boundary layer flow was horizontal, whereas that in Hart (1971) was in the direction of the
inclination. Chen, Bai & Le Dizès (2016) studied the viscous stability of a boundary layer
flow on a stationary vertical wall in a stably stratified fluid, again with the boundary layer
flow in the horizontal direction. Along with the two-dimensional Tollmien–Schlichting
instability, they also found a more unstable three-dimensional instability, called radiative
instability, resulting from the coupling between the boundary layer shear and internal
waves associated with the ambient stratification. The nonlinear evolution and development
of the instability was not pursued.

Blanchette, Peacock & Cousin (2008) studied the stability of the boundary layer on the
sidewall of a container filled with linearly stratified fluid, moving vertically at a constant
velocity (using a conveyor belt rather than a long moving wall). Here the shear in the
vertical wall layer was orthogonal to the stratification, but the flow in the layer was also
in the vertical direction, was inflectional in the boundary layer, and diminished rapidly
with distance normal to the moving wall. This is in contrast to the set-up considered in
Chen et al. (2016), where the vertical wall was stationary and the forced horizontal bulk
flow monotonically came to rest at the wall. Above a critical wall velocity, Blanchette et al.
(2008) found the boundary layer to lose stability to a nominally two-dimensional (spanwise
invariant) cellular pattern that travelled in the opposite direction to the moving boundary.
Once nonlinearly saturated, the cellular structures remained within the boundary layer
region.

The experiments of Blanchette et al. (2008) were essentially the zero-frequency
analogue of the earlier experiment by Robinson & McEwan (1975), who, like Hart (1971),
forced the vertical wall (or rather, a slat covering part of the wall) to oscillate. The
resulting boundary flow is a stratification-modified oscillatory Stokes layer. The oscillating
slat in the rectangular container is akin to a wavemaker. A rectangular container with a
wavemaker at one sidewall is a very commonly used geometry in the laboratory study
of internal waves motivated by oceanographic applications (e.g. Gostiaux et al. 2007;
Bordes et al. 2012; Dauxois et al. 2018). The nature of the wavemaker used by Robinson &
McEwan (1975) is different (a vertically oscillating flat slat rather than slots oscillating
horizontally), but both are deployed in a rectangular container. The other difference
between these studies is that Robinson & McEwan (1975) were interested in the instability
of the boundary layer rather than the internal wave beams.

The oscillatory Stokes boundary layer flow in a homogeneous fluid is very stable, at
least in idealized semi-unbounded settings (von Kerczek & Davis 1974; Blennerhassett &
Bassom 2008). However, for a flow subjected to a stable buoyancy stratification, Robinson
& McEwan (1975) found an unexpected (and up to now unaccounted for) instability with
a distinctive pattern of oblique waves in the oscillatory boundary layer. Figure 1 includes
a reproduction of their experimental observation of these oblique waves. Von Kerczek
& Davis (1976) tried to study the stability of this flow, but at the time, the complexities
of the Floquet analysis of the confined experimental flow were challenging, and several
idealizations were needed. These included assuming the base flow to be unidirectional,
the instability modes to be spanwise invariant and the vertical direction to be periodic.
These idealizations, in particular the spanwise invariance, precluded any consideration of
the observed oblique modes. In the present study, we use direct numerical simulations
to study the fully nonlinear three-dimensional flow corresponding to the experiments of
Robinson & McEwan (1975), maintaining the effects of confinement.
933 R3-2
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Oblique waves in stratified oscillatory boundary layers
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Figure 1. (a) Schematic of the rectangular cavity filled with a stably stratified fluid; the (blue) slat oscillates
vertically in the z direction with non-dimensional amplitude α and frequency ω. Gravity points in the negative
z direction. (b) Image from Robinson & McEwan (1975), using a 30.5 cm f/8 schlieren system aligned normal
to the slat; flow conditions correspond to buoyancy number RN = 3 × 105, Prandtl number Pr ≈ 700, forcing
frequency ω = 0.87 and forcing velocity amplitude α ≈ 0.02.

Even in the absence of stratification, confinement effects are important: the oscillatory
Stokes layer in a confined cavity is rolled up by the orthogonal endwalls (Vogel, Hirsa
& Lopez 2003). The resulting rollers tend to fill the cavity and are prone to instability,
primarily breaking the half-period-flip symmetry (Blackburn & Lopez 2003b; Leung et al.
2005; Blackburn, Marques & Lopez 2005). This spatiotemporal symmetry-breaking has
much in common with the instabilities of the von Kármán vortex street in the wake of a
cylinder (Blackburn & Lopez 2003a; Marques, Lopez & Blackburn 2004). Of particular
interest here are the modulated travelling wave modes that are aligned obliquely to the
rollers. Is there a connection with the oblique modes reported in Robinson & McEwan
(1975)? This is not clear. What is clear is that stratification completely destroys the rollers.
In a two-dimensional setting, only planar internal wave beams are admitted into the cavity
along the characteristics of the stratified medium (Wu, Welfert & Lopez 2018). What
happens in three dimensions, especially when the oscillating boundary has a span which
is a fraction of the span of the container, as in the experiments of Robinson & McEwan
(1975), is addressed here.

2. Flow configuration and governing equations

The flow system shown schematically in figure 1 mimics the geometry and parameter
regimes explored experimentally in Robinson & McEwan (1975); also shown is a schlieren
image of the oblique waves from their experiment. A rectangular container of height h,
span s and length � is filled with a fluid of kinematic viscosity ν, thermal diffusivity
κ and coefficient of volume expansion β. All four vertical walls are insulated (zero
flux) and the top and bottom walls are maintained at constant temperatures, with the
top hotter than the bottom; their temperature difference is �T . All walls are no-slip
and stationary, except for the ‘front’ wall, which has a centred slat of width s/2 that
oscillates vertically with angular frequency Ω and maximal velocity W. Gravity g acts in
the downward vertical direction. If the slat is stationary, the fluid is stably linearly stratified.
The system is non-dimensionalized using h as the length scale and 1/N as the time
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scale, where N = √
gβ�T/h is the buoyancy frequency. A Cartesian coordinate system

x = (x, y, z) ∈ [−0.5s/h, 0.5s/h] × [0, �/h] × [−0.5, 0.5] is fixed with its origin at the
centre of the front wall, and the corresponding velocity is u = (u, v, w). The governing
Navier–Stokes–Boussinesq equations are

ut + (u · ∇)u = −∇p + Θ ẑ + 1
RN

∇2u,

Θt + (u · ∇)Θ = −w + 1
Pr RN

∇2Θ, ∇ · u = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where p is the total pressure, Θ = T − z is the deviation temperature, RN = Nh2/ν is the
buoyancy number and Pr = ν/κ is the Prandtl number. The non-dimensional vertical
velocity of the slat is w = α sin(ωt), with forcing velocity amplitude α = W/Nh and
frequency ω = Ω/N. The non-dimensional peak-to-peak vertical displacement of the slat
then is 2α/ω.

The geometry used in Robinson & McEwan (1975) had aspect ratios s/h ≈ 1.5
and �/h ≈ 0.38, whereas we use s/h = 1 and �/h = 1/3. They used salt rather than
temperature as the stratifying agent. It was suggested by von Kerczek & Davis (1976)
that the observed instabilities were due to the large Prandtl number of salt. To test
this, we consider Prandtl numbers Pr = 0.7 (air), Pr = 7 (water), Pr = 70 (silicon oil)
and Pr = 700 (analogous to salt water stratification), as well as Pr = 1. The strength
of the stratification is quantified by RN. The experiments of Robinson & McEwan
(1975) were conducted with RN ≈ 2 × 105 and 3 × 105; all simulations presented here
have RN = 3 × 105. We limit the discussion to two forcing frequencies: ω = 0.87, at
which the experiments report oblique waves, and ω = 0.51, where oblique waves are not
observed experimentally. The top and bottom boundary conditions also differ between
the experiments and our simulations. Using salt stratification, the bottom wall in the
experiment has zero flux, and so a stratification purely linear in z is impossible. Also,
in the experiments the top surface was open to the air rather than a rigid no-slip lid (issues
concerning the meniscus and contact line dynamics at the vertically oscillating slat were
not discussed).

The system symmetries are a vertical half-period-flip, Hz, and a spanwise reflection,
Kx; their actions are

Hz : [u, v, w, Θ](x, y, z, t) �→ [u, v, −w, −Θ](x, y, −z, t + π/ω),

Kx : [u, v, w, Θ](x, y, z, t) �→ [−u, v, w, Θ](−x, y, z, t).

}
(2.2)

The governing equations are solved using a Chebyshev pseudo-spectral code which has
been used to study other oscillatory forced stratified flows (Yalim, Lopez & Welfert 2018;
Yalim, Welfert & Lopez 2019; Yalim, Lopez & Welfert 2020; Grayer et al. 2020, 2021;
Buchta et al. 2021). Up to 161 Chebyshev collocation points in each of the three spatial
directions and 1000 time steps per forcing period were used. The initial conditions used
were either starting from rest or starting from a solution at a lower α for given RN, Pr and
ω. The vertical velocity on the slat wall (y = 0) is regularized, as in Lopez et al. (2017),
from an oscillating step function to

w(x, 0, z, t) = rx(x) rz(z) α sin(ωt), (2.3)
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Figure 2. Snapshots at maximal vertical velocity of the slat, showing plane sections of Θz of the symmetric
limit cycle for RN = 3 × 105, α = 10−4, with Pr as indicated for (a) ω = 0.51 and (b) ω = 0.87. The locations
of the planar slices, indicated by magenta lines, are x = 0 (vertical streamwise midplane), y = 0.01 (vertical,
spanwise in the slat boundary layer) and z = 1/

√
8 (horizontal, at roughly 3/4 height).

where

rx(x) = 1
2

[
tanh

x + 0.25
δ

− tanh
x − 0.25

δ

]
and rz(z) = 1 − 2e−1/2δ cosh

( z
δ

)
,

(2.4a,b)
with δ = 0.02.

3. Response flows

For forcing velocity amplitudes α below some critical value αc (which depends on ω, Pr,
RN and the aspect ratios), the response is a synchronous symmetric limit cycle. Figure 2
shows snapshots in three planes of the vertical gradient of the deviation temperature, Θz,
at RN = 3 × 105 and α = 10−4, for ω = 0.51 (top row) and ω = 0.87 (bottom row), at
various Pr. For the large RN considered, the flow is largely unaffected by Pr for Pr >

1. For Pr > 1, viscous diffusion, controlled by 1/RN, dominates over thermal diffusion,
controlled by 1/PrRN. For forcing velocity amplitudes α below critical (αc ∼ O(×10−2)
in this parameter regime), the response flows at a given forcing frequency ω scale with α.
The kinetic energy scales with α2, whereas the kinetic energy of the mean flow scales with
α4. For very small α, the mean flow is extremely weak, but since it grows faster with α,
at a critical α the synchronous limit cycle becomes unstable, breaking one or both of the
symmetries.

The vertical oscillation of the slat creates momentum imbalances along edges of the slat.
At low forcing velocity amplitude, these imbalances are mostly confined to the top and
bottom edges of the slat, where it meets the horizontal walls of the container. As a result,
these edges are sources of vorticity and emit wave beams carrying energy away from the
slat. Along the top and bottom horizontal edges, (x, y, z) = (x, 0, ±0.5) with |x| ≤ 0.25,
the beams are directed at angles ϕ = ∓ cos−1 ω relative to the vertical. At large RN, the
angles are essentially determined by the inviscid dispersion relation for internal waves in a
linearly stratified medium, independently of Pr (Sutherland 2010). The beams emanating
from these edges propagate in the interior, forming a pair of planar vortex sheets, while
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beams emanating from the corners at (x, y, z) = (±0.25, 0, ±0.5) propagate along rays of
cones, forming quarter-conical vortex sheets that merge smoothly with the planar sheets.
The vortex sheet emitted from the top is a half-period out of phase with that emitted from
the bottom, due to the vertical oscillation of the slat.

At sufficiently large RN, the wave beams originating from the edges are only weakly
damped as they propagate along straight lines, and eventually reflect on the walls of the
container. The reflection laws for internal waves in stratified fluids are similar to those
for inertial waves in rotating fluids, and are in general different from standard Euclidean
reflection laws (Phillips 1963; Wu, Welfert & Lopez 2020), unless the reflecting surface
is parallel or perpendicular to the direction of stratification (or the axis of rotation), as
is the case here for all walls of the container. Figure 2 illustrates the patterns of the
beams in three planes, x = 0 (vertical streamwise midplane), y = 0.01 (vertical, spanwise
in the slat boundary layer) and z = 1/

√
8 (horizontal, at roughly 3/4 height), at two

forcing frequencies ω. For ω = 0.51 and ω = 0.87, the beams form angles ϕ ≈ ±59.3◦
and ϕ ≈ ±29.5◦, respectively, with the vertical direction. This is most obvious in the
streamwise midplane, showing the mid-cross-sections of the planar structure of the vortex
sheets emitted from the top and bottom edges of the slat. At both these frequencies, the
beams are nearly retracing (in the linear inviscid setting, they would be retracing for
ω ≈ 0.5145 and ω ≈ 0.8321), reflecting a number of times off the back and front walls
before reaching a corner. The planar structure of the vortex sheets within the width of the
slat is manifested by their near spanwise invariance in this region in the horizontal cut at
z = 1/

√
8. The vertical plane y = 0.01 shows the impact of the planar sheets reflected off

the back wall and impacting the front wall in the region of the slat. Also evident are the
traces of the conical sheets from the corners. However, these are much weaker at the low
forcing velocity amplitude used (α = 10−4).

As noted above, the basic state response flows for α < αc have magnitudes of u and
Θ that scale linearly with α. The flows are never unidirectional, even for exceedingly
small α. The vertical oscillation of the slat produces horizontal temperature gradients in
the slat-normal y direction within the boundary layer (but not directly at the boundary,
since it is insulating), as isotherms are dragged along by the oscillating slat. This leads
to a baroclinic production of vorticity in the spanwise x direction. Additionally, because
the width of the slat is shorter than the width of the front wall, there are also horizontal
temperature gradients in the x direction at the edges of the slat, since the temperature on
the stationary parts of the front wall remains essentially constant whilst the temperature on
the slat, at any given height z, oscillates. These horizontal temperature gradients lead to a
baroclinic production of vorticity in the y direction, and so the vorticity vector is not solely
pointing in the spanwise direction, as it would in an idealized two-dimensional spanwise
invariant setting. Note that even if the slat extended the entire width of the front wall, there
would also be horizontal temperature gradients in the x direction due to the temperature on
the lateral walls of the container remaining essentially constant. Furthermore, the spanwise
gradients in the vertical velocity, ∂w/∂x, in the regions where the stationary front wall and
the oscillating slat meet also contribute to the y component of vorticity. This all results
in non-zero helicity density, H = u · (∇ × u), in the slat boundary layer. Its magnitude
scales with α2 (for a unidirectional flow, the helicity density is identically zero: vorticity
is orthogonal to velocity).

Figure 3 illustrates Θz (top row) and H (bottom row) for the flows at Pr = 7 and ω =
0.87 as α is increased from below to above αc. The flows obtained at α = 0.01 up to
α = 0.018 remain very similar to the α = 10−4 flow (see figure 2 for Pr = 7). The Θz
contours in the various planes are spatially similar, and their magnitudes increase linearly
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Figure 3. Plane sections of (a) Θz and (b) H at RN = 3 × 105, Pr = 7, forcing frequency ω = 0.87 and forcing
velocity amplitudes α as indicated. The instantaneous snapshots are shown at the maximal vertical velocity of
the slat. The locations of the planar slices, indicated by magenta lines, are x = 0 (vertical streamwise midplane),
y = 0.01 for Θz and y = 0.005 for H (vertical, spanwise in the slat boundary layer), and z = 1/

√
8 (horizontal,

at roughly 3/4 height). Supplementary movie 1, available at https://doi.org/10.1017/jfm.2021.1102, animates the
α = 0.0195 case over one forcing period.

HΘz HΘz

(a) (b)

Figure 4. Snapshots at maximal vertical velocity of the slat, showing isolevels Θz = ±α and H = ±α2 for
RN = 3 × 105, Pr = 7, ω = 0.87, at (a) α = 0.0180 and (b) α = 0.0195. Supplementary movie 2 animates the
responses over one forcing period.

with α. The helicity density plots show that the response in the bulk away from the slat
boundary layer continues to behave like planar waves with zero helicity density. In the
slat boundary layer, helicity density grows with α2. Figure 4(a) gives a three-dimensional
perspective showing isosurfaces of Θz and H for the α = 0.018 flow, and supplementary
movie 2 includes an animation of these over one forcing period. These, together with
figure 3, illustrate the Kx and Hz invariances of the base flow response.

Increasing α above 0.018 leads to the breaking of these two symmetries. Figure 3 also
includes the planar cuts of Θz and H at α = 0.019 and α = 0.0195, from which the oblique
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waves in the slat boundary layer are clearly evident and bear a striking resemblance to the
experimental waves (see figure 1b). Supplementary movie 1 animates the planar cuts of
Θz and H over one forcing period for α = 0.0195. Figure 4(b) and supplementary movie
2 further illustrate the α = 0.0195 flow. The spanwise reflection Kx is clearly broken;
the breaking of the spatiotemporal Hz-symmetry is more subtle, as the response flow
is no longer synchronous with forcing. It is now quasiperiodic with a second frequency
associated with a very slow drift of the oblique wave structure. The figures and movies
show that the oblique waves reside in the slat boundary layer. The planar cuts of Θz in
supplementary movie 1 indicate that there are weak emissions from the oblique waves in
the boundary layer into the interior flow; these appear to merge with the beams from the
upper and lower edges of the slat.

To further explore the slow dynamics associated with the oblique waves, we reduce
the Prandtl number from Pr = 7 to Pr = 1, keeping the other parameters the same: RN =
3 × 105, ω = 0.87 and α varying in the neighbourhood of 0.02. This allows numerical
simulations with spatial resolution of 1013 instead of 1613 collocation points, and 100
instead of 1000 time steps per forcing period, reducing the overall computational cost
by a factor of 40. The nature of the oblique waves at Pr = 1 is qualitatively the same,
and the quantitative differences are small (thicker boundary layer and larger wavelength
of the oblique waves); the oblique wave states are robust and not limited to large-Pr
flows. A snapshot of the helicity density at α = 0.02 is shown in figure 5(a). For Pr = 1,
αc ≈ 0.0196, at which the slow modulation period is τmod ≈ 1000 forcing periods, whereas
at α = 0.020 it is ≈ 615. The behaviour over τmod for α = 0.02 is shown in supplementary
movie 3 by strobing H every forcing period in the planes x = 0, y = 0.005 and z = 1/

√
8.

The slow modulation corresponds to drifts in the oblique waves in diagonal directions. The
spanwise reflection, Kx, is clearly broken and the solution has a strong bias to the +x side
of the slat throughout the entire modulation period. Applying the Kx-symmetry operation
at any instant in time and using that as an initial condition results in the Kx-conjugate
state, with a strong bias to the −x side. Repeating the simulation, but restricted to the Kx
subspace, results in another oblique wave quasiperiodic state. The corresponding snapshot
of H is shown in figure 5(b). The boundary layer thickness and the oblique wavelength
are the same as in the full space, but the ±x biases are removed, and H = 0 on the
vertical midplane x = 0. The modulation in the subspace also corresponds to the oblique
waves drifting diagonally, but now being Kx-symmetric, their superpositions result in
apparent vertical drifts (see supplementary movie 3). Figure 5(c) shows the power spectral
densities of the spanwise velocity at a point, u(1/

√
8, 1/

√
72, 1/

√
8, t), for the oblique

wave solutions in the full space and the Kx subspace. The spectra are essentially the
same for response frequencies at and above the forcing frequency ω. The low response
frequencies appear two orders of magnitude lower than ω, and the lowest frequency peak
for the full space solution is approximately twice that in the Kx subspace. For Pr = 7,
τmod ≈ 150 at α = 0.0195 and grows to τmod ≈ 4500 at α = 0.019; this together with
the τmod behaviour at Pr = 1 is suggestive of infinite-period bifurcations akin to those
observed in periodically-forced Taylor–Couette flow (Lopez & Marques 2000).

The experimental oblique waves at ω = 0.87 (Robinson & McEwan 1975) shown in
figure 1(b) were driven by a peak-to-peak displacement of the slat corresponding to
the distance between the two thick black horizontal lines in the middle of the schlieren
image. This distance is approximately 2.8 cm and the vertical depth of the fluid in the
container is approximately 60 cm, giving a relative total displacement of approximately
0.047. The forcing velocity amplitude for the simulated oblique waves described earlier
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Figure 5. Snapshots at maximal vertical velocity of the slat, showing isolevels of H for RN = 3 × 105, Pr = 1,
ω = 0.87 and α = 0.02 in (a) the full space and (b) the Kx-symmetric subspace. Supplementary movie 3 shows
strobes every forcing period of the full-space helicity density over the slow ∼103-period response. (c) Spectral
power density (PSD) of the spanwise velocity at a point, u(1/

√
8, 1/

√
72, 1/

√
8, t), for the two cases shown in

(a,b); the response frequency is scaled with ω.

was α = 0.0195. This corresponds to a slat total displacement of 2α/ω = 0.045 over one
period. Thus, the experimental oblique waves have been reproduced numerically at the
same RN = 3 × 105, forcing frequency and forcing amplitude, but very different Prandtl
numbers (7 compared to 700). Furthermore, the wavelength of the oblique waves, in
both the experiment and our simulation, is approximately the total slat displacement (see
figures 1b and 3).

4. Discussion and conclusions

The oblique wave instability of the stratified oscillatory boundary layer observed by
Robinson & McEwan (1975) has finally been reproduced numerically in this study, with
wavelength and critical forcing amplitude being well matched. The basic state is not
unidirectional, and the oscillatory boundary layer has non-trivial helicity. Internal wave
beams are driven in the interior for any non-zero forcing amplitude, and their strength
(velocity magnitude) increases linearly with the forcing amplitude, whereas the helicity,
which resides almost exclusively in the slat boundary layer, increases quadratically with
the forcing amplitude. It is possible that interactions between the wave beams and the
slat boundary layer trigger the boundary layer instability, leading to the oblique waves.
However, the oblique wave instability does not affect the internal waves (at least for α not
too far above critical). The oblique waves appear to introduce very weak disturbances
which merge with the internal wave beams in the interior flow. The new frequency
introduced by the oblique waves is very low, corresponding to their slow drift; forcing
from such a low frequency would introduce wave beams that are almost horizontal. The
oblique waves have broken reflection symmetry, and it remains to be determined whether
the bifurcation is Hopf-like and local in phase space, or is global in phase space, involving
an infinite period. The global bifurcation could be a saddle-node infinite-period or a
homo-/heteroclinic collision, or a more exotic bluesky catastrophe (for examples of these
and other global bifurcations from experiments and simulations in Taylor-Couette flows,
see e.g. Lopez & Marques 2000, 2005; Abshagen et al. 2005a,b, 2008). The fact that the
new period introduced when the oblique waves appear is three orders of magnitude larger
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than the forcing period constitutes strong prima facie evidence supporting one or more
global bifurcation scenarios.

The present system has some similarities to stratified Taylor–Couette flow, which
has been extensively used as a well-controlled laboratory experiment to explore the
instabilities and dynamics in astrophysical settings, such as accretion disks (Molemaker
et al. 2001; Shalybkov & Rüdiger 2005). The stable stratification in stratified
Taylor–Couette flow also inhibits bulk vertical motions, confining vertical motions
primarily to the boundary layer on the rotating inner cylinder. Above a critical forcing
amplitude (quantified by the inner-cylinder Reynolds number), the boundary layer loses
stability to a complex pattern of helical waves with both senses of chirality (Flór et al. 2018;
Lopez & Marques 2020, 2021) – very much in analogy with the oblique wave instability
in the present system. Boundary layer flows with strongly stratified exterior bulk flows
making the system stiff warrant deeper analysis.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1102.
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