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We employ direct numerical simulations to investigate the heat transfer and flow structures
in turbulent Rayleigh–Bénard convection in both cylindrical cells and laterally periodic
domains, spanning an unprecedentedly wide range of aspect ratios 0.075 � Γ � 32. We
focus on Prandtl number Pr = 1 and Rayleigh numbers Ra = 2 × 107 and Ra = 108. In
both cases, with increasing aspect ratio, the heat transfer first increases, then reaches a
maximum (which is more pronounced for the cylindrical case due to confinement effects),
and then slightly goes down again before it finally saturates at the large aspect ratio limit,
which is achieved already at Γ ≈ 4. Already for Γ � 0.75, the heat transfers in both
cylindrical and laterally periodic domains become identical. The large-Γ limit for the
volume-integrated Reynolds number and the boundary layer thicknesses are also reached
at Γ ≈ 4. However, while the integral flow properties converge at Γ ≈ 4, the confinement
of a cylindrical domain impacts the temperature and velocity variance distributions up to
Γ ≈ 16, as thermal superstructures cannot form close to the sidewall.
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1. Introduction

Rayleigh–Bénard convection (RBC) is the most widely studied model of thermal
convection (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chilla & Schumacher
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2012; Xia 2013; Shishkina 2021; Lohse & Shishkina 2023; Xia et al. 2023). This
model’s dimensionless control parameters are the Rayleigh number Ra and the Prandtl
number Pr, which respectively characterize the dimensionless temperature difference
and fluid properties, and the aspect ratio Γ , which is defined as the system’s width
over height. The unifying theory of thermal convection has significantly advanced
the theoretical understanding of the flow’s global transfer properties (Grossmann
& Lohse 2000, 2001, 2002, 2004; Ahlers et al. 2009; Stevens et al. 2013). This
Grossmann–Lohse (GL) theory accurately predicts the relationship between the Nusselt
number Nu (the non-dimensionalized heat transport) and the Reynolds number Re (the
non-dimensionalized flow strength) as a function of Ra and Pr.

Observations at moderate Ra values have demonstrated that appropriate lateral
confinement can significantly enhance heat transport, due to the enhancement of vertically
coherent flow structures (Huang et al. 2013; Chong et al. 2015, 2017; Zhang & Xia 2023;
Ren et al. 2024). Moreover, Hartmann et al. (2021) showed that the extent of heat transfer
enhancement due to confinement depends strongly on the system’s geometry, with a
greater enhancement observed in cylindrical cells compared to rectangular or square ones.

Both the onset of convection and the transition to the ultimate regime occur at
significantly higher Ra in very small aspect ratio cells. Theoretical and numerical studies
have quantified the increase in the critical Rayleigh number Rac for the onset of convection
(see e.g. Charlson & Sani 1970) and the typical Rayleigh numbers Ra∗ for the transition to
the ultimate regime, namely as Rac ∝ Γ −4 for the onset of convection (Shishkina 2021;
Ahlers et al. 2022; Zhang & Xia 2023; Ren et al. 2024) and as Ra∗ ∝ Γ −3 for the onset
of the ultimate regime (Roche et al. 2010; Roche 2020; Ahlers et al. 2022). The existence
of an ultimate regime with enhanced heat transport properties and turbulent boundary
layers (BLs) had initially been predicted by Kraichnan (1962) and later by Spiegel (1972)
and by Grossmann & Lohse (2000, 2001, 2011). The transition to the ultimate regime has
meanwhile been observed in various experiments (Chavanne et al. 1997; Roche et al. 2010;
He et al. 2012) and has been interpreted to be of non-normal nonlinear type (Roche 2020;
Lohse & Shishkina 2023). The simulations presented in this present work do not reach the
ultimate regime, which therefore is not discussed further in the main part of this paper,
and is readdressed only in the final outlook part of the conclusions.

In nature, convection frequently occurs in very large to infinite domains, facilitating
the formation of large-scale turbulent superstructures. For RBC just above the onset,
numerous experiments (Fitzjarrald 1976; Bodenschatz, Pesch & Ahlers 2000; Sun et al.
2005; du Puits, Resagk & Thess 2007; Xia, Sun & Cheung 2008; Zhou et al. 2012;
Hogg & Ahlers 2013; du Puits, Resagk & Thess 2013) and simulations conducted in large
periodic domains (Hartlep, Tilgner & Busse 2003; Parodi et al. 2004; Hartlep, Tilgner &
Busse 2005; von Hardenberg et al. 2008) as well as in very large aspect ratio cylindrical
domains (Shishkina & Wagner 2005, 2006; Bailon-Cuba, Emran & Schumacher 2010;
Emran & Schumacher 2015; Sakievich, Peet & Adrian 2016) have unveiled remarkable
flow patterns. Correlations between single-point measurements (du Puits et al. 2007, 2013)
and particle image velocimetry measurements (Xia et al. 2008) have indicated a transition
from a single-roll to a multi-roll structure as Γ exceeds approximately 4.

Recent simulations by Stevens et al. (2018) have revealed that turbulent superstructures
persist up to Ra = 109, with the size of these superstructures increasing with Ra, at least
up to Ra = 109. Visualizations by Pandey, Scheel & Schumacher (2018) and Stevens et al.
(2018) suggest that large-scale structures are more pronounced in the temperature field
than in the velocity field. However, a scale-by-scale analysis using the linear coherence
spectrum to examine the correlation between the two fields reveals a near-perfect
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correlation at the superstructure scale (Krug, Lohse & Stevens 2020). Furthermore, it has
been demonstrated that approximately 30 % of the heat transfer can be attributed to these
large-scale flow structures. As the organization of the large-scale flow varies with Γ , the
heat transport in the large aspect ratio limit (Γ � 4) is found to be approximately 10 %
lower for Ra = 2 × 107 and approximately 4 % lower for Ra = 109 compared to Γ = 1
(Stevens et al. 2018).

Despite these efforts, the flow characteristics in large aspect ratio RBC remain
insufficiently documented and understood. Notably, direct one-to-one comparisons
between laterally periodic and confined domain simulations have not been performed.
Previous simulations for large Γ in cylindrical cells (Bailon-Cuba et al. 2010) failed
(for the reason, refer to the Appendix) to identify a large-Γ limit, which in contrast was
observed in periodic domains (Stevens et al. 2018). To bridge this gap in the literature,
in this paper we perform direct numerical simulations (DNS) in unprecedentedly large
cylindrical domains, 0.075 � Γ � 32, achieving up to Ra = 108. This allows for direct
comparisons between cylindrical domains and laterally periodic domains in the limit of
very large aspect ratios, showing that the main flow characteristics within these domains
become identical as the aspect ratio increases.

The remainder of the paper is organized as follows. Section 2 provides details of the
simulation dataset. Section 3 discusses the evolution of Nu and integral Re as a function of
Γ . Subsequently, in § 4, we analyse the effects of the system geometry and Γ on the flow
structures and velocity and temperature variance distributions in the domain. The paper
ends with a summary, conclusions, and an outlook (§ 5).

2. Simulations

We perform DNS of RBC in large cylindrical domains with aspect ratios 0.075 � Γ ≤
32, solving the incompressible Navier–Stokes equations and the heat transfer equation
in Oberbeck–Boussinesq approximation (Ahlers et al. 2009). The simulations employ
a second-order, energy-conserving finite difference method. This method was initially
developed by Verzicco & Orlandi (1996) and Verzicco & Camussi (1997), and has been
validated extensively against experiments (Stevens, Verzicco & Lohse 2010b; Stevens,
Lohse & Verzicco 2011; Stevens et al. 2013). Its latest optimized version used here is
validated against spectral element methods and fourth-order finite volume schemes (Kooij
et al. 2018).

The control parameters are defined as Ra = αgΔL3/(νκ) and Pr = ν/κ , where α

represents the thermal expansion coefficient, g is the gravitational acceleration, Δ denotes
the temperature difference between the top and bottom plates, L is the height of the fluid
domain, ν is the kinematic viscosity, and κ is the thermal diffusivity of the fluid. In total,
20 simulations were conducted for Ra = 2 × 107 and 108, while Pr is fixed at 1. The
bottom and top plates were assigned no-slip, constant-temperature boundary conditions,
while the sidewall was treated as no-slip and adiabatic.

All simulations were executed carefully to ensure consistency, following the resolution
criteria established in previous works (Shishkina et al. 2010; Stevens et al. 2010b). In
this context, we also refer to the supplementary material of Ahlers et al. (2022), which
in its § III explicitly states the requirements on the quality of DNS of turbulent thermal
convection, with respect to both spatial resolution and time averaging. To give an example
on the resolution, the Ra = 108 and Γ = 32 simulation was conducted on an 18 432 ×
3072 × 192 grid. The statistical convergence of integral flow quantities, such as Nu and Re,
was within a fraction of 1 %. Achieving such excellent convergence is highly challenging
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and relies on meticulous simulation design. Due to the slow dynamics of the thermal
superstructures, the convergence of higher-order statistics is inevitably less good than for
the integral flow characteristics. The simulations were performed for very long durations,
specifically for Γ > 1, ≈750 dimensionless time units (measured as all times in terms of
L/Uff , where Uff = √

αgΔL is the free-fall velocity) for Ra = 2 × 107, and ≈500 time
units at Ra = 108. For Γ � 1, 1000 to 10 000 dimensionless time units were considered.
The first 100 time units were disregarded as transients. These simulation times exceed the
typical duration considered in RBC simulations. Despite the simulations being conducted
for extended periods, the recorded flow dynamics in the form of movies indicates that the
time required for thermal superstructures to alter their position within the vast domains
exceeds the duration of our simulations.

3. Integral heat transport and flow strength

For Rayleigh–Bénard flow in the cylindrical cell, and very small aspect ratio Γ (very
slender cells), the Nusselt number is 1, i.e. pure diffusive transport, due to the stabilization
by the sidewalls. The critical aspect ratio Γc beyond convection sets in depends on Ra
as Γc ∝ Ra−1/4 (Shishkina 2021; Ahlers et al. 2022; Zhang & Xia 2023; Ren et al.
2024). When further increasing Γ , one obtains a maximum in Nu/Ra1/3, as can be
seen from figure 1(a). The maximal heat transport is due to the stabilization of the
large-scale convection (LSC) due to intermediate confinement. This effect has been
observed previously in rectangular cells (Huang et al. 2013; Chong et al. 2015, 2017), and
more recently in square and cylindrical domains (Hartmann et al. 2021, 2022; Zhang & Xia
2023; Ren et al. 2024). Beyond the maximum, with again further increasing aspect ratio,
Nu/Ra1/3 decreases again, before reaching a plateau value beyond Γ � 4. We performed
well-resolved numerical simulations with aspect ratios as large as Γ = 32. We note that
beyond Γ � 4 (or even not beyond the position of the maximum at Γ ≈ 0.3 or even less for
higher Ra), there is no increase of the heat transport with increasing Γ , as was erroneously
stated in Bailon-Cuba et al. (2010). In that publication, the increase of the heat transfer with
increasing Γ is due to increasingly insufficient grid resolution; see the Appendix.

Figure 1(a) also compares the heat transport in RBC in the cylindrical domains with
that in a periodic domain, both over an unprecedented range of aspect ratios. For small Γ ,
the heat transport in the periodic domain is smaller than for the cylindrical cell, because
in the periodic case, a pronounced vertical temperature gradient is formed in the bulk,
weakening the convective flow. However, from Γ ≈ 0.75 onwards, the heat transfers for
the periodic domain and for the cylindrical cell agree pretty well.

For Γ ≈ 1, the simulation results agree perfectly with the GL theory, which had been
fitted to Γ = 1 data (Grossmann & Lohse 2000, 2001; Stevens et al. 2013). At the same
time, at Ra = 108, the heat transport in the large-Γ limit is approximately 5 % below the
Γ = 1 value. This reduction becomes less with increasing Ra (Stevens et al. 2018). The
lower heat transport in the large-Γ regime is due to the increased horizontal mixing in
horizontally extended systems. For Γ � 1, the heat transports in periodic and cylindrical
domains agree exceptionally well, and the large-Γ limit for the heat transport is reached
for Γ � 4. Therefore, although heat transport can be influenced by the arrangement of
large-scale flow structures (as indicated by the Γ dependence), it does not appear to depend
on the system’s geometry for sufficiently wide domains. This observation is supported
by figure 2, demonstrating the formation of comparable flow structures in periodic and
cylindrical domains for Γ = 32. For this very large aspect ratio Γ = 32 and for the
case of the cylindrical cell, we also show a snapshot of the temperature field in its
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Figure 1. (a) Dimensionless heat transport Nu and (b) total, (c) vertical and (d) horizontal Reynolds numbers
Retot, Rez and ReH , respectively, as functions of Γ in a periodic and cylindrical domain for Ra = 2 × 107 and
108 (periodic data from Stevens et al. 2018). The dotted lines show the prediction from the GL theory for a
Γ = 1 cylinder (using the coefficients set in Stevens et al. 2013) for comparison. The vertical lines indicate
Γ = 0.75 and 4. The jumps in Nu for small Γ ∼ 0.2 are real, and reflect the transition between different flow
states with different numbers of vertically staggered convection rolls; see the discussion of Zwirner & Shishkina
(2018) and Zwirner, Tilgner & Shishkina (2020). They are not the focus of this paper.

vertical cross-section through the centre of the cell (figure 3), revealing many neighbouring
convection rolls.

Figure 1 also shows the corresponding time- and volume-averaged vertical, horizontal
and total Re as functions of Γ . The horizontal velocity increases continuously with Γ ,
before reaching its large-Γ limit, which is nearly identical in cylindrical and periodic
domains (figure 1d). In contrast, the vertical velocity reaches a (not very pronounced)
maximum at Γ = 2, while no maximum is observed in the data obtained from the
cylindrical domain simulations (figure 1c). The total Retot, similarly to the horizontal
ReH , increases continuously with Γ until the large-Γ limit is reached at Γ ≈ 4. The
predictions by the GL theory, which had been fitted to the Re data points from Qiu & Tong
(2001) (cf. Grossmann & Lohse 2002; Stevens et al. 2013), are provided in figure 1(c).
We emphasize that the equations of the GL theory allow for the transformation of the GL
coefficients to different Reynolds number definitions or aspect ratios; see Grossmann &
Lohse (2002) and Stevens et al. (2013). Comparing these results with the heat transport
data in figure 1(a) demonstrates that changes in the overall flow strength are not necessarily
reflected one-to-one in the heat transport.

4. Flow organization and statistics

This section focuses entirely on the data for Ra = 108. To gain more insight into the effect
of the domain size on the flow characteristics, we analyse the variance profiles of the
time and horizontally averaged temperature, horizontal and vertical velocity, respectively
(figures 4 and 5). To enhance the statistical convergence, the statistics are averaged with
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Figure 2. Snapshots of the temperature field Θ at (a,b) thermal BL height z/L ≈ 0.035 and (c,d) mid-height
z/L = 0.5, for simulations in (a,c) a cylindrical domain and (b,d) a periodic domain (data from Stevens et al.
2018), with Γ = 32 at Ra = 108. Panels for cylindrical and periodic domains are plotted on the same scale. The
snapshots seem to suggest that large-scale flow structures are still slightly different in size in the periodic and
cylindrical domains, even in the very large aspect ratio case Γ = 32 considered here. So large-scale structures
do appear to be slightly affected by the sidewalls, but this is not affecting the overall heat transfer in the system.

Figure 3. Snapshots of the temperature field Θ in a vertical cross-section through the cell centre for
simulations in a cylindrical domain for Γ = 32 at Ra = 108; colour map as in figure 2.

respect to the symmetry in the horizontal midplane. Figure 4 compares the vertical profiles
obtained in cylindrical and periodic domains for Γ ≥ 1. Towards large Γ , the variance
profiles are nearly identical for periodic and cylindrical domains. Crucially, the variance
profiles are converged at Γ ≈ 8 in periodic domains, but only at Γ ≈ 16 in cylindrical
domains, while the integral Nu and Re already converge at Γ ≈ 4 (figure 1).

4.1. Temperature variance
Figure 6(a) shows the azimuthally and time averaged temperature variance in the vertical
radial plane. Additionally, we compare the radial profiles of the temperature variance for
the various aspect ratios at a fixed vertical location (z/L ≈ 0.035) just above the BL
height as a function of r/R, with R the cylinder radius (figure 7a), and measured with
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Figure 4. Comparison of the time and horizontally averaged variance of (a) temperature Θ , (b) horizontal

velocity UH =
√
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r , and (c) vertical velocity uz, obtained in cylindrical (solid lines) and periodic (dashed

lines; Stevens et al. 2018) domains for various aspect ratios Γ at Ra = 108.
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Figure 5. Vertical profile of the time and horizontally averaged variance of (a) temperature Θ , (b) horizontal

velocity UH =
√

u2
ϕ + u2

r , and (c) u · ∇2u for various Γ at Ra = 108, plotted on a logarithmic scale to focus
on the BL region. The vertical peak locations determine the BL thicknesses in figure 10.

respect to the sidewall (plotted as a function of (R − r)/L in figure 7b). For large-Γ
domains, the temperature variance is approximately uniform with radial position. Close
to the sidewall, the temperature variance in smaller cells (Γ ≈ 1) is similar to the values
obtained in large-Γ cells. However, the temperature variance around the cylinder axis
region is significantly lower in the smaller (Γ � 1) aspect ratio domains.

The radial profiles of the temperature variance (figures 7a,b) show some variation with
radius r, even for the largest aspect ratio domains. The reason is that the time scale of
the large-scale structures in RBC is very long, and therefore there remains an imprint
of the thermal superstructures on the radially averaged profiles. This is demonstrated by
the horizontal snapshots (figure 8) and time-averaged temperature fields in the horizontal
midplane (figure 9), which reveal that these variations are due to the relatively limited
movement of the thermal superstructures throughout the simulations. Related movies are
provided in the supplementary material available at https://doi.org/10.1017/jfm.2024.996.
These visualizations show that for Γ � 1, the LSC is found primarily in the region close
to the sidewall, while the region around the cylinder axis shows fewer fluctuations. For
Γ ≈ 4, the LSC breaks up in multiple rolls such that fluctuations in the region around the
cylinder axis increase. This agrees with previous experimental observations by Xia et al.
(2008).
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Figure 6. Azimuthally and time averaged variance of (a) temperature Θ , (b) horizontal velocity UH =√
u2
ϕ + u2

r , and (c) vertical velocity uz in the vertical radial plane for cylindrical domains with aspect ratios

Γ = 1, 2, 4, 8, 16 at Ra = 108.

4.2. Horizontal velocity variance
Figure 4(b) shows that close to the plate, the horizontal velocity variance peaks for Γ = 4.
For larger Γ , the peak value then drops to the value obtained in the large-Γ limit. In
contrast, in the bulk, the variance increases monotonically towards the large-Γ limit. This
effect is most pronounced in the periodic domain, but is also evident in the cylindrical
domain data (see figure 5b). This suggests that the monotonic increase for Γ � 4 and the
subsequent saturation of the volume-averaged horizontal root mean square velocity ReH

(figure 1d) are determined mainly by the bulk. Figure 6(b) displays the horizontal velocity
variance in the radial vertical plane, revealing an evident influence of large flow structures.
For Γ = 1, the horizontal variance peaks in the region around the cylinder axis near the
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Figure 7. Radial profiles of azimuthally and time averaged variance of (a,b) the temperature Θ , (c,d) the

horizontal velocity UH =
√

u2
ϕ + u2

r , and (e, f ) the vertical velocity uz at z/L ≈ 0.035 for 0.25 � Γ ≤ 32 and

Ra = 108, (a,c,e) normalized by the outer radius R and (b,d, f ) measured relative to the sidewall.

plate, where the LSC is most prominent. The horizontal velocity variance intensifies in
a Γ = 2 cell before dropping to the large-Γ limit. For Γ � 8, the horizontal variance
becomes approximately constant throughout the domain. However, it is noteworthy that
the imprint of the location of the thermal superstructures is more pronounced in the
horizontal velocity variance than in the temperature variance. Remarkably, the radial
horizontal velocity variance profile exhibits a pronounced structure when considered in
the reference frame of the sidewall (figure 7d). This shows that thermal superstructures
cannot form at the sidewall but require sufficient space to develop. This finding aligns with
the observations of Weiss et al. (2010), who demonstrated that vertically aligned vortices
in rotating RBC can form only at a certain distance from the sidewall.

4.3. Vertical velocity variance
The variance profiles of the time and horizontally averaged vertical velocity (figure 4c)
show that in a periodic domain with 1 � Γ ≤ 4, the variance is higher than in the large-Γ
limit. Further, the radial vertical representations in figure 6(c) reveal that for Γ = 1 and
2, the vertical velocity variance strongly peaks along the sidewall, while it decreases near
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Figure 8. Snapshots of the temperature Θ at mid-height in cylindrical domains for different Γ at Ra = 108.
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Figure 9. Time-averaged temperature 〈Θ〉t at mid-height in cylindrical domains for different Γ at Ra = 108.

the central axis where the LSC is absent. With increasing aspect ratio, the vertical velocity
variance becomes more uniform throughout the domain, with only a small peak remaining
relatively close to the sidewall. Like the horizontal velocity variance, the radial profile in
the reference frame of the sidewall reveals that the thermal superstructures require space
to develop.

4.4. Boundary layer thicknesses
For completeness and to further demonstrate the effect of the domain aspect ratio, we
determine the kinetic and thermal BL thicknesses (figure 10) using definitions commonly
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Figure 10. (a) Thermal and (b) kinetic/viscous BL thicknesses estimated from various definitions (see main
text) for Ra = 108. The vertical dashed line indicates Γ = 4, beyond which integral quantities Nu and Re are
converged (figure 1). For better comparison, (a) and (b) have the same scales not only on the horizontal Γ axis,
but also on the vertical axis. The inset in (a) shows a zoom of the main figure in the λΘ range of interest.

employed in the literature (Ahlers et al. 2009). We present the kinetic BL thickness
based on the peak position of the horizontal velocity variances (figure 4b), based on
the slope method (Wagner, Shishkina & Wagner 2012), and based on twice the height
of the peak position of u · ∇2u (figure 5c); see Stevens, Clercx & Lohse (2010a) and
Stevens et al. (2010b, 2011). For the thermal BL thickness, we report the values based
on the variance peak (figure 4a) and the thermal BL thickness based on the slope
method (Stevens et al. 2010a), and compare them with the classical 1/(2 Nu) estimate.
Figure 10 shows that the BL thicknesses obtained from these common definitions vary
significantly with Γ . In particular, λVar(UH ) increases by approximately a factor 5 with
increasing Γ . This demonstrates that the three most common methods to estimate a kinetic
BL thickness depict different BL heights of different quantities with possibly different
physical meanings. We note that it has been found and analysed in many numerical
Rayleigh–Bénard papers (Stevens et al. 2010a,b, 2011; Wagner et al. 2012; Hartmann et al.
2023) that different definitions of the BL thickness lead to different results, reflecting the
different physics entering in the respective definitions.

We note that Berghout, Baars & Krug (2021) developed a conditional averaging
technique with the LSC orientation to investigate the BL statistics more accurately.
Subsequently, Blass et al. (2021) utilize this conditional averaging technique to extract
LSC statistics, including the wall shear stress distribution, BL thicknesses, and the wind
Reynolds number. In particular, they show that various properties of the LSC obtained
here, such as the wall shear stress distribution, the BL thicknesses and the wind Re, do
not differ significantly in large and small (i.e. Γ = 1) aspect ratio domains. This explains
why changes in the large-scale flow organization are not necessarily reflected in the heat
transfer.

5. Conclusions and outlook

In conclusion, we investigated the heat transfer in cylindrical convection cells and periodic
domains using DNS of turbulent RBC, spanning an unprecedentedly wide range of aspect
ratios 0.075 � Γ � 32. In both cases, with increasing aspect ratio, the heat transfer first
increases, then reaches a maximum (which is more pronounced for the cylindrical case due
to the confinement effect), and then slightly goes down again before it finally saturates at
the large aspect ratio limit, which already is achieved at Γ ≈ 4. Already for Γ � 0.75, the
heat transfers in both laterally periodic and cylindrical domains become identical. For the
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total Re, the finite-size effects also disappear for Γ � 4 in both periodic and cylindrical
domains. This indicates that changes in the large-scale flow structures do not necessarily
impact the heat transfer, which is primarily governed by the boundary layer (BL) dynamics
(Ahlers et al. 2009; Blass et al. 2021).

While for integral quantities finite-size effects disappear for Γ � 4, they vanish only at
Γ ≈ 16 for the variances. In smaller cylindrical cells, the cylindrical geometry strongly
influences the distribution of the temperature and velocity fluctuations in the radial
vertical projection. Both horizontal and vertical velocity profiles reveal that thermal
superstructures require sufficient space for their development, as they cannot form near
the sidewall. Finally, the one-to-one comparison between RBC in periodic and confined
cylindrical domains reveals that integral flow properties and vertical variance profiles
indicating flow characteristics become identical in the large-Γ limit when the domain
is larger than the typical size of the thermal superstructures.

Overall, our analysis reveals that for Γ � 0.75, the heat transfer – governed primarily
by BL dynamics – is identical in laterally periodic and cylindrical domains. This indicates
that the effects of confinement on the heat transfer are limited. The large aspect ratio limit
for heat transfer is already attained at Γ ≈ 4. In contrast, differences in the organization of
the large-scale flow, as manifested in the variance profiles, persist up to Γ ≈ 16, attributed
to the inability of turbulent superstructures to form near the sidewalls.

We now come to an outlook towards much larger Ra. What follows from our study
for the choice of an ‘optimal’ configuration or geometry to achieve the ultimate regime
of RBC in DNS? Here, ‘optimal’ is meant in the sense of having the smallest possible
computational domain, but yet to achieve the ultimate regime (i.e. to maximize the range
between the maximal accessible Ra and the critical Ra for the onset of convection), and
by ‘ultimate’ regime we mean the regime in which Nu scales more steeply with Ra than
with Nu ∼ Ra1/3, due to the transition of a laminar type BL to a turbulent type BL
with enhanced heat transfer properties (Kraichnan 1962; Lohse & Shishkina 2023). For
a cylindrical cell, Shishkina (2021) had already shown that such an optimal choice is
Γ ≈ 0.5, and this present study demonstrates that for such a choice, the heat transfer
is nearly the same as in the Γ → ∞ case. For the horizontally periodic case, which
generally is computationally cheaper, our study suggests that Γ ≈ 0.75 is the best choice
(i.e. computationally cheapest) to achieve the ultimate regime, as that case requires the
least laterally extended grid without much affecting the heat transfer. We note, however,
that given that the transition to the ultimate regime is of non-normal nonlinear nature
(Roche 2020; Lohse & Shishkina 2023), a restriction to the aspect ratios of the periodic
box may affect how much disturbances in the BL can grow and thus how they can trigger
the transition to the ultimate regime.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.996.
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Ra Γ Nϑ × Nr × Nz Nu Reϑ Rer Rez Retot δtavg

2 × 107 0.100 64 × 16 × 128 9.03 (9.03) 17.37 15.25 158.68 160.35 10 000
2 × 107 0.125 64 × 16 × 128 18.30 (18.30) 34.21 32.11 282.64 286.51 10 000
2 × 107 0.150 64 × 16 × 128 17.47 (17.47) 91.15 75.94 284.87 308.59 10 000
2 × 107 0.175 64 × 16 × 128 21.34 (21.34) 119.22 92.27 343.37 375.00 10 000
2 × 107 0.200 64 × 16 × 128 20.67 (20.67) 152.12 113.87 340.47 389.90 10 000
2 × 107 0.225 64 × 16 × 128 21.69 (21.80) 159.70 128.27 366.54 421.01 10 000
2 × 107 0.25 96 × 16 × 128 22.48 (22.29) 175.27 144.19 386.94 449.86 10 000
2 × 107 0.50 192 × 32 × 128 21.07 (21.08) 248.37 229.73 435.71 552.83 10 000
2 × 107 0.75 256 × 48 × 128 20.67 (20.69) 295.02 279.17 477.78 627.80 10 000
2 × 107 1.0 384 × 64 × 128 20.60 (20.59) 359.61 328.87 519.89 713.00 10 000
2 × 107 2.0 768 × 128 × 128 19.43 (19.42) 535.25 458.57 495.16 861.37 640
2 × 107 3.0 1152 × 192 × 128 19.21 (19.19) 604.97 409.00 526.66 900.36 640
2 × 107 4.0 1536 × 256 × 128 19.08 (19.08) 610.57 449.14 494.28 904.90 639
2 × 107 8.0 3072 × 512 × 128 19.17 (19.18) 537.09 525.17 506.69 906.10 648
2 × 107 16.0 6144 × 1024 × 128 19.21 (19.21) 560.78 511.98 510.87 915.20 640
2 × 107 32.0 12 288 × 2048 × 128 19.19 (19.19) 555.38 524.83 513.72 920.76 280
1 × 108 0.075 144 × 24 × 192 24.71 (24.71) 41.30 38.26 453.96 457.44 10 000
1 × 108 0.100 144 × 24 × 192 30.19 (30.19) 165.71 128.22 568.02 605.43 10 000
1 × 108 0.125 144 × 24 × 192 33.39 (32.91) 233.80 178.13 642.79 707.80 10 000
1 × 108 0.150 144 × 24 × 192 33.08 (33.16) 294.36 232.30 670.89 768.57 10 000
1 × 108 0.175 144 × 24 × 192 34.26 (34.24) 333.47 273.28 716.49 836.21 10 000
1 × 108 0.200 144 × 24 × 192 34.39 (34.40) 362.20 306.38 746.00 884.07 10 000
1 × 108 0.225 144 × 24 × 192 34.13 (34.16) 387.38 334.66 766.45 921.69 10 000
1 × 108 0.25 144 × 24 × 192 33.73 (33.66) 410.30 359.23 782.49 953.77 2000
1 × 108 0.50 288 × 48 × 192 32.75 (32.74) 552.03 510.68 925.73 1192.69 2000
1 × 108 0.75 384 × 72 × 192 32.56 (32.61) 678.17 620.52 1046.60 1392.96 2000
1 × 108 1.0 576 × 96 × 192 32.32 (32.23) 822.22 731.85 1126.69 1575.14 1000
1 × 108 2.0 1152 × 192 × 192 30.96 (30.88) 1154.20 989.72 1038.27 1841.12 380
1 × 108 3.0 1728 × 288 × 192 30.72 (30.72) 1226.57 998.97 1046.54 1896.74 400
1 × 108 4.0 2304 × 384 × 192 30.67 (30.62) 1283.40 988.28 1040.48 1925.20 380
1 × 108 8.0 4608 × 768 × 192 30.74 (30.77) 1228.34 1084.00 1046.23 1943.83 400
1 × 108 16.0 9216 × 1536 × 192 30.75 (30.75) 1209.08 1112.94 1044.11 1946.96 379
1 × 108 32.0 18 432 × 3072 × 192 30.79 (30.79) 1179.21 1148.06 1052.47 1953.53 396

Table 1. The first two columns indicate Ra and Γ of the Rayleigh–Bénard flow simulations in cylindrical cells.
The next columns indicate the resolution used in the azimuthal, radial and axial directions (Nϑ × Nr × Nz), Nu
averaged over the full (and second half) of the time interval δtavg, the time- and volume-averaged Re of the
different velocity components, the total Retot, and the averaging interval δtavg in free-fall time units L/Uff .
Note that the DNS of Bailon-Cuba et al. (2010) have considerable less spatial resolution for the large Γ cases.
For Ra = 108, a one-to-one comparison with our DNS is provided in the Appendix.

Roberto Verzicco https://orcid.org/0000-0002-2690-9998;
Detlef Lohse https://orcid.org/0000-0003-4138-2255.

Appendix. Comparison to the data of Bailon-Cuba et al. (2010)

Following the suggestion of a referee, we include a detailed comparison of our present data
with those of Bailon-Cuba et al. (2010); see table 2 for all available data, and figure 11 for
the case Ra = 108. As can be seen, for larger Γ > 2.5, the Nusselt number Nu in the
data of Bailon-Cuba et al. (2010) goes up considerably, which is a consequence of the
increasingly insufficient grid resolution for the increasing Γ . It is not a physical effect.
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This study Bailon-Cuba et al. (2010)

Ra Γ Nϑ × Nr × Nz Nu δtavg Nϑ × Nr × Nz Nu δtavg

1 × 108 0.075 129 × 24 × 192 24.71 (24.71) 10 000 — — —
1 × 108 0.100 129 × 24 × 192 30.19 (30.19) 10 000 — — —
1 × 108 0.125 129 × 24 × 192 33.39 (32.91) 10 000 — — —
1 × 108 0.150 129 × 24 × 192 33.08 (33.16) 10 000 — — —
1 × 108 0.175 129 × 24 × 192 34.26 (34.24) 10 000 — — —
1 × 108 0.200 129 × 24 × 192 34.39 (34.40) 10 000 — — —
1 × 108 0.225 129 × 24 × 192 34.13 (34.16) 10 000 — — —
1 × 108 0.25 144 × 24 × 192 33.73 (33.66) 2000 — — —
1 × 108 0.50 288 × 48 × 192 32.75 (32.74) 2000 151 × 101 × 256 32.06 ± 0.24 300
1 × 108 0.75 384 × 72 × 192 32.56 (32.61) 2000 — — —
1 × 108 1.0 576 × 96 × 192 32.32 (32.23) 1000 271 × 151 × 256 32.21 ± 0.32 150
1 × 108 1.25 — — — 271 × 151 × 256 31.77 ± 0.15 150
1 × 108 1.5 — — — 321 × 161 × 256 31.39 ± 0.11 150
1 × 108 1.75 — — — 321 × 161 × 256 31.57 ± 0.10 249
1 × 108 2.0 1152 × 192 × 192 30.96 (30.88) 380 361 × 181 × 256 31.25 ± 0.31 145
1 × 108 2.25 — — — 401 × 201 × 256 31.25 ± 0.21 143
1 × 108 2.5 — — — 401 × 201 × 256 31.87 ± 0.18 146
1 × 108 2.75 — — — 401 × 201 × 256 32.34 ± 0.08 145
1 × 108 3.0 1728 × 288 × 192 30.72 (30.72) 400 451 × 225 × 256 32.29 ± 0.12 141
1 × 108 4.0 2304 × 384 × 192 30.67 (30.62) 380 541 × 257 × 256 33.20 ± 0.08 132
1 × 108 8.0 4608 × 768 × 192 30.74 (30.77) 400 801 × 451 × 256 34.78 ± 0.13 81
1 × 108 16.0 9216 × 1536 × 192 30.75 (30.75) 379 — — —
1 × 108 32.0 18 432 × 3072 × 192 30.79 (30.79) 396 — — —

Table 2. The first two columns indicate Ra and Γ of the simulation. The next columns indicate the resolution
used in the azimuthal, radial and axial directions (Nϑ × Nr × Nz), Nu averaged over the full (and second half) of
the time interval δtavg, and the averaging interval δtavg in free-fall time units L/Uff for the cases in this study,
followed by resolution in the azimuthal, radial and axial directions (Nϑ × Nr × Nz), Nu, and the averaging
interval δtavg in free-fall time units as stated in Bailon-Cuba et al. (2010).

10–1

0.06

N
u/

Ra
1
/3

0.07

100 101

Cylinder, Ra = 108

This study

Bailon-Cuba et al. (2010)

GL theory (Γ = 1)

Γ

Figure 11. Plots of Nu/Ra1/3 versus Γ for Ra = 108 for the cylindrical cell: Comparison of data of this paper
(red boxes) and of the data of Bailon-Cuba et al. (2010) (blue crosses), which seem to be under-resolved for large
Γ ; see table 2. The increase of Nu in the latter for larger Γ > 2.5 is due to the lack of sufficient grid resolution
for those large-Γ cases and presumably also due to lack of sufficient statistical averaging. The dotted line shows
the prediction from the GL theory for a Γ = 1 cylinder (using the coefficients set in Stevens et al. 2013) for
comparison.
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