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Abstract
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The MurchisonWidefield Array’s (MWA) Phase
II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in
tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR)
experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and
(2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum
(PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements
in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the
effects on the PS over three nights of EoR1 observations.We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades
the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that
redundant calibration can indeed mitigate some level of model incompleteness error.
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1. Introduction

The highly redshifted 21-cm signal of neutral hydrogen gas
encodes the perturbation statistics of hyperfine states of neu-
tral hydrogen gas, which trace the conditions of the radiation
fields permeating the early universe. Measurements of this sig-
nal are therefore a promising path for further constraints on the
Epoch of Reionization (EoR) and dark energy. Several experi-
ments aiming to detect the 21-cm EoR signal are either complete
or under way, such as the Donald C. Backer Precision Array for
Probing the Epoch of Reionization (PAPER; Parsons et al. 2010),
the Low-Frequency Array (LOFAR; van Haarlem et al. 2013), the
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Murchison Widefield Array (MWA; Tingay et al. 2013a; Bowman
et al. 2013), the Giant Metrewave Radio Telescope (GMRT; Gupta
et al. 2017), and the Hydrogen Epoch of Reionization Array
(HERA; DeBoer et al. 2017).

However, the astrophysical foregrounds are four to five orders
of magnitude brighter than the faint cosmological signal. But
because the foregrounds are spectrally smooth, while the 21-cm
signal has significant spectral structure, they can be in principle
distinguished after performing a Fourier transform in frequency.
The key challenges are precise calibration of the complicated fre-
quency dependence of the instruments, accurate avoidance of
radio frequency interference (RFI), and the effects of the iono-
spheric activity. Significant work in the past decade has led to a
number of techniques aimed at overcoming these difficulties: data
quality metrics to flag channels contaminated by RFI (Wilensky
et al. 2019; Li et al. 2019; Kerrigan et al. 2019; Offringa et al. 2015),
metrics to assess ionospheric activity (Jordan et al. 2017; Trott et al.
2018), and a variety of instrumental calibration methods (e.g. Liu
et al. 2010; Barry et al. 2019a; Yatawatta 2015).
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A leading paradigm of 21-cm analysis is to measure the
power spectrum (PS) of the signal in two-dimensional (2D)
cylindrical Fourier space (i.e. the (k⊥, k‖) plane, with Fourier
modes perpendicular and parallel to the plane of the sky,
respectivelya. In the 2D (k⊥, k‖) plane, foregrounds are confined
to a wedge-shaped region, called the ‘foreground wedge’. The
remaining region, namely the ‘EoR window’, is expected to be
contaminant-free (Pober et al. 2014; Datta, Bowman, & Carilli
2010; Parsons et al. 2012;Morales et al. 2012; Vedantham, Shankar,
& Subrahmanyan 2012; Thyagarajan et al. 2013; Trott, Wayth, &
Tingay 2012; Liu, Parsons, & Trott 2014).

For perfectly calibrated instruments, signal in the EoR window
should only come from 21-cm signal emission in an uncontami-
nated observation. But in practice, small chromatic instrumental
calibration errors introduce spectral structure in astrophysical
foregrounds, which contaminates some Fourier modes in the EoR
window and thus overwhelms the cosmological PS (Morales et al.
2019; Barry et al. 2016).

The two most popular methods of interferometric gain calibra-
tion are ‘sky-based’ and ‘redundant’, both are subject to systematic
errors. Sky-based calibration uses deep foreground catalogues or
maps to create model visibilities for calibration, which requires an
accurate sky model; errors are introduced if the model does not
capture the true sky brightness distribution. In particular, Barry
et al. (2016) identified a specific class of calibration errors where
the instrument’s point spread function interacts with missing
sources in the sky model to introduce chromatic errors and couple
foreground power into the EoR window. Redundant calibration
takes advantage of the fact that any given correlation should
depend only on relative positions of two antennas, which reduces
a large number of unknowns when calibrating an redundant array.
Redundant calibration is, to first order, sky-model-independent
but may be contaminated by non-redundancy introduced through
beam variation and antenna position errors (Orosz et al. 2019;
Joseph et al. 2019). Joseph, Trott, & Wayth (2018) found that
the position offsets introduce a phase bias of the calibration solu-
tions. This phase bias increases with the distance between bright
radio sources and the pointing centre, and with the flux density of
these sources (Joseph et al. 2018). Byrne et al. (2019) also showed
that calibration errors caused by sky model incompleteness affect
redundant calibration, since redundant calibration leaves degen-
erate parameters that must be constrained via reference to a
sky model.

Although the principles and limitations of each calibration
method are reasonably well understood, the actual performance
of these techniques will be affected by realistic constraints, such
as algorithm implementations, array configuration, sky model
accuracy, and data contamination from interference. Recent anal-
ysis with the HERA telescope shows the potential for redundant
calibration to provide some degree of information beyond sky cal-
ibration, as well as its value as a data quality metric (Kern et al.
2020; Dillon et al. 2020). Li et al. (2018) used the compact array
of Phase II of the MWA (Wayth et al. 2018; Beardsley et al. 2019),
which has both large numbers of redundant baselines and a rel-
atively complete sampling of Fourier space (i.e. UV coverage), to
compare redundant calibration with sky-based algorithms in the
EoR0 field (see Section 2 for a description of the fields observed

aStrictly speaking, the sky is curved and Fourier modes do not provide an orthonormal
basis for describing it. However, as long as the fields of view are not too large, the dis-
tinction is negligible and is usually not accounted for in the literature; see Liu, Zhang, &
Parsons (2016) for a rigorous treatment.

by the MWA EoR project). That work showed that the tandem
combination of sky-based calibration and redundant calibration
yielded small but non-negligible reductions in foreground con-
tamination in certain modes of the EoR PS. However, Li et al.
(2019) performed a similar analysis after adding an improved
auto-correlation-based technique to the sky-based calibration step
and found that the improvements brought about by redundant
calibration became negligible. In this paper, we further investigate
the performance of tandem redundant plus sky-based calibration
in MWA Phase II data analysis in the EoR1 field, where we find a
different result than that of Li et al. (2019): redundant calibration
has a significant positive impact on foreground contamination in
the PS even with the auto-correlation-based technique applied to
sky-based calibration (as will be shown in Section 4.3). Before
presenting the PS results, we compare the calibration solutions
derived from both sky and redundant calibration on a 2-min
cadence from three nights of EoR1 and one night of EoR0 to
investigate differences in the solutions themselves. As in Li et al.
(2019), we use packages Fast Holographic Deconvolution (FHD)
and OMNICAL for state-of-the-art implementations of sky-based
and redundant calibration, respectively.

The organisation of this paper is as follows. In Section 2, we
describe the compact array of MWA Phase II and the observations
analysed in this work. In Section 3, we review the methodology
and mathematical framework of sky-based calibration and redun-
dant calibration. In Section 4, we present all our analyses and
results, including simulations exploring redundant calibration
performance (Section 4.1), inspection of the calibration solutions
themselves (Section 4.2), and PS analyses (Section 4.3). We
further discuss over these analyses and present our conclusions in
Section 5.

2. Observations

The MWA is a low-frequency (80–300 MHz) radio interferom-
eter located at the Murchison Radio-astronomy Observatory in
Western Australia, the location of the future low-frequency Square
Kilometre Array. In MWA Phase I (2013–2016; Tingay et al.
2013b; Bowman et al. 2013), 128 antenna tilesb were arranged in
a pseudo-random layout designed for excellent instantaneous UV
coverage. The Phase II upgrade (Wayth et al. 2018; Beardsley et al.
2019) added 128 additional tiles in mid-2016. The correlator is
still limited to processing only 128 tiles at a time, so the array is
periodically reconfigured between ‘compact’ and ‘extended’ con-
figurations. The MWA Phase II compact array (Figure 1) consists
of 72 tiles in a regular hexagonal grid and 56 pseudo-random
tiles in a dense core with minimal redundancy. This configuration
allows us to perform redundant calibration while retaining good
UV coverage.

The individual dipoles in each tile can be time-delayed relative
to each other in the beamformer, enabling the array to be ‘pointed’
to a certain patch of the sky. However, the time delays can only
be adjusted by discrete amounts (as they are added by inserting
additional physical lengths of cable into the signal chain), mean-
ing that the telescope cannot continuously track a patch of sky.
Instead, the MWA EoR program observes in a specific direction
with the sky drifting overhead for about 30 min and then repoints
the tiles to track the field of interest, which is called the ‘drift and
shift’ method (Trott 2014). During an observation, the delays are

bEach tile consists of 16 individual dipoles with signals combined in an analog beam-
former.
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shifted multiple times until the field is too low in the sky to track,
so the data in the observation are grouped into ‘pointings’ (each set
of tile delays corresponds to one pointing). With the sky transiting
from the east, the program begins observing at 5 pointings before
zenith and ends observing at 4 pointings after zenith. The zenith is
labelled as ‘pointing 0’, thus all the 10 pointings are labelled from
pointing −5 to pointing 4.

The MWA EoR program focuses on three fields with rela-
tively low foreground emission: ‘EoR0’ (RA= 0h00, Dec= −27◦),
‘EoR1’ (RA= 4h00, Dec= −27◦), and ‘EoR2’ (RA= 11h33, Dec=
−10◦); see Jacobs et al. (2016) for themotivation for selecting these
fields and Trott et al. (2020) for a detailed analysis of the features
present in each. Each field fills the main lobe of the MWA primary
beam, spanning roughly ∼40◦ on a side.

In this work, we analyze high band (167–197 MHz) data from
three nights observing EoR1 and one night observing EoR0. The
most salient difference between these two fields is the presence
of Fornax A, a bright, extended source in the EoR1 field; EoR0,
in comparison, contains mostly unresolved sources. In this work,
we denote the nights as ‘EoR1 night1’ (2016 October 15), ‘EoR1
night2’ (2016October 17), ‘EoR1 night3’ (2016November 15), and
the ‘EoR0 night’ (2016 November 21), respectively. We explore
the four nights using good pointings determined by the window
power metric (Beardsley et al. 2016; Li et al. 2019) and the iono-
spheric metric (Jordan et al. 2017; Trott et al. 2018): for EoR1
night1 and night2, good pointings are−3,−2,−1, and 0; for EoR1
night3, good pointings are −3, −2, and −1; for the EoR0 night,
good pointings are −2, −1, 0, 1, and 2.

The MWA uses the AOFlagger algorithmc to flag data contam-
inated by RFI (Offringa et al. 2015). In this work, we further flag
faint RFI not captured by the pipeline using data quality metrics
developed by Wilensky et al. (2019) and Li et al. (2019).

3. Calibration formalism

The sky signal is modified along the path from where it was emit-
ted to where it was recorded. In order to measure the cosmological
signal, all thesemodificationsmust be corrected for.While our RFI
flagging and data quality metrics are used to avoid the most cor-
rupted sky signals, the electronic response of the antennas must
still be corrected for with a gain calibration algorithm.

In this section, we will briefly introduce two calibration meth-
ods used in our analysis: sky-based calibration and redundant
calibration, and the code packages and algorithms we use to
implement them.

3.1. Measurements of the sky

Suppose antenna i with gain gi measures a frequency domain sig-
nal si at a given instant, an approximation of a short time block. si
is related to the true sky signal hi and the antenna’s instrumental
noise contribution ni as:

si = gihi + ni, (1)
which is both an equation of time and frequency.

In this paper, we consider only a single linear polarisation at
a time. We assume per-antenna and per-frequency gains. In the
MWA, the instrumental gains are assumed to be constant over 2-
min observations. Then in a long integration time that 〈ni〉 = 0,
the baseline bij measures the correlation between signals from
antenna i and j (i 	= j):

chttp://aoflagger.sourceforge.net/doc/api/.

vij = 〈s∗i sj〉 (2a)

≈ g∗
i gj〈h∗

i hj〉 + 〈n∗
i nj〉 + gj〈n∗

i hj〉 + g∗
i 〈h∗

i nj〉 (2b)

= g∗
i gjuij + nij, (2c)

where uij = 〈h∗
i hj〉 denotes the true visibility and nij is the residual

noise as the synthesis of all noise contributions in Equation (2b).
We have applied two assumptions: the noise of different anten-
nas are uncorrelated and the sky signal does not correlate with the
noise. Under these assumptions, the last three terms in Equation
(2b) all have an expectation value of 0 in the limit that time goes to
infinity. However, since our integration length is finite, these three
terms contribute an approximately ui-independent Gaussian ran-
dom component, which we relabel as a single effective noise term
nij in going to Equation (2c).

Our goal is to solve for the true sky visibilities uij. Numerous
algorithms and strategies have been developed for precise cal-
ibration. Most of them can be classified into two approaches:
sky-based calibration and redundant calibration. We will briefly
introduce both of the two calibration methods in Section 3.2.

3.2. Calibration techniques

In our analysis, we used two calibration packages: one is the FHDd

(Barry et al. 2019a; Sullivan et al. 2012) software pipeline, which is
used for sky-based calibration, and the other is OMNICALe (Zheng
et al. 2014), performing redundant calibration.f

They are two different methods but both work on maximum-
likelihood estimate of per-frequency antenna gains. For any base-
line bij, we assume its noise is Gaussian and mean zero with
variance σ 2

ij (Thompson, Moran, & Swenson 2017). Maximising
the likelihood function of gains is equivalent to minimising

χ 2 =
∑
ij

|vij − g∗
i gjuij|2

σ 2
ij

. (3)

Instrumental frequency dependence is implicit in this equation.

3.2.1. FHD: Sky-based calibration

Sky-based calibration works by substituting model visibilities for
the true visibilities in Equation (3). The accuracy of the model
visibilities determines the accuracy of sky-based calibration. We
use GaLactic and Extragalactic All-sky MWA (GLEAM) (Hurley-
Walker et al. 2016), an extragalactic point source catalogue with
large coverage and high completeness, as our model sky to gen-
erate model visibilities. FHD simulates all reliable sources in the
catalogue out to typically 1% beam level in the primary lobe
and the sidelobes to build a theoretical sky (Barry et al. 2019a;
Beardsley et al. 2016). In this work, we exclude baselines shorter
than 50 wavelengths (which are sensitive to diffuse Galactic emis-
sion absent from GLEAM) to reduce the contamination from
differences between the model visibilities and the true visibilities
(Barry et al. 2019a).

dhttps://github.com/EoRImaging/FHD.
ehttps://github.com/jeffzhen/omnical.
fSome confusing nomenclature unfortunately exists around this code. The package

OMNICAL contains three algorithms: Logcal, Lincal, and Omnical. The Omnical algo-
rithm, first described in Dillon et al. (2020), is a more efficient replacement for Lincal;
however, following Li et al. (2018) and (2019), we use only Logcal and Lincal, which
are described below. In referring to OMNICAL (all capitalised), we refer to the code package
and not the Omnical algorithm, which is not used in this work.
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FHD calibration begins with a set of estimated initial solutions
for g∗

i ( f ) and the sky visibilities are substituted with model visi-
bilities mij. (In practice, the digital gains in the MWA correlator
pre-scale the visibilities to roughly the right level—so an initial
gain estimate of 1.0 at for all antennas at all frequencies is suf-
ficient for quick convergence of the calibration algorithm.) Then
minimising Equation (3) becomes a linear least-squares problem:

χ 2
j,sky( f )=

∑
i

|vij( f )− g∗
i ( f )gj( f )mij( f )|2
σ 2
ij ( f )

, (4)

where mij is the model visibility. This relation can be solved
iteratively to return the values of the g terms that minimise χ 2

(Mitchell et al. 2008; Salvini & Wijnholds 2014).
Sky-based calibration requires an accurate sky model, other-

wise the difference between the true sky visibilities and model
visibilities will be incorporated into our evaluations of instrumen-
tal gains. Barry et al. (2016) demonstrate how gain errors due to
sky model incompleteness introduce contamination that prevents
recovery of an EoR signal.

3.2.2. OMNICAL: Redundant calibration

If an array is built to have sufficient redundant baselines, the
total number of measurements will exceed the sampled points in
Fourier space. In this case, our equations are over-determined and
we are able to directly solve for both instrumental gains and vis-
ibilities (Liu et al. 2010). Pedagogically, we can understand this
calibration method as minimising

χ 2
red( f )=

∑
α

∑
{i,j}α

|vij( f )− g∗
i ( f )gj( f )uα( f )|2
σ 2
ij ( f )

, (5)

where α indexes types of redundant baselines and {i, j}α are sets of
antennas that belong to each type of redundant baseline. {uα} and
{gi} can both be solved for directly.

In this work, redundant calibration incorporates two parts,
Logcal and Lincal. Logcal uses logarithms to cast the min-
imisation of Equation (5) as a linear regression problem. But this
method is biased for two reasons: 1. when the signal-to-noise ratio
(SNR) is low, it is less accurate to expand the logarithm noise
contribution term ln

(
1+ nij/g∗

i gjuij
)
as nij/g∗

i gjuij, as is done by
Logcal and 2. Logcal applies least-squares estimation to the dis-
tributions of noises’ magnitudes and phases, which is inaccurate as
the magnitudes and phases of noise follow Rayleigh distributions
rather than Gaussian distributions.

Lincal was developed to mitigate these biases (Liu et al. 2010).
In Lincal, we Taylor expand Equation (2c):

vij ≈ g0∗i g0j u
0
ij + g0∗i u0ij�gj + g0j u

0
ij�g∗

i + g0∗i g0j �uij, (6)

where �gj, �g∗
i , and �uij are equal to gj − g0j , g∗

i − g0∗i , and
uij − u0ij, respectively. Thus, the measurement equation becomes
linear so that we can perform a least-squares fitting: using ini-
tial guesses of g0i and u0ij, we can solve for all values of (gi − g0i )
and (uij − u0ij). Then, we use the new estimations for g0i and u0ij
as inputs and solve the equation iteratively. Note that the initial
inputs should be in the minimum containing the true solution.
In this work, outputs of Logcal are used as the starting point for
Lincal, so that biases are expected to be mitigated.

Redundant calibration faces another problem, in that there
are four intrinsic degeneracy parameters per frequency: the over-
all amplitude, overall phase, and two phase gradient components
(Byrne et al. 2019; Dillon et al. 2018; Liu et al. 2010). These

parameters can take any value without affecting the redundancy
of the data; therefore, they cannot be constrained by redundancy-
based methods. We constrain these degenerate parameters using
the FHD calibration solutions: finding values of the four degener-
acy parameters per frequency per polarisation for the whole array,
which best fit the sky-based calibration solutions (Li et al. 2018).
Li et al. (2018) explored different ways of combining FHD and
OMNICAL, each of which used slightly different methods for con-
straining the degeneracy parameters. We use the method referred
to as ‘FOCal’ (also used in Li et al. 2019), which we now detail in
Section 3.2.3.

3.2.3. FHD and OMNICAL in tandem: Redundant plus sky-based
calibration

In this paper, we perform redundant plus sky-based calibration
using FHD and OMNICAL in tandem. Following Li et al. (2018), we
perform FHD sky-based calibration on the raw data first. Then, we
perform redundant calibration on FHD-calibrated data, yielding a
second set of gains that can be multiplied by the FHD-produced
gains to yield a final set of calibration solutions. Before multiplying
the OMNICAL and FHD gains together, however, we set the parame-
ters in the redundant calibration degenerate space of the OMNICAL
gains to 1 (for the amplitude) and 0 (for the phase terms) so that
the FHD values in this subspace are retained after multiplication.
This is the process referred to as ‘degeneracy projection’ in Li et al.
(2018). With this approach, we can investigate the performance of
each calibrationmethod by looking at both the solutions produced
by FHD and the changes to those solutions produced by OMNICAL.

One can expect in our calibration pipeline that based on FHD
calibrations, redundant calibration makes further modifications
to fit the instrumental redundancy. These modifications on top
of FHD calibration results will be small if sky-based calibration
works well; based on this expectation, we refer to the gain solutions
produced by OMNICAL as multiplicative ‘�’s’ on top of the FHD
solutions (i.e. gtandem = �OMNICAL × gFHD). In Section 4, we will look
at FHD gain solutions, the redundant calibration gain �’s, and
the difference in the PS when using only FHD versus FHD plus
OMNICAL tandem calibration.

4. Analyses

Our approach for using FHD and OMNICAL in tandem enables us
to study the performance of each algorithm relatively straightfor-
wardly. Assuming perfect sky-based calibration with a perfect sky
model, the �′s produced by redundant calibration should be 1.0
(since the gains are multiplicative). Any deviation from 1 indi-
cates an error—either one in sky-based calibration that is being
corrected by redundant calibration or one in redundant calibra-
tion due to, for example, non-redundancy in baselines that were
assumed to be redundant. Theoretically, the errors in our sky
models should vary from field to field on the sky, so that sky-
based calibration will behave differently for different observations.
However, it is hard to unambiguously evaluate ‘effectiveness’ in
real data, when non-unity values for the redundant calibration�’s
can result from errors in either calibration algorithm. In this work,
we calibrate and process MWA Phase II data from both the EoR1
field (which has not been studied in this fashion before) and the
EoR0 field (which was studied in Li et al. 2018 and 2019). By com-
paring both the calibration solutions from each algorithm and the
resultant PS measurements, we can begin to understand how the
behaviour of these algorithms varies from field to field.
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In this section, we will present three analyses: a simulation
exploring redundant calibration performance on noisy but other-
wise perfect data (Section 4.1); a study of the calibration solutions
from both FHD and OMNICAL and their repeatability from night
to night (Section 4.2); and an investigation of the effects apply-
ing the redundant calibration solutions have on the PS of our data
(Section 4.3).

4.1. Simulation: Redundant calibration performance on noise

Since our measured data have a random noise component, we can
never truly expect redundant calibration to return �’s of exactly
1.0, even if sky-based calibration is perfect. Here, we present a sim-
ple simulation where OMNICAL is run on ‘perfect’ data with a SNR
comparable to the real observations. If we find the redundant cal-
ibration �’s for the real data are at a level of order the �’s we find
in this simulation, we might conclude that redundant calibration
is purely fitting noise, for example, any changes it wants to make
to the FHD calibration are purely random.

To keep the simulation simple, we create a single mock obser-
vation with perfect redundancy and no fringes, for example, the
signal is real-valued. For the fairness of comparison, the simu-
lated observation is designed to have the same noise level and
comparable SNRs with the real observation at each frequency.
We characterise the noise level via the standard deviation of the
noise and SNR is defined as the ratio between signal amplitude
and the noise level. The frequency-dependent noise level has been
assumed to be constant over all baselines and over an observa-
tion. Thus, we can produce a simulated observation such that the
signal μ( f ) and the standard deviation of the noise σ ( f ) are the
same over all baselines and times per frequency. Mathematically,
the simulated visibility V is
V = μ + n= SNR( f ) · σ ( f )+NR

(
0, σ 2( f )

) + jNI
(
0, σ 2( f )

)
,
(7)

where n denotes the complex noise contribution of the sim-
ulated visibility, with standard deviation σ ( f ) in the real and
imaginary, and μ = SNR( f ) · σ ( f ). Both the real and imaginary
noise components are randomly sampled as mean zero Gaussian
N

(
0, σ 2( f )

)
.

We directly calculate the per frequency noise levels of the real
observation and use them as σ ( f ) in the simulated observation.
The SNR( f ) is also empirically calculated from the real obser-
vation. The noise level is calculated per frequency for the entire
observation using the even/odd differencing method described in
Barry et al. (2019a): visibilities separated by 2 s in time are sub-
tracted from each other to remove the slowly changing sky signal.
The residuals are then assumed to be noise-dominated, with a per-
frequency standard deviation (taken across time and baseline) that
reflects the underlying noise in the data.

The ‘signal’ level of the real data is calculated from the distribu-
tion of the visibility amplitudes for a single observation. For a set of
visibilities with constant sky signal magnitudeμ and noise level σ ,
the distribution of visibility amplitudes Z is uniquely determined,
even though the visibilities themselves rotate through the complex
plane as a function of time. The analytic expression for the mean
value of visibility amplitudes can be shown to be:

〈Z〉 =
∫ ∞

0
Z · P(Z)dZ = e−

μ2

2σ2

σ 2

∫ ∞

0
Z2e−

Z2
2σ2 I

[
0,

Zμ

σ 2

]
dZ

=
√

π

8
σ−1e−

μ2

4σ2

(
(2σ 2 + μ2)I

[
0,

μ2

4σ 2

]
+ μ2I

[
1,

μ2

4σ 2

])
, (8)

Figure 1. The MWA Phase II compact array layout.

where I[ν, z] denotes modified Bessel function of the first kind:

I[ν, z]=
∞∑
k=0

1
�(k+ ν + 1)k!

(
1
2

)2k+ν

. (9)

This relation lets us calculate a value of μ to use in our simple
visibility model (Equation (7)) and 〈Z〉 of the real observation. For
the real observation, we used in comparison, 〈Z〉 ≈ 2.707σ , giving
us μ ≈ 2.495σ .

We calculated the mean SNR of the real observation over all
frequencies and then produce a series {SNR(f )} whose mean value
is equal to the real observation’s such that SNR(f ) is proportional
to frequency to the −1.59, which is derived from fitting a power
law distribution to the empirically measured frequency depen-
dence of SNR. The simulated observation with known SNR(f ) is
directly input into OMNICAL, so that the � values should be mean
1 with any deviations purely caused by noise.

We compare �’s of a real EoR1 observation (Observation ID:
1163254256) with redundant calibration solutions of the corre-
sponding simulated observation in Figure 2, which shows root
mean square (RMS) of redundant calibration solution magni-
tudes/phases. The RMS is taken across the set of antennas. Clearly,
redundant calibration is making changes to the real data at a level
significantly larger than might be expected were the data perfectly
redundant up to the noise level.

We also investigate the effect of SNR on the result of the
simulations. We find that as long as the SNR is held fixed (e.g.
increases to the signal strength are offset by increases to the noise),
the �’s produced by redundant calibration are at the same level.
Increasing the SNR does reduce the magnitude of the �’s, indi-
cating that redundant calibration is indeed affected by noisy data.
However, as indicated in Figure 2, the RMS of the �’s for the real
data are larger than would be expected from SNR alone.

From these results, we can conclude that OMNICAL is respond-
ing to real non-redundancy in the data that is above the noise level.
Our simulation tells us the expected scale of the �’s for a given
SNR and perfect redundancy; in the real data, we see �’s a fac-
tor of ∼3− 5 larger in RMS. This analysis does not, however, tell
us the source of the non-redundancy. It might be that the FHD
solutions are not completely correct and that OMNICAL is bringing
the gains closer to their true values. However, it might be that the
instrument itself is non-redundant and OMNICAL is introducing
further errors into the gains (since it assumes perfect redundancy).
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Figure 2. The RMS of redundant calibration solution magnitudes/phases of a real/simulated observation. Orange lines represent the real EoR1 observation and blue lines corre-
spond to the simulated observation, which is constructed to have the samemean noise as the real observation per frequency and the same total SNR averaged over frequencies.
In addition, we set the SNR of the simulated observation proportional to frequency to −1.59 which is similar to the real one. Upper: RMS of redundant calibration solution
magnitudes; bottom: RMS of redundant calibration solution phases. We can see that redundant calibration makes changes to the real data beyond just noise.

We now continue our analysis of the gain solutions produced by
FHD and OMNICAL to see whether the addition of OMNICAL does
in fact lead to improvements in our calibration and subsequent
analysis.

4.2. Comparison of calibration solutions

To study the performance of FHD and OMNICAL when applied to
actual data, we compare the calibration solutions among the four
nights. We perform two distinct analyses: a detailed investigation
of the spectral behaviour of four sets (one per pointing that passes
the cuts described in Section 2) of calibration solutions from 2-
min Local Sidereal Time (LST)-matched data sets (Section 4.2.1)
and a study of the repeatability of the calibration solutions across
all observations in our data set (Section 4.2.2).

4.2.1. Spectral behaviour of the calibration solutions

Within each pointing, we select one observation per EoR1 night
such that the sampled EoR1 observations are at well-matched
LSTs. Similar LSTs will result in similar model visibilities generated
by FHD. Thus, comparing LST-matched EoR1 observations across
nights will test the consistency and repeatability of the calibration
techniques.

We also select one observation per pointing from the EoR0
night and compare�′swith sampled EoR1 observations to explore
redundant calibration performance at different EoR fields and
a possible sky model dependence. There is obviously no LST
accordance between the EoR0 night and EoR1 nights, but the
observations chosen are representative.

We begin by first looking at the FHD sky model calibration
solutions for each of our three selected EoR1 observations. We
normalise the magnitudes of per-frequency FHD solutions for
sampled EoR1 observations to mean 1 and then average over
antennas to study the typical spectral structure. Figure 3 shows
the magnitude of FHD solutions for sampled observations on the
EoR1 nights. For each set of observations with similar LSTs, the
solutions are largely in agreement with only small discrepancies
over nights. In general, EoR1 nights 1 and 2 agree closely, with
night 3 showing a steeper spectral slope.

Comparison of redundant calibration solutions are carried out
in a similar way. We look at the spectra of the RMS of the mag-
nitudes of the �’s over antennas for each sampled observation.
Figure 4 illustrates that |�|’s are similarly consistent over all the
EoR1 nights with repeatable frequency structure. The grey curve
shows the results from an EoR0 observation, which has different
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Figure 3. The spectra of FHD solutionmagnitudes (averaged over antennas and normalised tomean one) of observationswithwell-matched LSTs over our three EoR1 nights. Blue,
orange, and green represent EoR1 night1, night2, and night3, respectively. Two columns correspond to two polarisations and four rows correspond to different pointings. Note
that EoR1 night3 pointing 0 is flagged due to ionospheric contamination. The periodic 1.28 MHz scalloping is due to the two-stage Fourier transform used by the MWA correlator.
For each 2-min LST-matched data set, the solutions are largely in agreement with only small discrepancies over nights. In general, EoR1 night1 and night2 agree closely, with
night3 showing a steeper spectral slope.
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Figure 4. The RMS of magnitudes of �’s for observations sampled per pointing per polarisation and per night. EoR1 observations are sampled to have well-matched LSTs over
EoR1 nights. We also sampled typical EoR0 observations at pointing−2,−1, and 0. Four different colours denote different nights (see legend at the top of the figure for details).
The columns represent the two linear polarisations and each of the four rows correspond to different pointings. We find that |�|’s are consistent at any pointing over all the EoR1
nights with repeatable frequency structure, and the results from EoR0 observations have different spectral behaviour. It also shows |�|’s for EoR1 observations have bigger values
at E–W than at N–S (see further discussion in Section 5).
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Figure 5. Histograms of redundant calibration solutions for EoR1 night1 and night2. Left: 1 and 2D histograms of the magnitudes of redundant calibration solutions for EoR1
night1 and night2. The subplot in the lower left panel is the 2D histogram of the magnitudes of redundant calibration solutions for two simulated data sets with common SNR.
Right: 1 and 2D histograms of the phases (in radians) of redundant calibration solutions for EoR1 night1 and night2. The subplot in the lower left panel is the 2D histogram of
the phases of redundant calibration solutions for two simulated data sets with common SNR. For 1D histograms, the area between the vertical dashed lines contains 95% of the
samples; for 2D histograms, a contour (where the plot transitions fromapoint-by-point scatter plot to a pixelated density plot) contains 1− e−2 ≈ 84%of the samples. Comparison
with the simulated data shows that there is a scatter larger than would be expected from noise, EoR1 night1 and night2 are overall significantly correlated.

spectral behaviour, but no significant difference in overall mag-
nitudes (recall that −3 is a flagged pointing for EoR0 due to
Galactic contamination). A comparison of the East–West (E–W)
polarisation and the North–South (N–S) polarisation shows that
|�|’s for EoR1 observations have bigger values at E–W than at
N–S. We will return to this point in Section 5, but note that
the polarisation dependence of redundant calibration solutions is
significantly weaker in the EoR0 observations.

This result suggests that the spectral structure of our calibration
solutions are quite repeatable for the same LST on different nights,
but there is a moderate dependence on the pointing. While not
shown, we have repeated this analysis for a number of other 2-min
LST-matched data and we find the results to be very similar. For
redundant calibration solutions, we find a significant difference
between the EoR1 and EoR0 fields.

4.2.2. Repeatability of redundant calibration solutions

To make a more robust claim about the night-to-night
repeatability of redundant calibration, we pair all the LST-
matched redundant calibration �’s between two EoR1 nights (up
to 1010 pairs in total, with one pair for each frequency, antenna,
and time sample of the data set) and study the correlation between
the two nights. Figure 5 shows the results of this study. The
top row of two three-panel ‘triangle’ plots show the 1D and 2D
histograms of all the redundant calibration �’s in magnitude
(left) and phase (right). Within each triangle, the 1D histograms
show the �’s from night1 (top left) and night2 (bottom right);
the 2D contour/scatter plot (bottom left) shows the values from
night1 plotted against the values from night2. For 1D histograms,
the area between the vertical dashed lines contains 95% of the
samples; for 2D histograms, a contour (where the plot transitions

from a point-by-point scatter plot to a pixelated density plot)
contains 1− e−2 ≈ 84% of the samples.

The elliptical shape of the 2D histograms, centred on the one-
to-one line, suggest that the solutions found on EoR1 night1 and
EoR1 night2 are highly correlated. To better assess the signifi-
cance of this correlation, we perform a similar analysis using two
sets of simulated data with common SNR. Since the simulated
data (described in Section 4.1) are effectively perfect up to the
noise, we expect no correlation in the �’s between the two nights
(i.e. any change redundant calibration wants to make to the data
set is merely a result of fitting noise). The results of this sim-
ulation are shown in the bottom two triangle plots in Figure 5.
As expected, the 2D histograms are completely circular—meaning
there is no correlation in the�’s between the two simulated nights.
The width of these circles also gives us an estimate of the scatter
we might expect in perfectly correlated data (because the simu-
lations have an SNR matched to the data). Comparison between
real and simulated data shows that the two EoR1 nights are not
perfectly correlated up to the noise; rather, the scatter in these
plots (effectively, the minor axis of the ellipses) is larger than
would be expected from noise alone. However, the overall cor-
relation is quite significant: the redundant calibration solutions
for the two nights of data have Pearson’s correlation coefficients
of 0.826 (magnitude) and 0.651 (phase), confirming our intuition
that redundant calibration is producing largely repeatable results
from night to night.

4.3. Comparison of power spectra

Li et al. (2018) and (2019) evaluated tandem calibration tech-
niques by quantifying the reduction of power in the EoR window
(assumed to be due to residual foreground contamination). We
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Figure 6. An example for 2D PS plot to highlight modes that will be used for 1D power
in k in Figures 7, 8, and 9. To avoid coarse band contamination, we discard 5 k‖ bins
around the centre of each coarse bandmode. Low k‖ values are inside ‘the wedge’ and
are therefore not included. In the k⊥ direction, we keepmodes between a lower bound
of 12λ and an upper bound of 50λ (Li et al. 2019). The cutting is performed in the 3D
power spectrum and averaged to one-dimension.

apply that formalism in our analyses. To illustrate the difference
between the two calibration pipelines, we subtract the PS of data
with both FHD and redundant calibration applied from that of
the FHD-only applied data in 3D k space. We then select regions
of k space where both foregrounds and the periodic contamina-
tion from the 1.28-Mhz band structures are minimised and bin
in spherical annuli to make 1D PS difference plots versus k. We
plot the 1D results as �2(k)= k3

2π 2 P(k) to facilitate comparison
with the literature. We perform this exercise for both the N–S
polarisation and the E–W polarisation and for all four nights. We
produce PS using the package Error Propagated Power Spectrum
with Interleaved Observed Noise (εppsilong; Jacobs et al. 2016;
Barry et al. 2019a). In 1D PS difference plots, solid lines repre-
sent positive values, that is, the power at that kmode is reduced by
the application of redundant calibration to FHD calibrated data,
while dashed lines represent negative values. In the EoR window,
the former are regarded as ‘improvements’— redundant calibra-
tion has lowered the contamination in the region expected to be
foreground-free. In Figure 6, we illustrate the modes we select
in a 2D PS (although recall the differencing and mode selection
takes place in 3D k space). For consistency, we use the same k
space selections as used in Li et al. (2019). The selection gives
us a range of |k| modes to look at, although we draw particular
attention to the modes in 1D PS difference plots where k is about
0.15∼ 0.20 hMpc−1; these modes have both the largest sensitivity
to the EoR signal and come from regions of 2D k space clos-
est to ‘the wedge’, where calibration errors can most easily cause
contamination (Morales et al. 2019).

Figure 7 shows the 1D PS difference for each pointing of the
EoR1 nights. For each PS plot, we integrate all observations within

ghttps://github.com/EoRImaging/eppsilon.

the pointing not flagged by our quality metrics. For the E–W
polarisation (blue lines), we can see repeatable improvements up
to 104 mK2 for all pointings. In contrast, improvements in the N–S
polarisation (orange lines) only appear at the zenith pointing (the
fourth row). At the off-zenith pointings (first three rows), we see
no significant improvements of PS in the N–S polarisation.

A 1D pointing-by-pointing PS difference comparison of EoR0
and EoR1 is shown in Figures 8, and 9 shows PS differences after
integrating all good pointings for each night. The improvements in
the E–W polarisation are seen for all three EoR1 nights, whereas
no significant improvements are seen for EoR0 in any pointing or
in the integrated PS, consistent with the results of Li et al. (2019).

In general, when we do see consistent improvements, they are
at levels of ∼103 to 104 mK2. Given the recent measurements of
Barry et al. (2019b), Li et al. (2019), and Trott et al. (2020), which
use the MWA to achieve lowest limits of �2 < 3.9× 103 mK2,
�2 < 2.39× 103 mK2, and �2 < 1.8× 103 mK2, respectively, we
can see improvements of this scale can be significant.

5. Discussion

In Section 4, we presented analyses looking at both calibration
solutions and 1D PS differences. In this section, we will further
discuss two key aspects of our results: the comparison of the EoR1
and EoR0 results and the polarisation dependence of redundant
calibration’s improvements in the PS of EoR1.

5.1. Comparison of EoR1 and EoR0

The noise simulations (Section 4.1) and general repeatability of
both the gain solutions (Section 4.2) and the PS improvements
(Section 4.3) across the three nights of EoR1 give us significant
confidence that redundant calibration is indeed constraining real
information about the telescope. It is then interesting to ask why
we see no significant PS improvements in our EoR0 analysis
(consistent with the results of Li et al. 2019).

The biggest difference between the two fields is the distribu-
tion of flux density on the sky. EoR0 has no significant bright or
extended sources (Carroll et al. 2016) and as such is well mod-
elled by the GLEAM catalogue. For EoR1, our sky model is likely
not as accurate as the EoR0 due to the presence of Fornax A (see
Figure 10) near the centre of the field. GLEAM does not include
a Fornax A model (Hurley-Walker et al. 2016) itself; ours is pro-
duced directly from Phase I EoR observations using the techniques
of Carroll et al. (2016). Figure 11 shows the residual images of
EoR1 after our sky model has been subtracted; we return to the
polarisation properties of this image in our discussion in Section
5.2, but we generally see a negative feature at the position of
Fornax A in the lower right of the image—suggesting our model
has an excess of flux density compared to the data. However, we
emphasise that our Fornax A model is by no means ‘bad’; the
post-subtraction residuals seen in Figure 11 are at the percent level
compared to the source itself. Line et al. (2020) recently produced
a new model for Fornax A using shapelets (which, at present, can-
not be used by the FHD code), but when subtracted from MWA
data, the residuals are at comparable level to those seen here (c.f.
their Figure 9).

The fact that Fornax A is so difficult to model leads to
interesting conclusions about the role of redundant calibration
in the EoR1 field. If FHD produces calibration solutions with
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Figure 7. 1D PS difference pointing by pointing for the three EoR1 nights. Solid lines represent kmodes where redundant calibration has reduced the overall power, while dotted
lines imply a negative reduction in power (i.e. redundant calibration has introduced additional contamination). The three columns correspond to the three nights and the four rows
correspond to different pointings. Blue represents the E–Wpolarisationwhile orange is N–S. Recall that the night3 zenith pointing is flagged due to ionospheric contamination. For
the highest sensitivitymodes (∼0.15− 0.20 hMpc−1), we can see repeatable improvements up to 104 mK2 for all pointings in the E–Wpolarisation (blue lines), while improvements
in the N–S polarisation (orange lines) only appear at the zenith pointing (the fourth row).

frequency-dependent errors driven by sky model incompleteness
(as suggested in Barry et al. 2016), then we will expect sky-
based calibration to perform relatively worse on EoR1; redundant
calibration, to the extent that it is sky-model-independent, will
therefore have a more significant effect. Figure 4 indeed shows
that redundant calibration solutions behave differently between
EoR1 and EoR0, consistent with the idea that the model errors
introduced in FHD are significantly different. In fact, even for

the observations at the same pointing but separated by several
minutes, redundant calibration solutions can have significantly
different spectra, which implies that FHD calibration is quite
sensitive to LST. Our results therefore suggest that redundant
calibration techniques can still play a role mitigating sky model
errors in calibration—especially for fields with difficult, extended
sources—even though sky model errors will still enter through the
degenerate parameters (Byrne et al. 2019).
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Figure 8. 1D PS difference for EoR1 night1 (left) and the EoR0 night (right). Solid lines represent modes where redundant calibration has reduced the power, while dotted lines
imply an increase. Blue represents the E–W polarisation while orange is N–S. The improvements on PS in the E–W polarisation are seen for any pointing at all three EoR1 nights,
whereas no significant improvements are seen for any pointing of the EoR0 night. No significant improvements in the N–S polarisation.
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Figure 9. 1D PS difference of the full night for all nights. Solid lines represent a reduction of power from redundant calibration, while dotted lines imply an increase. Upper left:
full night residual PS at EoR1 night1; bottom left: full night residual PS at EoR1 night2; upper right: full night residual PS at EoR1 night3; bottom right: full night residual PS at
the EoR0 night. Blue represents polarisation E–W while orange represents polarisation N–S. The improvements in the integrated, E–W polarisation PS are seen for all three EoR1
nights, whereas no significant improvements are seen for EoR0. Neither field shows significant improvements in the N–S polarisation.

Figure 10. The extended source model used for Fornax A produced using the techniques of Carroll et al. 2016. This image is at 150 MHz and has a peak flux density of ∼ 313 Jy.
A total of 1 925 components are used for this model.
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Figure 11. Residual images for both the E–WandN–Spolarisation of a zenith observation (observation id: 1160592216) and anoff-zenith observation (observation id: 1160586000).
Upper left: residual image for E–Woff-zenith; bottom left: residual image for N–S off-zenith; upper right: residual image for E–W zenith; bottom right: residual image for N–S zenith.

5.2. Polarisation dependence of redundant calibration
performance

In Section 4.3, we saw that the PS improvements from redun-
dant calibration in the EoR1 data were strongly polarisation-
dependent: for the E–W polarisation, we saw substantive and
consistent improvement at all pointings; for the N–S polarisation,
there were no improvements at off-zenith pointings and, while
there was improvement at the zenith pointing, it was less than that
of the E–W polarisation.

To explain the strong polarisation dependence in redundant
calibration’s impact on the PS, we picked one zenith observation
and one off-zenith observation of EoR1 night1 and investigated
their FHD products. In particular, we looked at the residual images
for both polarisations, which are generated from calibrated, resid-
ual visibilities, as shown in Figure 11. As mentioned in Section 5.1,
Fornax A is located near the centre of EoR1. Looking at residual
images for both polarisations from an EoR1 zenith observation
(observation ID 1160592216, right-hand column) leads us to con-
clude that our Fornax A model contains too much flux density,
leading to the negative hole at RA 50◦, Dec−37◦. This error clearly
produces many other artefacts in the image, including a strong
set of negative features associated with sidelobes of Fornax A and
a general miscalibration and undersubtraction of the numerous
other points sources in the field.

This pattern is seen in both polarisations of the zenith
pointing—both of which are improved by redundant calibration.
We also see the oversubtraction of Fornax A and undersubtrac-
tion of other sources in the E–W residual image from an EoR1
off-zenith observation (observation ID 1160586000, left-hand col-
umn). This is consistent with the fact that redundant calibration

improves the E–W PS of an off-zenith observation. However,
the N–S residual image looks quite different. Instead, we see an
undersubtraction of Fornax A and oversubtraction of many point
sources in the upper left of the image. The sidelobes of Fornax A
are also significantly mitigated.

The most likely explanation for this effect is an error in our
model of the tile primary beam. For any given pointing, the pri-
mary beam differs between the two linear polarisations. At zenith,
this is simply because the dipoles for detecting one polarisation are
rotated 90◦ from each other (and the beam pattern of a dipole—
and therefore our tiles as well—is not symmetric under a 90◦
rotation). For pointings off-zenith, the difference between the two
polarisations can be even more complicated, as the projection of
the tile towards the pointing centre can make the effective spac-
ing between one polarisation’s dipoles appear foreshortened by a
different amount than the other. In general, our beam models are
best for zenith but become less accurate for other pointings.

The key impact for this work is that the beammodel errormade
at the position of a specific source (e.g. Fornax A) will not be the
same in the two polarisations. What we find is that, in the N–S off-
zenith pointing, a fortuitous combination of error in the model of
Fornax A itself and the polarisation-dependent beam model error
reduces the total level of sky model error. In the E–W polarisa-
tion and the N–S zenith pointing, the model error in Fornax A is
the dominant source of error in our calibration solutions; such an
error can be mitigated by redundant calibration, explaining why
we see PS improvements with OMNICAL in all the observations
except the N–S off-zenith pointings. This explanation is consistent
with Figure 4, where the |�|’s at the N-=S polarisation are smaller
than those at the E–W polarisation, particularly for off-zenith
pointings.
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6. Conclusions

In this paper, we studied the performance of tandem redundant
and sky-based calibration in MWA Phase II data analysis in the
EoR1 field. Using FHD and OMNICAL in tandem, we calibrated
and processed three nights of EoR1 observations, as well as one
night of EoR for comparison with Li et al. (2019). We performed
a simulation to study redundant calibration’s performance on
fitting noise. We also analyzed calibration solutions and improve-
ments in PS. Redundant calibration solutions were found to have
night-to-night consistency and resulted in repeatable, substantive
improvements in the PS of the EoR1 field. We also saw the strong
polarisation dependence of redundant calibration’s impact on the
PS. Our principal findings are as follows:

Redundant calibration gives non-negligible gain solutions.
Our simulation shows that redundant calibration produces
changes to the FHD sky-based gain solutions that are larger than
would be expected if it were simply fitting to noise.

Redundant calibration’s performance is repeatable. In our
night-to-night comparisons, redundant calibration solutions and
PS improvements are repeatable over the same range of LSTs.

Redundant calibration brings about substantive improve-
ments in EoR1. Generally, redundant calibration makes bigger
improvements in the EoR1 PS than in EoR0 PS, including changes
up to 104 mK2 in the E–W polarisation.

Redundant calibration brings about larger improvements
when the sky and beam model of FHD is worse. Both the expla-
nation for the bigger improvements in EoR1 PS than in EoR0 PS
and our discussion for why we see the strong polarisation depen-
dence in redundant calibration’s impact on PS tell us that when
sky model incompleteness errors most affect sky-based calibra-
tion, redundant calibration can result in larger improvements in
the PS.

These findings suggest that redundant calibration can con-
tinue to play an important role in 21-cm cosmology analysis going
forward. While the results from EoR0 suggest that with a good
enough sky model for sky-based calibration, redundant calibra-
tion becomes ineffective, we note that the limits from Barry et al.
(2019b), Li et al. (2019), and Trott et al. (2020) are all still one
to two orders of magnitude above any plausible EoR signal mod-
els. Therefore, all we can conclude is that the errors that can be
mitigated by redundant calibration are not the dominant source
of error in those works. The present work shows that redundant
calibration can indeed mitigate some level of sky-based calibra-
tion error and so it may continue to yield PS improvements once
the current leading sources of systematic errors are mitigated. To
end on a note of caution, however, we should be prepared for the
possibility that true non-redundancy in the array may become a
real problem for redundant calibration and that, once lower PS
levels are reached, the inclusion of redundant calibration algo-
rithms may introduce more errors than they mitigate. Research
into new approaches that can balance sky-based and redundancy-
based errors (e.g. Sievers 2017 and Byrne et al. 2020) is therefore
of particular interest.
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