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Abstract

In the present paper an initial value problem for impulsive functional differential equations with variable
impulsive perturbations is considered. By means of piecewise continuous functions coupled with the
Razumikhin technique, sufficient conditions for boundedness of solutions of such equations are found.
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1. Introduction

Impulsive equations have many applications in physics, biology, medicine and
other sciences. The theory of impulsive differential equations has been developed
intensively; see, for instance, [3, 4, 11, 15].

The impulsive functional differential equations are a natural generalization
of functional differential equations without impulses and of impulsive ordinary
differential equations without delay. They are adequate mathematical models of
various real processes and phenomena, characterized by the fact that their state changes
by jumps and by the dependence of the process on its history at each moments of
time. The qualitative theory of functional differential equations has developed very
intensively. We refer to [9, 10, 12, 14] for the study of functional differential equations.

The theory of impulsive functional differential equations is also undergoing rapid
development. See, for example, [1, 5–8, 13, 16–18] and the references cited
therein. Many results on the stability of solutions of such equations have been
obtained. Concerning the boundedness of impulsive functional differential equations,
a few results have appeared for impulsive functional differential equations with fixed
moments of impulse effect [8, 13]. In the investigation of the impulsive functional
differential equations with variable impulsive perturbations there arise a number
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of difficulties related to the phenomena of ‘beating’ of the solutions, bifurcation,
loss of the property of autonomy, and so on. The wider application, however, of
equations of this type requires the formulation of effective criteria for boundedness
of their solutions.

In the present paper the problem of boundedness of solutions of impulsive
functional differential equations with variable impulsive perturbations is considered
by means of Lyapunov’s direct method. We use the picewise continuous Lyapunov
functions. Moreover, the technique of investigation essentially depends on the choice
of minimal subsets of a suitable space of piecewise continuous functions, by the
elements of which the derivatives of Lyapunov’s functions are estimated [8, 13, 18].
It is well known that the Lyapunov–Razumikhin function method has been widely
used in the treatment of the stability of functional differential equations without
impulses [9, 12, 14].

2. Preliminary notes and definitions

Let Rn be the n-dimensional Euclidean space with norm | · | and R+ = [0, ∞). Let
t0 ∈ R, r > 0. Consider the following system{

ẋ(t) = f (t, xt ), t 6= τk(x(t)),
1x(t) = Ik(x(t − 0)), t = τk(x(t)), k = 1, 2, . . . ,

(2.1)

where f : (t0, ∞) × D → Rn;

D = {φ : [−r, 0] → Rn, φ(t) is continuous everywhere except at a finite

number of points t̃ at which φ(̃t − 0) and φ(̃t + 0) exist and φ(̃t − 0) = φ(̃t)};

Ik : Rn
→ Rn , k = 1, 2, . . . ; τk : Rn

→ (t0, ∞); 1x(t) = x(t + 0) − x(t − 0), and
for t > t0, xt ∈ D is defined by xt = x(t + s), −r ≤ s ≤ 0.

Let τ0(x) ≡ t0 for x ∈ Rn.

We introduce the following conditions:

(H1) τk ∈ C[Rn, (t0, ∞)], k = 1, 2, . . . ;
(H2) t0 < τ1(x) < τ2(x) < · · · , x ∈ Rn

;

(H3) τk(x) → ∞ as k → ∞ uniformly on x ∈ Rn.

Assuming that conditions (H1), (H2), and (H3) are fulfilled, we introduce the
following notation:

Gk = {(t, x) ∈ [t0, ∞) × Rn
: τk−1(x) < t < τk(x)}, k = 1, 2, . . . ,

σk = {(t, x) ∈ [t0, ∞) × Rn
| t = τk(x)},

that is, σk , k = 1, 2, . . . , are hypersurfaces of the equations t = τk(x(t)).
Let ϕ0 ∈ D. Denote by x(t) = x(t; t0, ϕ0) the solution of system (2.1) satisfying

the initial conditions{
x(t; t0, ϕ0) = ϕ0(t − t0), t0 − r ≤ t ≤ t0,
x(t0 + 0; t0, ϕ0) = ϕ0(0),

(2.2)
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and by J+(t0, ϕ0) the maximal interval of the type (t0, β), at which the solution
x(t; t0, ϕ0) is defined.

The precise description of the solution x(t; t0, ϕ0) of (2.1), (2.2) is given in [5, 16].

We introduce the following notation:

C0 = C[[t0 − r, t0], Rn
],

‖ϕ‖ = max
t∈[t0−r,t0]

|ϕ(t − t0)| is the norm of the function ϕ ∈ C0,

Sρ = {x ∈ Rn
: |x | < ρ, ρ > 0},

Sc
ρ = {x ∈ Rn

: |x | ≥ ρ, ρ > 0},

K = {a ∈ C[R+, R+] : a(r) is strictly increasing and a(0) = 0}.

We then introduce the following conditions:

(H4) f ∈ C[(t0, ∞) × D, Rn
];

(H5) the function f is Lipschitz continuous with respect to its second argument in
(t0, ∞) × D uniformly on t ∈ (t0, ∞);

(H6) | f (t, x̃)| ≤ L < ∞ for (t, x̃) ∈ (t0, ∞) × D, L > 0;
(H7) for any k = 1, 2, . . . the following inequality is valid

|Ik(x1) − Ik(x2)| ≤ c|x1 − x2|, x1, x2 ∈ Rn, c > 0;

(H8) the integral curves of the system (2.1) meet successively each one of the
hypersurfaces σ1, σ2, . . . exactly once.

Condition (H8) guarantees the absence of the phenomenon of ‘beating’ of the
solutions to the system (2.1), that is, where a given integral curve meets one and
the same hypersurface more than once or infinitely many times. Efficient sufficient
conditions which guarantee the absence of ‘beating’ of the solutions of such systems
are given in [2].

Let t1, t2, . . . (t0 < t1 < t2 < · · · ) be the moments in which the integral curve
(t, x(t; t0, ϕ0)) of the problem (2.1), (2.2) meets the hypersurfaces σk , k = 1, 2, . . . .

We shall note that if conditions (H1)–(H8) are met, then tk → ∞ as k → ∞ and
J+(t0, ϕ0) = (t0, ∞) [2, 6].

We shall use the following definitions of boundedness of the solutions of (2.1).

DEFINITION 1. Let x(t; t0, ϕ0) be any solution of (2.1). The system (2.1) is said to
be:
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(a) uniformly bounded if

(∀α > 0) (∃β = β(α) > 0) (∀t0 ∈ R+)

(∀ϕ0 ∈ C0 : ‖ϕ0‖ < α) : |x(t; t0, ϕ0)| < β, t ≥ t0;

(b) quasi-uniformly ultimately bounded if

(∃B > 0) (∀α > 0) (∃T = T (α) > 0) (∀t0 ∈ R+)

(∀ϕ0 ∈ C0 : ‖ϕ0‖ < α) : |x(t; t0, ϕ0)| < B, t ≥ t0 + T ;

(c) uniformly ultimately bounded if (a) and (b) hold together.

Let I = [t0 − r, ∞) and I0 = [t0, ∞). In what follows we shall use the class V0 of
piecewise continuous auxiliary functions V : I0 × Rn

→ R+ which are analogues of
Lyapunov’s functions.

DEFINITION 2. We say that the function V : [I0, ∞) × Rn
→ R+, belongs to the

class V0 if the following conditions are fulfilled.
(1) The function V is continuous in

∞⋃
k=1

Gk, V (t, 0) = 0, t ∈ [I0, ∞),

and locally Lipschitz continuous with respect to its second argument x on each of the
sets Gk , k = 1, 2, . . . .

(2) For each k = 1, 2, . . . and (t∗0 , x∗

0 ) ∈ σk there exist the finite limits

V (t∗0 − 0, x∗

0 ) = lim
(t,x)→(t∗0 ,x∗

0 )

(t,x)∈Gk

V (t, x), V (t∗0 + 0, x∗

0 ) = lim
(t,x)→(t∗0 ,x∗

0 )

(t,x)∈Gk+1

V (t, x).

(3) For each k = 1, 2, . . . the following equalities are valid:

V (t∗0 − 0, x∗

0 ) = V (t∗0 , x∗

0 ).

Let J ⊂ R be an interval. Define the following classes of functions:

PC[J, Rn
] = {σ | J → Rn

: σ(t) is continuous everywhere except at

some points tk where σ(tk − 0) and σ(tk + 0) exist and

σ(tk − 0) = σ(tk), k = 1, 2, . . .};

�P = {x ∈ PC[I0, Rn
] | V (s, x(s)) ≤ P(V (t, x(t))),

t − r ≤ s ≤ t, t ∈ I0, V ∈ V0},

where P(u) is continuous on R+, nondecreasing in u, and P(u) > u for u > 0.
Let V ∈ V0. For x ∈ PC[I0, Rn

] and t ∈ I0, t 6= tk(x(t)), k = 1, 2, . . . , we define
the function

D−V (t, x(t)) = lim
h→0−

inf h−1
[V (t + h, x(t) + h f (t, xt )) − V (t, x(t))].
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3. Main results

THEOREM 3.1. Assume that the following conditions hold.

(1) Assumptions (H1)–(H8) are valid.
(2) For ρ > 0, there exists V ∈ V0 such that

a(|x |) ≤ V (t, x) ≤ b(|x |), (t, x) ∈ I0 × Sc
ρ, (3.1)

where a, b ∈ K and a(r) → ∞ as t → ∞.
(3) For t ≥ t0, (t, x(t)) ∈ I0 × Sc

ρ and x ∈ �P ,

D−V (t, x(t)) ≤ −c(|x(t)|), t 6= τk(x(t)), k = 1, 2 . . . , (3.2)

where c ∈ K .

(4) For t ≥ t0, (t, x(t)) ∈ I0 × Sc
ρ ,

V (t + 0, x(t) + Ik(x(t))) ≤ V (t, x(t)), t = τk(x(t)), k = 1, 2 . . . . (3.3)

Then the system (2.1) is uniformly bounded.

PROOF. Let α ≥ ρ be given. Choose β = β(α) > 0 so that

β > max{α, a−1(b(α))}.

Let t0 ∈ R+ and ϕ0 ∈ C0. Consider the solution x(t) = x(t; t0, ϕ0) of (2.1) with
‖ϕ0‖ < α. Clearly,

|x(t0 + 0; t0, ϕ0)| = |ϕ0(0)| ≤ ‖ϕ0‖ < α < β.

We claim that

|x(t)| < β, t ≥ t0.

If this is not true, then there exists some solution x(t) = x(t; t0, ϕ0) of (2.1) with
‖ϕ0‖ < α and a t∗ > t0 such that |x(t∗; t0, ϕ0)| ≥ β. Thus there exist

s1, s2, t0 ≤ s1 < s2 ≤ t∗

such that

|x(s1 + 0)| ≥ α, |x(s1)| ≤ α, |x(s2 + 0)| ≥ β,

and

x(t) ∈ Sβ ∩ Sc
α, t ∈ [s1, s2). (3.4)

First, we show that

V (s1 + 0, x(s1 + 0)) < a(β). (3.5)
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If s1 6= tk , then |x(s1)| = α, and, by (3.1),

V (s1, x(s1)) ≤ b(|x(s1)|) = b(α) < a(β).

If s1 = tk for some k, then |x(s1)| ≤ α and

V (s1, x(s1)) ≤ b(|x(s1)|) ≤ b(α) < a(β).

Thus by (3.3) we obtain

V (s1 + 0, x(s1 + 0)) < a(β).

Next, we wish to show that

V (t + 0, x(t + 0)) < a(β), t ∈ [s1, s2]. (3.6)

Suppose that this is not true and let

µ = inf{s2 ≥ t > s1 | V (t + 0, x(t + 0)) ≥ a(β)}.

We discuss two possibilities:
(A) µ 6= tk , k = 1, 2, . . . . Since V (t, x(t)) is continuous at µ,

V (µ + 0, x(µ + 0)) = a(β).

Thus for h < 0 with |h| small enough the inequality

V (µ + h, x(µ + h)) < a(β)

holds which implies that

D−V (µ, x(µ)) = lim
h→0−

inf h−1
[V (µ + h, x(µ + h)) − V (µ, x(µ))] ≥ 0. (3.7)

It is clear from the choice of µ that

P(V (µ, x(µ))) > V (µ, x(µ)) ≥ V (s, x(s)), s1 ≤ s ≤ µ.

Thus, we obtain, using (3.2) and (3.4),

D−V (µ, x(µ)) ≤ −c(|x(µ)|) ≤ −c(α) < 0,

which contradicts (3.7).
(B) µ = tk for some k = 1, 2, . . . . We must have

V (tk + 0, x(tk + 0)) = a(β).

In fact, if V (tk + 0, x(tk + 0)) > a(β), then, by assumption (3.3),

V (tk, x(tk)) > a(β).
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Since V (t, x(t)) is left continuous at tk , it follows that there exists µ̃ < tk such that
V (µ̃ + 0, x(µ̃ + 0)) ≥ a(β) which contradicts the choice of µ.

Now for h < 0 with |h| small enough so that tk + h ∈ (tk−1, tk)

V (tk + h, x(tk + h)) < a(β).

From (3.3),

V (µ, x(µ)) = V (tk, x(tk)) ≥ V (tk + 0, x(tk + 0)).

Hence

V (µ + h, x(µ + h)) − V (µ, x(µ))

≤ V (tk + h, x(tk + h)) − V (tk + 0, x(tk + 0)) < 0,

which implies that

D−V (µ, x(µ)) = lim
h→0−

inf h−1
[V (µ + h, x(µ + h)) − V (µ, x(µ))]

≥ lim
h→0−

inf h−1
[V (tk + h, x(tk + h)) − V (tk + 0, x(tk + 0))] ≥ 0.

(3.8)

Since

P(V (µ, x(µ))) > V (µ, x(µ)) ≥ V (s, x(s)), s1 ≤ s ≤ µ,

we obtain, using (3.2),

D−V (µ, x(µ)) ≤ −c(|x(µ)|) ≤ −c(α) < 0,

which contradicts (3.8). Therefore (3.6) holds.
On the other hand, using (3.1), we obtain

V (s2 + 0, x(s2 + 0)) ≥ a(|x(s2 + 0)|) ≥ a(β),

which contradicts (3.6). Thus

|x(t)| < β, t ≥ t0,

for any solution x(t) = x(t; t0, ϕ0) of (2.1) with ‖ϕ0‖ < α and the system (2.1) is
uniformly bounded. This completes the proof of Theorem 3.1. 2

THEOREM 3.2. Assume that the following conditions hold.

(1) Conditions (1), (2) and (4) of Theorem 3.1 are valid.
(2) For t ≥ t0, (t, x(t)) ∈ I0 × Sc

ρ and x ∈ �P ,

D−V (t, x(t)) ≤ M − c(|x(t)|), t 6= τk(x(t)), k = 1, 2, . . . ,

where c ∈ K and M = constant.

Then the system (2.1) is uniformly ultimately bounded.
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PROOF. We begin by proving the uniform boundedness of the system (2.1).
Let ρ > 0 be sufficiently large that

M − c(ρ) < 0.

Let α > max{ρ, c−1(M)} be given. Choose β = max{α, a−1(b(α))} for any t0 ∈ R+

and ϕ0 ∈ C0, ‖ϕ0‖ < α. Clearly, ‖ϕ0‖ < α ≤ β.

Now suppose that there exist a solution x(t) = x(t; t0, ϕ0) of (2.1) and a t∗ > t0
such that |x(t∗; t0, ϕ0)| ≥ β. Then there exist s1, s2, t0 ≤ s1 < s2 ≤ t∗ such that

|x(s1 + 0)| ≥ α, |x(s1)| ≤ α, |x(s2 + 0)| ≥ β,

and

x(t) ∈ Sβ ∩ Sc
α, t ∈ [s1, s2).

First, we can prove by same arguments as in the proof of Theorem 3.1 that

V (s1 + 0, x(s1 + 0)) < a(β).

Next, we show that

V (t + 0, x(t + 0)) < a(β), t ∈ [s1, s2].

Suppose that this is not true and let

σ = inf{s2 ≥ t > s1 | V (t + 0, x(t + 0)) ≥ a(β)}.

We consider two cases.
(A) σ 6= tk , k = 1, 2, . . . . We can see that

V (σ + 0, x(σ + 0)) = a(β) and D−V (σ, x(σ )) ≥ 0. (3.9)

Then there exists an s∗

1 ∈ (s1, s2] such that

V (s, x(s)) ≤ P(V (σ, x(σ ))), s∗

1 ≤ s ≤ σ.

Since |x(σ )| ≥ α, we obtain, by condition (2) of Theorem 3.2,

D−V (σ, x(σ )) ≤ M − c(|x(σ )|) ≤ M − c(α)

< M − c(max{ρ, c−1(M)} = M − max{M, c(ρ)} ≤ 0,

which contradicts (3.9).
(B) σ = t j for some j ∈ {1, 2, . . . , k, . . .}. We can obtain a contradiction by the

analogous arguments as in the proof of Theorem 3.1.
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On the other hand, using (3.1) we obtain

V (s2 + 0, x(s2 + 0)) ≥ a(|x(s2 + 0)|) ≥ a(β),

which contradicts the fact that V (t + 0, x(t + 0)) < a(β), t ∈ [s1, s2]. Thus

|x(t)| < β, t ≥ t0,

for any solution x(t) = x(t; t0, ϕ0) of (2.1) with ‖ϕ0‖ < α and the system (2.1) is
uniformly bounded.

The uniform boundedness of the system (2.1) means that there exists a positive
number B such that for each t0 ∈ R+,

‖ϕ0‖ < ρ implies |x(t; t0, ϕ0)| < B, t ≥ t0. (3.10)

Now we consider the solution x(t) = x(t; t0, ϕ0) of (2.1) with ‖ϕ0‖ < α, where α

is an arbitrary number and α > ρ. Then there exists a positive number

β = β(α) > max{B, a−1(b(α))}

such that

|x(t)| < β, t ≥ t0.

Let the function P : R+ → R+ be a continuous and nondecreasing on R+, and
P(u) > u as u > 0. We set

λ = inf{P(u) − u | a(B) ≤ u ≤ a(β)}.

Then

P(u) > u + λ as a(B) ≤ u ≤ a(β), (3.11)

and we choose the integer N such that

a(B) + (N − 1)λ > a(β). (3.12)

Choose T = N (λ/c(ρ)) and define

tm = t0 + m
λ

c(ρ) − M
, m = 0, 1, 2, . . . , N , (3.13)

then tN = t0 + T . We show that

|x(t; t0, ϕ0)| < B, t ≥ t0 + T .

Suppose that is not true, then there exists a t∗ > t0 + T such that

|x(t∗; t0, ϕ0)| ≥ B.
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Then in view of (3.10),

|x(t; t0, ϕ0)| ≥ ρ, t ∈ [t0, t∗]. (3.14)

By (3.1) we obtain

V (t0 + 0, ϕ0(0)) ≤ b(|ϕ0(0)|) ≤ b(‖ϕ0‖) < b(α) < a(β).

We claim that

V (t, x(t)) < a(β), t ∈ [t0, t∗]. (3.15)

Suppose that this is not true and let

ξ = inf{t∗ ≥ t ≥ t0 | V (t, x(t)) ≥ a(β)}.

If ξ 6= tk , k = 1, 2, . . . , then by the definition of ξ ,

V (ξ, x(ξ)) = a(β).

Thus for h < 0 with |h| small enough the inequality

V (ξ + h, x(ξ + h)) < a(β)

holds and consequently

D−V (ξ, x(ξ)) = lim
h→0−

inf h−1
[V (ξ + h, x(ξ + h)) − V (ξ, x(ξ))] ≥ 0. (3.16)

It is clear from the choice of ξ that

P(V (ξ, x(ξ))) > V (ξ, x(ξ)) ≥ V (s, x(s)), t0 ≤ s ≤ ξ.

By (3.14) we see that x(ξ) ∈ Sc
ρ . Thus by condition (2) of Theorem 3.2

D−V (ξ, x(ξ)) ≤ M − c(|x(ξ)|) ≤ M − c(ρ) < 0,

which contradicts (3.16).
If ξ = t j for some j ∈ {1, 2, . . . , k, . . .}, then the same arguments as in the proof

of Theorem 3.1 show that

V (tk + 0, x(tk + 0)) = a(β),

and

D−V (ξ, x(ξ)) ≥ lim
h→0−

inf h−1
[V (tk + h, x(tk + h)) − V (tk + 0, x(tk + 0))] ≥ 0.

(3.17)
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However

P(V (ξ, x(ξ))) > V (ξ, x(ξ)) ≥ V (s, x(s)), t0 ≤ s ≤ ξ,

and x(ξ) ∈ Sc
ρ . Thus by condition (2) of Theorem 3.2

D−V (ξ, x(ξ)) ≤ M − c(|x(ξ)|) ≤ M − c(ρ) < 0,

which contradicts (3.17). Hence (3.15) holds.
We next show that

V (t, x(t)) < a(β) + (N − m − 1)λ, t ∈ [tm, t∗], m = 0, 1, 2, . . . , N − 1.

(3.18)

From (3.12) and (3.15),

V (t, x(t)) < a(β) + (N − 1)λ, t ∈ [t0, t∗],

which shows the validity of (3.18) for m = 0. We prove inequality (3.18) by induction.
Suppose that for some integer m, 0 ≤ m < N − 1,

V (t, x(t)) < a(B) + (N − m − 1)λ, t ∈ [tm, t∗]. (3.19)

First, we have to show that there exists t̃ ∈ [tm, tm+1] such that

V (̃t, x (̃t)) < a(B) + (N − m − 2)λ. (3.20)

If this is not true, then

V (t, x(t)) ≥ a(B) + (N − m − 2)λ, t ∈ [tm, tm+1]. (3.21)

By (3.15) and (3.21),

a(B) ≤ V (t, x(t)) ≤ a(β), t ∈ [tm, tm+1]. (3.22)

We consider two cases.
(A) t 6= tk , k = 1, 2, . . . , for all t ∈ [tm, tm+1]. Using (3.11), (3.19) and (3.21), we

obtain

P(V (t, x(t))) ≥ V (t, x(t)) + λ ≥ a(B) + (N − m − 1)λ

> V (s, x(s)), tm ≤ s ≤ t, t ∈ [tm, tm+1].

By (3.14), we see that x(t) ∈ Sc
ρ for t ∈ [tm, tm+1] ⊂ [t0, t∗]. Thus it follows from

condition (2) of Theorem 3.2 that

V (tm+1, x(tm+1)) ≤ V (tm, x(tm)) −

∫ tm+1

tm
[c(|x(s)|) − M] ds

< a(B) + (N − m − 1)λ − (c(ρ) − M) [tm+1 − tm]

≤ V (tm+1, x(tm+1)),

which is a contradiction.
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(B) There exist tki ∈ [tm, tm+1] for ki ∈ {1, 2, . . . , k, . . .}, i = 1, 2, . . . , j ; j ≥ 1.
By (3.11), (3.19) and (3.21),

P(V (t, x(t))) ≥ V (t, x(t)) + λ ≥ a(B) + (N − m − 1)λ

> V (s, x(s)), tm ≤ s ≤ t, t ∈ [tm, tm+1].

Since x(t) ∈ Sc
ρ for t ∈ [tm, tm+1], we have by condition (2) of Theorem 3.2 that∫ tm+1

tm
D−V (s, x(s)) ds ≤ −

∫ tm+1

tm
[c(|x(s)|) − M] ds

≤ −(c(ρ) − M) [tm+1 − tm] = −λ. (3.23)

By (3.3) the inequalities

V (tki , x(tki )) − V (tki + 0, x(tki + 0)) ≥ 0, i = 1, 2, . . . , j, (3.24)

hold, giving∫ tm+1

tm
D−V (s, x(s)) ds

=

∫ tm+1

tk j

D−V (s, x(s)) ds

+

∫ tk j

tk j−1

D−V (s, x(s)) ds

+ · · · +

∫ tk2

tk1

D−V (s, x(s)) ds +

∫ tk2

tm
D−V (s, x(s)) ds

≥ V (tm+1, x(tm+1)) + [V (tk j , x(tk j )) − V (tk j + 0, x(tk j + 0))]

+ · · · + [V (tk1, x(tk1)) − V (tk1 + 0, x(tk1 + 0))] − V (tm, x(tm))

≥ V (tm+1, x(tm+1)) − V (tm, x(tm)). (3.25)

In view of (3.19), (3.21), (3.24) and (3.25), it follows that

V (tm+1, x(tm+1)) ≤ V (tm, x(tm)) − λ < a(B) + (N − m − 1)λ − λ

≤ V (tm+1, x(tm+1)).

The contradiction obtained shows that there exists a t̃ ∈ [tm, tm+1] such that
(3.20) holds.

Next, we shall show that (3.20) implies that

V (t, x(t)) < a(B) + (N − m − 2)λ, t̃ ≤ t ≤ t∗, t̃ ∈ [tm, tm+1].

Suppose that this is not true and let

η = inf{t∗ ≥ t ≥ t̃ | V (t, x(t)) ≥ a(B) + (N − m − 2)λ}.
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Then we can obtain a contradiction by the same arguments as in the proof of the
inequality (3.15). Hence we have proved

V (t, x(t)) < a(B) + (N − m − 2)λ, t ∈ [tm+1, t∗].

By induction we see that (3.18) is true for any m = 0, 1, 2, . . . , N − 1. Therefore
we obtain

V (t, x(t)) < a(B), t ∈ [tN−1, t∗]. (3.26)

On the other hand, using (3.1),

V (t∗, x(t∗)) ≥ a(|x(t∗)|) ≥ a(B),

which contradicts (3.26). Therefore the system (2.1) is a uniformly ultimately bounded
system. The proof is completed. 2

4. An example

Let t0 ≥ 0 and τ0(x) ≡ t0 for x ∈ R. Assume that the functions τk satisfy the
conditions (H1), (H2), (H3) and (H8). Consider

τk(x) = 2 − 2−k
−

1

1 + x2 , x ∈ R, k = 1, 2, . . . .

It is easy to check that conditions (H1), (H2), and (H3) are fulfilled.
Consider the nonlinear systemẋ(t) = −3ξ x4(t) +

∫ t

t0
p(t, s)x3(s) ds + q(t), t 6= τk(x(t)),

1x(t) = −βk x(t − 0), t = τk(x(t)), k = 1, 2, . . . ,

(4.1)

where ξ > 0; 0 ≤ βk ≤ 2, k = 1, 2, . . . ; q ∈ C[R+, R], |q(t)| ≤ M for some constant
M > 0; p ∈ C[R+ × R+, R+].

Note that for the given choice of the functions τk , the integral curves of the system
(4.1) meet successively each one of the curves σ1, σ2, . . . exactly once [2].

Assume that there exists a constant µ > 1 such that∫ t

t0
p(t, s) ds ≤

ξ

µ3 . (4.2)

Then (4.2) is a sufficient condition for uniform ultimate boundedness of the system
(4.1). In fact, we can shoose a(r) = b(r) = r , c(r) = 2ξr4. Let V (t, x) = |x |,
Sc
ρ = {x ∈ R : |x | > 1} and denote

P(u) = µ.u.
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Thus, using (4.2),

V ′

(4.1)(t, x(t)) ≤ −3ξ |x4(t)| +

∫ t

t0
p(t, s)|x3(s)| ds + |q(t)|

≤ −3ξ |x(t)|4 + µ3
|x(t)|3

∫ t

t0
p(t, s) ds + |q(t)|

≤ −3ξ |x(t)|4 + µ3
|x(t)|4.

ξ

µ3 + M

= M − 2ξ |x(t)|4,

whenever |x | ≥ 1 and P(V (t, x(t))) = µ|x(t)| > |x(s)| = V (s, x(s)) for t0 ≤ s ≤ t .
For t = τk(x(t)), k = 1, 2, . . . and |x | ≥ 1,

V (t + 0, x(t) − βk x(t)) = |(1 − βk)x(t)| ≤ |x(t)| = V (t, x(t)).

Then all the conditions of Theorem 3.2 are satisfied. Hence the system (4.1) is
uniformly ultimately bounded.
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