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Abstract
The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with
shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling
of the path parameter. This does not account for the dynamics in joint space, that is, the actual motion of the robot,
however. Moreover, a well-known problem is that large joint velocities are obtained when approaching singularities,
even for slow task space motions. This can be avoided by a sampling in joint space, where the path parameter
is replaced by the arc length. Such discretization in task space leads to an adaptive refinement according to the
nonlinear forward kinematics and guarantees bounded joint velocities. The adaptive refinement is also beneficial
for the numerical solution of the problem. It is shown that this yields trajectories with improved continuity compared
to an equidistant sampling. The OPF is reformulated as a second-order cone programming and solved numerically.
The approach is demonstrated for a 6-DOF industrial robot following various paths in task space.

1. Introduction
Short duration times are highly requested to maximize the productivity of a robotic system. Therefore,
time-optimal motion is desirable. Frequently, the task for a robot is defined by a path that should be
followed. Examples are welding and painting robots, CNC machines as well as autonomous vehicles.
Thus, several approaches for following paths in a (time-) optimal way are made in the literature. Most
of the methods exploit that the motion along a prescribed path is described with a parameter σ and its
time derivative σ̇ . This reduces the multi-dimensional state of a robot to a two-dimensional state-space
in the optimization process. A simple, but computationally expensive approach is made in refs. [1–3],
where dynamic programming is used to solve the path following problem. In refs. [4, 5], a less time
expensive approach is presented, where the optimal solution is found by moving along extremals in
the σ − σ̇ plane. Moreover, the (time-) optimal path following problem can be transformed to a convex
optimal control problem through a nonlinear change of variables [6] which is computationally less time-
consuming than the approaches mentioned previously. A further approach is made in ref. [7], where the
convex problem is reformulated as second-order cone programming. It is reported that the calculation
time compared to the convex optimal control problem is reduced even further. Since latter approach
comes with low computation times, it will be used to solve the (time-) optimal path following problem
in this paper.

However, the prescribed path is often deduced from process requirement (e.g., welding, polishing)
as end effector (EE) path without taking singularities into account. Therefore, the inverse kinematics
problem has to be solved in order to receive the corresponding joint paths. Most of the approaches for
solving an optimal path following problem discussed in the literature utilize an equidistant discretization
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Figure 1. Principle of the adaptive sampling scheme.

of σ to solve the optimization problem. Thus, the question of using a non-equidistant sampling strategy
in σ which copes with the presence of kinematic singularities arises.

In this paper, an adaptive sampling strategy which copes with kinematic singularities is addressed.
The basic idea of such a sampling scheme is depicted in Fig. 1. An arbitrary EE-path z(σ ) with the
path parameter σ and uniformly spread samplings over the whole path is assumed to be given. The
inverse kinematics problem is denoted with q = f−1(z), and the solution of this problem leads to the
corresponding joint path q(σ ). Due to the nonlinear relation f−1, the distance of two corresponding
joint values is not equidistant anymore. Especially near kinematic singularities latter values tend to vary
drastically, due to the ill-posed inverse kinematics problem. This distance can be measured by the joint
arc length s. With the knowledge of the nonlinear map s = s(σ ) between s and σ , the joint path and
thus the EE-path can be expressed as q(s) and z(s). Prescribing a constant discretization of the joint
arc length �s, the discrete values of q are spread equally over the new path parameter s in the interval
[0, sT]. Since s is a measure of distance in the joint coordinates and the distance of two consecutive joint
values is kept constant (�s = const.), the reverse effect near singularities is applied to the sampling of
the EE-path. Thus, the drastically varying joint values with σ as parameter induce an accumulation of
samples in the EE-path near kinematic singularities with the parameter s, as illustrated in Fig. 1. The
resulting non-equidistant sampling in σ is derived by �σi = σ (si+1) − σ (si).

The adaptive sampling scheme is derived from the joint arc length parameterized inverse kinematics,
derived in ref. [8]. Therefore, the inverse kinematics problem for the (1) parameterization of an EE-path
z(σ ) in terms of the path parameter σ [9, 10] and (2) the parameterization of the joint motion q(s) in
terms of the (kinetic) arc length s is discussed briefly. Each of these parameterizations gives rise to a
particular inverse kinematics problem. The two parameterizations refer exclusively to the geometry of
motion and are independent of the temporal execution of the motion.

2. Path kinematics
2.1. Forward kinematics
Denote with q ∈ Sn the vector of joint variables and with z ∈ SE(3) the EE-pose. In the course of the entire
paper, the EE-path is supposed to be given and parameterized in terms of a path parameter σ (t) ∈ [0, 1].
Because the joint motion is derived from the EE-motion, the joint coordinates are also parameterized
in terms of the path parameter σ . For motion planning and control, the latter is typically used. It should
be mentioned that the relation of path parameter in workspace and joint space is not unique in general.
With slight abuse of notation, the same symbol is used throughout the paper. The geometric forward
kinematics map

z = f (q) (1)

determines the EE-pose for prescribed joint coordinates q [11]. The EE-twist, containing the translation
and angular velocity, is determined by the velocity forward kinematics
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V(q, q̇) =
(

v

ω

)
= J (q) q̇ (2)

where J(q) = ∂V/∂q̇ is the geometric Jacobian and (̇) = d()/dt the total time derivative. Since the EE-
twist is linear in the joint rates and as q̇ = q′σ̇ , the velocity forward kinematics (2) can be defined in
terms of σ̇ . This then yields to

V = ∂V
∂σ̇

σ̇ = Jq′σ̇ , (3)

with ()′ = ∂()/∂σ denoting the geometric derivative. The latter results in V(σ , σ̇ ) = h(σ )σ̇ and the
relation

h(σ ) = J(q(σ ))q′(σ ) (4)

where h(σ ) := ∂V/∂σ̇ is the partial path velocity. The relation (4) is referred to as the velocity for-
ward path-kinematics problem and plays a central rule in the singularity-robust adaptive discretization.
The EE-path z(σ ) and the partial path velocity h(σ ) originates from a path planning. Further, the path
speed σ̇ and thus V(σ , σ̇ ) are determined by solving an optimal path following problem as described in
Section 4.

2.2. Inverse path kinematics
The classical inverse kinematics problem is to determine joint coordinates for given an EE-pose z.
For particular robots, this can be solved analytically, for example, wrist-partitioned serial manipulators
[12]. However, it can only be solved numerically in general. Various different computational methods
were discussed in refs. [12–15], including nonlinear root-finding, fixed point iteration, or integration of
the joint velocity. This paper pursues the approach of integrating the joint velocity numerically. This
amounts to solving the relation (2) for q(t) with given EE-twist V(t). The EE-twist is determined by the
partial path velocity with (3) when the path is parameterized with σ (t). Then, the curve, and thus q, is
uniquely determined by (4), where the partial path velocity h(σ ) describes the motion along the path.

The velocity inverse path-kinematics problem determines q′ for given partial path velocity h. A
solution to the velocity inverse path kinematics is

q′ = J (q)
+ h (5)

where J(q)+ is a generalized pseudo inverse [16, 17]. The geometric inverse path-kinematics problem is
to determine the joint motion q(σ ) in terms of the path parameter σ . Solving the initial value problem
(IVP) (5) with q(0) = q0 as initial value corresponds to solving the inverse path-kinematics problem.
When solving the IVP (5) numerically, numerical drifts are unavoidable. These drifts can be reduced by
stabilizing a error system. Thus, the partial path velocity error is introduced as

e′ = hd − J (q) q′ (6)

with hd denoting the prescribed partial path velocity. Therewith, the system (5) is amended as

q′ = J (q)
+

(hd + Ke) (7a)

0 = e′ + Ke (7b)

where (7b) governs the error dynamics. The latter asymptotically converges to zero for K > 0 [18]. The
geometric error e in (7b) comprises the position error and orientation error and can be expressed as

e =
(

ep

eo

)
=
⎛⎝ rd − r (q)

1

2
(ñ(q)nd + s̃(q)sd + ã(q)ad)

⎞⎠ (8)
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where rd is the prescribed EE-position and Rd = [nd sd ad] the prescribed EE-orientation, with columns
n, s, a [19]. The skew-symmetric (cross product) matrix of a vector x ∈R

3 is denoted with x̃ ∈R
3,3.

The velocity inverse path-kinematics problem can be solved numerically stable using time integration
schemes, with the use of latter definitions and appropriate K. Shortly, a parameterization of the joint
coordinates q(σ ) in terms of the parameter σ is attained with the solution of (5).

2.3. Joint arc length inverse path kinematics
The inverse path-kinematics problem is ill-posed near singularities. This leads to numerical problems
and also causes extremely fast and undesirable joint motions. Following a path with constant speed σ̇0,
for instance, leads to an EE-motion with a well-defined bounded EE-velocity. Particularly at singularities
of the forward kinematics, the corresponding inverse kinematics solution q(t) will not have well-defined
bounds and the joint rate q̇(t) tends to infinity. As a consequence, when prescribing the EE-motion by an
equidistant sampling of the path parameter σ , the ‘distance’ of joint coordinates q corresponding to two
consecutive values of σ tend to vary drastically. A measure of ‘distance’ between two consecutive joint
values is given by the arc length s defined by the differential line element ds = √

dqTWdq with a metric
W (using the generalized mass matrix M of the robot would yield the kinetic line element and ensure
homogeneity). The arc length gives rise to a well-defined discretization of the curve in joint space in
terms of the step size. For the rest of this paper, W is chosen as identity matrix since the considered
robot has revolute joints only.

Expressing the EE-motion z(s) in terms of the arc length s and thus derive parameterizations σ = σ (s)
and q = q(s) is referred to as the arc length path-kinematics problem. It is known from the theory of
metric curves [20] that there is no such explicit relation in general. Similar to the inverse path kinematics,
Section 2.2, latter problem is formulated as an ordinary differential equation (ODE). Integrating the line
element ds with given joint path q(σ ), the arc length in joint is [21]

s =
∫ σ

0

‖q′‖Wdξ (9)

with ‖q′‖W := √
q′TWq′ denoting the joint path speed. Introducing the jacobian (of above equation)

∂s/∂σ = ‖q′‖W in (4) yields
∂σ

∂s
= 1

‖J+h‖W
= 1

‖q′‖W
,

∂q
∂s

= J+h
‖J+h‖W

= q′

‖q′‖W
(10)

with q′ = J+h. This ODE system can be solved with given initial conditions σ0 and q0 for s = 0 and a
given parameter interval s ∈ [0, sT]. However, this requires the knowledge of the terminal arc length sT,
which is unknown a prior. The terminal arc length has to satisfy the condition

σ (sT) = 1. (11)

Latter condition can act as a termination criterion to terminate the integration. System (10) is then
solved numerically, until σ (s) = 1 is satisfied. This can be carried out numerically stable using integra-
tion schemes with zero-crossing event detection using advanced root-finding methods. In practice, the
integration is terminated when σ > 1. It should be noted that the solution σ (s) is only used to determine
the terminal arc length sT.

The numerical drift of the arc length parameterized inverse path-kinematics subsystem (10) again has
to be stabilized. As previously discussed for the standard geometric inverse path-kinematics problem,
this is attained by introducing the path velocity error

∂e
∂s

= ∂hd

∂s
− J

∂q
∂s

, (12)

with ∂hd/∂s = h′
d/‖q′‖W. The system (10) is amended as

∂q
∂s

= J+h
‖J+h‖W

+ J+Ke (13a)
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(a) (b)

Figure 2. 6-DOF Comau Racer3 following (a) a straight line in task space with constant orientation
and (b) nonlinear relation between s and σ .

0 = ∂e
∂s

+ Ke (13b)

where (13b) governs the error dynamics of the error (8). With K > 0, asymptotically convergence to
zero is ensured.

For numerical solving, cases where q′ = 0 occurs have to be taken into account, due to the division by
‖q′‖W. Since q′ = J+h two cases arise. First, the case when h = 0 is hold. This is avoided by assuming
a regular EE-path so that always h �= 0. Secondly, the partial path velocity h is an element of the null
space h ∈ ker J+. This results in EE movements which do not have any effect on the joint coordinates,
which is a contradiction to the forward kinematics.

3. An adaptive singularity-consistent sampling scheme
Based on the velocity inverse path-kinematics problem, the adaptive sampling approach is developed.
The EE-path with parameter σ is assumed to be equivalent to the curve parameterized with param-
eter s. As mentioned before, prescribing the EE-motion by an equidistant sampling �σ inevitably
causes drastically varying joint coordinates q, of two consecutive samples, when solving the inverse
path-kinematics problem (5). The arc length in joint space (9) serves as a measure of the ‘distance’
between two consecutive values of q and is a nonlinear relation of s and σ . For a 6-DOF Comau Racer3
robot following a straight line in workspace Fig. 2(a) with constant orientation and speed ṡ0, the non-
linear mapping s(σ ) with an equidistant sampling �s is shown in Fig. 2(b) for illustration purposes.
As the drastically increase of the joint arc length indicates, the manipulator passes near a singularity at
σ ∈ [0.15, 0.25].

The joint coordinate q evolution and the nonlinear relation between s and σ are both preserved by
parameterizing the prescribed path using the joint arc length s, Section 2.3. Prescribing a constant arc
length speed ṡ0 and equidistant sampling for s for following the trajectory, a varying speed σ̇ due to the
nonlinear mapping (9) is induced. As a consequence of the relation, smaller speeds σ̇ are achieved at
higher rates ∂s/∂σ leading to more sampling points in σ (locally). Therefore, lower joint velocities are
expected in such regions since q̇ = q′σ̇ . Furthermore, this leads to an adaptive sampling strategy for σ

derived from the nonlinear s(σ ). The latter discretization scheme can then be applied for solving optimal
path following problems, see Section 5.

In the following, a comparison of the two presented inverse path kinematics is made. Therefore, the
functions σ (t) and s(t) are assumed to be given with constant time derivatives σ̇ (t) = σ̇0 and ṡ(t) = ṡ0,
respectively. To get comparable results between the two parameterizations, the terminal time tT is fixed.
For tT = 5 s, the EE follows the prescribed path with (1) constant speed σ̇0 = 0.2 s−1 and equidistant
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Figure 3. Samples of the joint coordinates q. Blue circles: (5) for the inverse path kinematics with
constant speed σ̇0. Orange crosses: (10) for the inverse path kinematics with constant speed ṡ0.

Figure 4. Resulting joint velocities q̇. Blue circles: (5) for the inverse path kinematics with constant
speed σ̇0. Orange crosses: (10) for the inverse path kinematics with constant speed ṡ0.

sampling in σ when using the velocity inverse path kinematics (5), and (2) constant arc length speed
ṡ0 = 1.482 rad/s−1 with equidistant discretization in s for the arc length parameterized velocity inverse
path kinematics (10). The resulting joint paths using both inverse path kinematics are depicted in Fig. 3.
It can be seen that both strategies lead to the same evolution of the joint coordinates. The arc length
parameterized solution also shows an increased number of samples at σ ∈ [0.15, 0.25], which indicates
the passing near a singularity. Viewing at the evolution of q5, it is observed that the value is going towards
zero in this region. This indicates the vicinity to the wrist singularity.

As discussed above, for fixed step size �s (which means fixed time step size due to constant ṡ0), higher
sampling rates of the joint coordinates in this area are induced, and hence, lower joint velocities q̇ = q′σ̇
are expected, which is illustrated in Fig. 4. This is particularly pronounced for q̇4. The joint velocity
q̇4 using (10) is more than ten times lower than the solution obtained with the standard inverse path
kinematics (5) at σ ∈ [0.15, 0.25]. Moreover, the resulting trajectories are smoother compared to using
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(5) for the inverse path kinematics. Apparently, this is a consequence of the accumulation of samples at
σ ∈ [0.15, 0.25], as indicated previously.

4. Time-optimal path following problem
In this section, the optimal path following problem is described. The equations of motion (EOM) as

M(q)q̈ + g(q, q̇) = τ (14)

describe the dynamic behavior of the manipulator, where M(q) is the mass matrix and τ are the joint
torques. The Coriolis, centrifugal, and gravitational terms as well as the Coulomb and viscous friction
are described by the vector g(q, q̇). If not necessary, the dependencies are omitted for simplicity and
readability.

The objective of an optimal path following problem is finding a time profile σ (t) for a prescribed
path in either the joint variables q(σ ) or the EE z(σ ), while satisfying some constraints. Latter are, for
example, the dynamic behavior (14), limiting the joint velocity q̇, acceleration q̈ and jerk

...
q . Therefore,

a description depending only on path allocated variables, such as geometrical derivatives ()′ and the path
speed σ̇ (σ ), is desired. Given an EE-path z(σ ), the geometrical joint derivatives have to be computed
with the inverse path kinematics, as discussed in Section 2.2. The first derivative q′ is given by (5). The
higher derivatives are derived by higher order inverse path kinematics, that is, geometrical derivatives
of (4), which yields

q′′ = J (q)
+ (h′ − J′q′) (15a)

q′′′ = J (q)
+ (h′′ − 2J′q′′ − J′′q′). (15b)

For the optimization, it is beneficial to introduce the squared path speed z := σ̇ 2. By assuming the path
is followed only in forward direction σ̇ ≥ 0, a one to one map between σ̇ and z exists. Therefore, no case
separation has to be taken into account. Introducing the variable z leads to the relations as

σ̇ = √
z, σ̈ = z′

2
,

...
σ = z′′

2

√
z (16)

for higher time derivatives. With these relations and the higher order inverse path kinematics, the joint
velocity, acceleration, and jerk can be expressed as follows

q̇ = q′√z (17a)

q̈ = q′′z + 1

2
q′z′ (17b)

...
q = q′′′z

√
z + 3

2
q′′z′√z + 1

2
q′z′′√z. (17c)

The path parameterization of the EOM (14) is derived by introducing (17a) and (17b) as

a(σ )z′ + b(σ )z + c(σ ) + d(σ )
√

z = τ (σ ). (18)

with a = 1/2Mq′ and b including the projected Coriolis and centrifugal terms as well as Mq′′. A path-
depending approximation of the Coulomb friction and gravitational forces are composed in c, and d
denotes the path projected viscous friction. For receiving time-optimal solutions, the terminal time tT

has to be minimized. The time-optimal path following (OPF) problem is formulated as
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Table I. Numerical values of the upper bounds ().

Joint q̇ in rad/s q̈ in rad/s2
...
q in rad/s3 τ in Nm

1 6.912 100 4500 327.681
2 7.069 100 4500 320.400
3 7.854 100 4500 144.504
4 9.425 100 4500 61.139
5 9.425 100 4500 61.139
6 14.137 100 4500 39.960

min
z(σ )

∫ 1

0

1√
z
dσ

s.t.

z(0) = σ̇ 2
0 , z(1) = σ̇ 2

T

z(σ ) ≥ 0

q̇ ≤ q̇(σ ) ≤ q̇, q̈ ≤ q̈(σ ) ≤ q̈

...
q ≤ ...

q(σ ) ≤ ...
q , τ ≤ τ (σ ) ≤ τ

for σ ∈ [0, 1], (19)

with the corresponding path description of the objective function [22], the joint constraints (17), and the
EOM (18). The lower and upper bounds of the constraints are denoted by (), (). Solving the above prob-
lem yields an optimal squared path speed profile z∗. The trajectories of the joint velocity, acceleration,
jerk, and torque, then can be computed using the relations (17) and (18). The optimization problem can
be solved using for example, dynamic programming [1], numerical integration [23], a sequential con-
vex programming (SCP) approach [24], or with second-order cone programming (SOCP), and a SCP
approach for non-convex constraints [7].

5. Examples
5.1. Optimization framework and robotic manipulator
We used an Intel(R) Core(TM) i5-9500 CPU @ 3.00 GHz CPU running on Windows10 for all com-
putations. For a 6-DOF Comau Racer3 robotic manipulator, the OPF problem (19) is solved in SOCP
form. Neglecting the jerk and torque constraints temporary, (19) is a convex optimization problem. This
convex problem is reformulated as SOCP and solved with a SCP approach for considering the joint jerk
and torque constraints, as presented in ref. [7]. In order to reduce the optimization problem (19) to a
finite discrete problem, the path parameter is discretized with N values σi, i ∈ {0, . . . , N − 1}. Also, a
linear interpolation profile for the squared path speed z in an interval [σi, σi+1) is used [6].

For more details, the reader is referred to the corresponding literature, since rewriting the problem
is not topic of this paper [6, 7, 25]. The SOCP form of the optimization problem was implemented in
Matlab using YALMIP [26]. As solver, the conic solver MOSEK [27], a tailored solver for SOCPs, was
picked. For simplicity, the upper and lower bounds of (19) are chosen to be symmetrical that is, () = −().
These values are listed in Table I.

In order to solve the optimization problem, a discretization strategy for σ has to be chosen. Therefore,
(1) an equidistant sampling �σi = const. which acts as benchmark strategy and (2) a non-equidistant
sampling �σi �= const. derived from the singularity-consistent sampling scheme, Section 3, is used.
Thus, the non-equidistant discretization is given by �σi = σ (si+1) − σ (si). For the rest of the paper, a
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(a) (b)

Figure 5. (a) Optimal speed z∗ for following the straight line. (b) Detailed view at the section near
the singularity. Black curve: MVC. Blue circles: equidistant sampling scheme in �σi = const. Orange
crosses: non-equidistant sampling scheme in �σi = σ (si+1) − σ (si), with �si = const.

uniform discretization in s (�si = const.) is used to compute the non-equidistant sampling �σi �= const.
Figure 2(b) exemplary shows such a discretization for the straight line in workspace. Clearly, a non-
equidistant sampling of the joint arc length s could be used to derive the non-equidistant sampling in σ .
However, developing such a discretization in s would not be beneficial, since the latter sampling could
be derived directly for σ .

To evaluate the quality of the optimal solution z∗, the maximum velocity curve (MVC) [4] is used.
This curve describes the highest possible speed z along the path. The MVC is derived by computing the
intersection of joint velocity, acceleration, and torque constraints in the z′ − z plane and choosing the
intersection point with the smallest value of z.

5.2. Results
5.2.1. Straight line
As the first example, the straight line near a singularity in the task space is selected, Fig. 2(a). The
corresponding joint coordinates computed with an inverse path kinematics, Section 2, are shown in
Fig. 3 as seen before. Solving the OPF problem (19) for the sampling schemes discussed earlier with
N = 100 samples yields the optimal solutions z∗ in Fig. 5(a). Both strategies lead to nearly the same
evolution z∗(σ ). Also, the passing near a singularity at σ ∈ [0.15, 0.25] is reflected, since the MVC and
thus the optimal solutions become nearly zero in this area. The non-equidistant sampling, marked with
the small orange crosses, again shows accumulated sampling points in this region as discussed earlier.
As a consequence, the resulting trajectories are expected to be smoother compared to the equidistant
discretization, as discussed previously in Section 3. Moreover, the constraint violation in an interval of
two consecutive sampling points, when using the linear interpolation profile for z is much lower. This is
pointed out in Fig. 5(b) especially at σ ∈ [0.17, 0.18].

The resulting optimal joint velocities in Fig. 6(a) show that q̇4 is limited by the velocity constraint,
when close to the singularity. Due to the vicinity to the wrist singularity (q5 → 0), see Fig. 3 at σ ≈ 0.2,
either q̇4 or q̇6 was expected to fulfill the velocity constraint. In the remaining section of passing near
the singularity, q̇1 is limited by the constraint. Thus, the evolution of q̇1 and q̇4 at this region is viewed in
more detail, Fig. 6(b). As mentioned before, the joint velocities are much smoother in this section, with
the non-equidistant sampling compared to the equidistant sampling of σ . This, besides lower constraint
violation when using the linear interpolation profile in z, inevitable leads to smoother higher derivatives
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(a)

(b)

Figure 6. (a) Resulting optimal joint velocity trajectory q̇(σ ) for the straight line. (b) Detailed view
at the velocities of joint 1 and 4 near the singularity. Blue circles: equidistant sampling scheme
�σi = const. Orange crosses: non-equidistant sampling �σi = σ (si+1) − σ (si), with �si = const.

that is, joint acceleration and jerk with the adaptive sampling strategy. The impact of the non-equidistant
sampling of σ on terminal and computation time is covered in Section 5.2.3.

5.2.2. Rectangular path with rounded corners
The following EE-path is inspired by the international norm ISO-9283 for industrial robot calibration
and performance testing. The norm involves different geometrical paths in the workspace, such as circles,
straight lines, and a rectangle with rounded corners. For performance tests, the various paths are passed
in a sequence. In this paper, the rectangle with rounded corners was picked. This shape was preferred
of two reasons: First, because the curve has a higher geometrical complexity compared to the circle and
the straight line (which is already covered in Section 5.2.1); second, because the length of this path is
longer compared to the other shapes. The rectangle is placed in front of the robot with an angle of 45◦ to
the vertical axes, Fig. 7(a). The path is passed in counterclockwise direction, starting at the point shown
in the figure. Again the nonlinear map s(σ ) with an equidistant sampling in s is presented in Fig. 7(b),
to illustrate the non-equidistant sampling scheme �σi = σ (si+1) − σ (si). Compared to the relation from
the straight line, the map is approximately piece-wise linear. Thus, the samples of the non-equidistant
scheme are pronounced in regions with high slopes and vice versa.

Figure 8 shows the corresponding joint paths space using both inverse path kinematics discussed
in Section 2. Viewing the evolution of the joint coordinates and the nonlinear map s(σ ), it is evident
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(a) (b)

Figure 7. 6-DOF Comau Racer3 following (a) a rectangle with rounded corners in task space with
constant orientation, and (b) nonlinear relation between s and σ .

Figure 8. Corresponding joint coordinates q of the rectangular EE-path. Blue circles: solution (5)
for the inverse path kinematic with constant speed σ̇0. Orange crosses: solution (10) for arc length
parameterized inverse path kinematics with constant arc length speed ṡ0.

that the robot is not passing near a singularity. Furthermore, the lower straight line of the rectangle
at σ ∈ [0.15, 0.35] leads to mainly linear joint paths. This is especially pronounced for q1, q4 and q6.
As a consequence of the linear joint evolution, the number of samples, using �σi = σ (si+1) − σ (si), is
reduced in this region. Since following simple geometries, for example, linear paths, does not require
much sampling points, the latter behavior is even desirable. At σ ∈ [0.65, 0.85], the robot is passing the
upper line of the rectangle, again resulting in mainly linear joint coordinates q1, q4 and q6, but with a
higher gradient as for the lower line. Thus, more samples are present for this linear path.

Solving (19) for the rectangle with both sampling schemes yields to the solution illustrated in
Fig. 9(a). At the rounded corners of the rectangle, only lower path speeds can be achieved. This is
reflected in the MVC at σ ∈ {0.16, 0.38, 0.65, 0.9}. Both solutions again share nearly the same evolution
over the curve parameter σ . The highest deviations are present in the section σ ∈ [0.15, 0.35], which cor-
responds to the lower straight line of the rectangle mentioned before. Due to the fact that the sampling
points are not the same σi �= σ (si), the constraints in the optimization problem are evaluated at differ-
ent values of σ . Therefore, constraints become active or inactive at a different progression of the path,
effecting the further evolution. In this case, even higher path speeds z∗, for the lower straight line, are
achieved with the adaptive sampling strategy �σi = σ (si+1) − σ (si). Figure 9(b) shows the z − σ plane
of the upper straight line at σ ∈ [0.65, 0.85] in more detail. The number of samples in this section is quite
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(a) (b)

Figure 9. (a) Optimal speed z∗ for following the rectangle. (b) Detailed view at the MVC of the upper
straight line. Black curve: MVC. Blue circles: equidistant sampling scheme in �σi = const. Orange
crosses: non-equidistant sampling scheme in �σi = σ (si+1) − σ (si), with �si = const.

(a)

(b)

Figure 10. (a) Resulting optimal joint velocity trajectory q̇(σ ) of the rectangular path. (b) Detailed
view at the velocities of joint one and six at σ ≈ 0.65 . . . 0.85. Blue circles: equidistant sampling scheme
�σi = const. Orange crosses: non-equidistant sampling �σi = σ (si+1) − σ (si), with �si = const.
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Table II. Terminal and computation times as well as their relative differences compared to
the equidistant sampling. Denoting with (1) the equidistant sampling �σi = const., (2) the non-
equidistant discretization �σi = σ (si+1) − σ (si) with �si = const., and with (A) the straight line,
(B) the rectangular path, (C) the meander-shaped EE-path and (D) the arbitrary spatial path.

N = 100 N = 200 N = 500

(1) (2) (1) (2) (1) (2)
(A) tT in s 0.739 0.761 0.754 0.761 0.759 0.760

tcomp. in s 12.335 8.959 19.211 17.21 53.731 49.262
ptT in % – −3.000 – −0.885 – −0.170
ptcomp. in % – 27.375 – 10.417 – 8.317

(B) tT in s 0.858 0.844 0.865 0.865 0.865 0.864
tcomp. in s 7.041 7.011 14.850 14.850 40.293 40.211
ptT in % – 1.683 – 0.000 – 0.100
ptcomp. in % – 0.432 – 0.000 – 0.204

(C) tT in s 1.936 1.986 1.956 1.976 1.961 1.967
tcomp. in s 9.000 6.742 13.753 11.924 24.348 23.264
ptT in % – −2.592 – −0.920 – −0.353
ptcomp. in % – 25.102 – 13.230 – 4.453

(D) tT in s 0.824 0.820 0.825 0.823 0.825 0.824
tcomp. in s 6.836 6.363 12.810 12.042 40.775 38.476
ptT in % – 0.538 – 0.222 – 0.063
ptcomp. in % – 6.903 – 5.977 – 5.639

similar for both strategies. Viewing the transition between the rounded corners and the straight line at
the beginning and end of this section, it is observed that the non-equidistant sampling scheme leads to
a smoother optimal path speed z∗. Thus, the joint velocities, accelerations, and jerks are expected to be
smoother at this transition areas.

As mentioned above, the adaptive sampling results in higher values of z at σ ∈ [0.65, 0.85]. Thus,
higher joint velocities are achieved as can be seen in Fig. 10(a), particularly for q̇1 and q̇4. This results
in a faster traversal of the lower straight line with �σi = σ (si+1) − σ (si). In Fig. 10(b), a detailed view
of passing the upper straight line is depicted for the joint velocities q̇1 and q̇6. As previously indicated,
the transition between the rounded corners and the straight line at σ ≈ 0.65 and σ ≈ 0.85 is smoother
for the non-equidistant discretization.

5.2.3. Computation time vs. terminal time
In this section, the terminal time tT and computation time tcomp. are compared. The corresponding time
values are depicted in Table II, for different number of samples N and four EE-paths. The viewed paths
include the straight line and rectangle as discussed above as well as a meander-shaped EE-path and an
arbitrary spatial curve. The latter two paths are illustrated in Fig. 11, with their corresponding nonlinear
map s(σ ). In addition, the relative difference ptT and ptcomp. compared to the equidistant discretization
strategy in σ is also listed in the table. Thus, negative numbers reflect a loss in time (higher values of tT)
and vice versa. First, the results A) of the straight line are viewed. The adaptive sampling has an overall
positive impact on the computation time for this path. This is especially pronounced for N = 100 with
a reduction of 27%, compared to the equidistant sampling. Viewing the terminal time a loss in time is
observed. This can be explained due to the fact that the integral of (19) is approximated numerically in

https://doi.org/10.1017/S026357472300022X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472300022X


Robotica 1869

(a) (b)

(c) (d)

Figure 11. Illustration of (a) the meander path C and (c) arbitrary spatial path in the workspace D, as
well as their nonlinear relations between s and σ in (b), (d), respectively.

the optimization process. Therefore, the size of a sampling interval �σi noticeably influences the quality
of the approximation. Since the number of samples N is fixed for the whole path, a raise of samples in
one section reduces the number of samples for the remaining curve in return. For the straight line, most
of the samples are accumulated in the region near the singularity, see for example, Fig. 5. Therefore, the
sampling intervals �σi of the remaining path are larger on average, for the adaptive sampling strategy.
This results in a poor approximation of the time interval in sections not near the kinematic singularity
which leads to an increase or decrease of the terminal time tT. In the case of the straight line, the poor
approximation induces an increased terminal time, compared to the equidistant sampling scheme.

Comparing the terminal and computation time of (B) the rectangle with rounded corners, the adaptive
sampling strategy barely impacts both. For (C) the meander-shaped EE-path, Fig. 11(a), the behavior is
quite the same as for (A) the straight line. The computation time of the optimal solution is reduced for
all three numbers of samples, but on the contrary the terminal time is increased when using the non-
equidistant sampling scheme. The strategy �σi = σ (si+1) − σ (si) comes with a slight improvement of
both the terminal tT and computation time tcomp., for D) the arbitrary curve, Fig. 11(c).

6. Conclusion
The inverse kinematics problem was expressed in terms of the arc length s in joint space when the EE-
motion is parameterized by a path parameter σ . This leads to an ODE system for q(s) and σ (s) which
is solved for s ∈ [0, sT]. It is shown that using the arc length as independent parameter (instead of σ )
allows for coping with kinematic singularities. Moreover, the arc length parameterized velocity inverse
path-kinematics solution (10) gives rise to an adaptive sampling scheme.

This derived discretization strategy was used to solve the optimal path following problem (19) with
SOCP. The solution was discussed in detail for two exemplary EE-paths. The optimization results,
with the non-equidistant sampling, were compared with an equidistant sampling in σ . It is shown
that the adaptive sampling strategy leads to smoother trajectories near singularities and geometrically
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challenging paths (in joint space). The non-equidistant discretization also copes well with the presence
of simple geometries, where the sampling rate is reduced, see Section 5.2.2.

Furthermore, the impact on the terminal and computation time was discussed in detail. It was
observed that non-equidistant sampling leads to an overall reduction of the computation time. In return,
the terminal time shows slightly increased values.

Finally, it should be mentioned that the derived adaptive sampling strategy has to be investigated
in detail for every prescribed EE-path since the inverse path kinematics, and thus, the non-equidistant
sampling is highly depending on the shape of the EE-path and position in the workspace.
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