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Abstract. Milnor proved that the moduli space Md of rational maps of degree
d ≥ 2 has a complex orbifold structure of dimension 2(d − 1). Let us denote by Sd the
singular locus of Md and by Bd the branch locus, that is, the equivalence classes of
rational maps with non-trivial holomorphic automorphisms. Milnor observed that we
may identify M2 with �2 and, within that identification, that B2 is a cubic curve; so B2

is connected and S2 = ∅. If d ≥ 3, then it is well known that Sd = Bd . In this paper, we
use simple arguments to prove the connectivity of Sd .

2000 Mathematics Subject Classification. 37F10.

1. Introduction. The space Ratd of complex rational maps of degree d ≥ 2 can be
identified with a Zariski open set of the (2d + 1)-dimensional complex projective space
�2d+1

� ; this is the complement of the algebraic hypersurface defined by the resultant of
two polynomials of degree at most d.

The group of Möbius transformations PSL2(�) acts on Ratd by conjugation:
φ,ψ ∈ Ratd are said to be equivalent if there is some T ∈ PSL2(�) so that ψ =
T ◦ φ ◦ T−1. The PSL2(�)-stabilizer of φ ∈ Ratd , denoted as Aut(φ), is the group
of holomorphic automorphisms of φ. As the subgroups of PSL2(�) keeping invariant
a finite set of cardinality at least 3 must be finite, it follows that Aut(φ) is finite. Levy
[6] observed that the order of Aut(φ) is bounded above by a constant depending on d.

The quotient space Md = Ratd/PSL2(�) is the moduli space of rational maps of
degree d. Silverman [10] obtained that Md carries the structure of an affine geometric
quotient, Milnor [9] proved that it also carries the structure of a complex orbifold of
dimension 2(d − 1) (Milnor also obtained that M2

∼= �2) and Levy [6] noted that Md

is a rational variety. Let us denote by Sd ⊂ Md the singular locus of Md , that is, the set
of points over which Md fails to be a topological manifold. The branch locus of Md is
the set Bd ⊂ Md consisting of those (classes of) rational maps with non-trivial group
of holomorphic automorphisms.

As M2
∼= �2, clearly S2 = ∅. Using this identification, the locus B2 corresponds to

the cubic curve [4]:

2x3 + x2y − x2 − 4y2 − 8xy + 12x + 12y − 36 = 0,

where the cuspid (−6, 12) corresponds to the class of a rational map φ(z) = 1/z2 with
Aut(φ) ∼= D3 (dihedral group of order 6) and all other points in the cubic corresponds
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to those classes of rational maps with the cyclic group C2 as full group of holomorphic
automorphisms. In this way, B2 is connected.

If d ≥ 3, then it was proved in [7] that Sd = Bd . In [8], Manes proved that the
sublocus of Sd consisting of those classes having a point of formal period N is
geometrically reducible for infinitely many N. In [4], Fujimura proved that the singular
locus of the moduli space of polynomial maps of degree three is connected (this being
an irreducible algebraic curve of degree three). At this point, one may wonder for the
connectivity of Sd . To the authors knowledge, this question has not been considered in
the literature (see Remark 2 below for the genesis of this question) with the exception
of the polynomial case in [4]. The aim of this paper is to provide an affirmative answer.

THEOREM 1. If d ≥ 3, then the singular locus Sd = Bd is connected.

If we denote by Bd (Cn) the locus in moduli space Md of classes of rational maps
of degree d admitting a holomorphic automorphism of order n, then Bd is union of
these loci. So in order to prove the above one needs to see how these loci intersect.

To prove Theorem 1, we first provide a description of those rationals maps
admitting a given cyclic group of holomorphic automorphisms; which we state as
Theorem 2. We had realized that such a description was previously obtained in [7].
Ours description is more explicit and more adequate for our needs and a proof is
provided in Section 2; our arguments are a little different, but follows the same general
idea. In fact, our description permits to see explicitly Bd (Cn) as a Zariski open subset of
Ratr for a suitable r (see the proof of Corollary 2). Consequences of such a description
are that Bd (C2) is non-empty for every degree d ≥ 2 (Corollary 1) and that Bd (Cn) (if
non-empty) is connected (Corollary 2); we should say that this was also observed in
Proposition 3 of [7].

The final point of the proof of Theorem 1 is Lemma 1, which asserts that if
Bd (Cn) 	= ∅, then Bd (C2) ∩ Bd (Cn) 	= ∅; this done by explicit constructions of rational
maps admitting a dihedral group of order 2n as group of holomorphic automorphisms
(again, this is due to the fact that we have presented a more detailed description of
those rational maps admitting such kind of groups of automorphisms). It seems that
this fact was not observed in [7].

REMARK 1. Theorem 1 states that given any two rational maps φ,ψ ∈ Ratd , both
with non-trivial group of holomorphic automorphisms, there is some ρ ∈ Ratd which
is equivalent to ψ and there is a continuous family � : [0, 1] → Ratd with �(0) = φ,
�(1) = ρ and Aut(�(t)) non-trivial for every t. At this point, we need to observe that if
Aut(φ) ∼= Aut(ψ), we may not ensure that Aut(�(t)) stay in the same isomorphic class;
this comes from the existence of rigid rational maps [3] (in the non-cyclic situation).

REMARK 2 (On the genesis of this paper). In the 80’s, Sullivan provided a
dictionary between dynamic of rational maps and the dynamic of Kleinian groups
[11]. If we restrict to Klenian groups being co-compact Fuchsian groups of a fixed
genus g ≥ 2, then we are dealing with closed Riemann surfaces of genus g whose
moduli space Mg has the structure of an orbifold of complex dimension 3(g − 1).
The branch locus in Mg, that is, the set of isomorphic classes of Riemann surfaces
with non-trivial holomorphic automorphisms, is in general non-connected [1]. After
attending a talk given by one of the authors of the previous paper, we were wondering
about the connectivity of the singular locus of moduli spaces of Kleinian groups. In
[5], Izquierdo and the first author proved that the singular locus of Schottky space was
connected for odd rank and that it has two connected components for even rank. It
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was then natural to ask for the connectedness problem for the singular locus of moduli
spaces of rational maps and this was the genesis of this paper. The techniques we use in
this paper are quite similar to those used in [1,5], adapted to the case of rational maps,
together with the description of rational maps with extra automorphisms as done
in [7].

2. Rational maps with non-trivial group of holomorphic automorphisms. It is well
known that a non-trivial finite subgroup of PSL2(�) is either isomorphic to a cyclic
group Cn or the dihedral group Dn (of order 2n) or one of the alternating groups
A4,A5 or the symmetric group S4 (see, for instance, [2]). So, the group of holomorphic
automorphisms of a rational map of degree at least two is isomorphic to one of the
previous ones. Moreover, for each such finite subgroup there is a rational map admitting
it as group of holomorphic automorphisms [3].

Let G be either Cn (n ≥ 2), Dn (n ≥ 2), A4, A5 or S4. Let us denote by Bd (G) ⊂ Md

the locus of classes of rational maps φ with Aut(φ) containing a subgroup isomorphic
to G. We say that G is admissible for d if Bd (G) 	= ∅.

If G is either Cn or Dn or A4, then there may be some elements in Bd (G) with
full group of holomorphic automorphisms non-isomorphic to G (i.e., they admit more
holomorphic automorphisms than G). If G is either isomorphic to S4 or A5, then every
element in Bd (G) has G as its full group of holomorphic automorphisms and it may
have isolated points [3], so it is not connected in general.

In this section we recall a description of those values of d for which G is admissible
and the dimensions of Bd (G) obtained in [7]. Since our main interest will be in the
cyclic and dihedral cases, we present the explicit computations in those cases; in fact,
we provide a more complete description as done in Lemmas 2 and 5 of [7] (see Theorems
2 and 3). As a matter of completeness we write down the cases of solid Paltonics without
proofs (which can be found in [7])

2.1. Admissibility in the cyclic case. In the case of G = Cn, n ≥ 2, the admissibility
will depend on d. First, let us observe that if a rational map admits Cn as a group
of holomorphic automorphisms, then we may conjugate it by a suitable Möbius
transformation so that we may assume Cn to be generated by the rotation T(z) = ωnz,
where ωn = e2π i/n.

THEOREM 2. Let d, n ≥ 2 be integers. The group Cn is admissible for d if and only if
d is congruent to either −1, 0, 1 modulo n. Moreover, for such values, every rational map
of degree d admitting Cn as a group of holomorphic automorphisms is equivalent to one
of the form φ(z) = zψ(zn), where

ψ(z) =
∑r

k=0 akzk∑r
k=0 bkzk

∈ Ratr,

satisfies that

(a) arb0 	= 0, if d = nr + 1;
(b) ar 	= 0 and b0 = 0, if d = nr;
(c) ar = b0 = 0 and br 	= 0, if d = nr − 1.

In the above case, Cn is generated by the rotation T(z) = ωnz.
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Proof. Let φ be a rational map admitting a holomorphic automorphism of order
n. By conjugating it by a suitable Möbius transformation, we may assume that such
automorphism is the rotation T(z) = ωnz.

(1) Let us write φ(z) = zρ(z). The equality T ◦ φ ◦ T−1 = φ is equivalent to
ρ(ωnz) = ρ(z). Let

ρ(z) = U(z)
V (z)

=
∑l

k=0 αkzk∑l
k=0 βkzk

,

where either αl 	= 0 or βl 	= 0 and (U, V ) = 1.
The equality ρ(ωnz) = ρ(z) is equivalent to the existence of some λ 	= 0 so
that

ωk
nαk = λαk, ωk

nβk = λβk.

By taking k = l, we obtain that λ = ωl
n. So, the above is equivalent to have,

for k < l,

ωl−k
n αk = αk, ωl−k

n βk = βk.

So, if αk 	= 0 or βk 	= 0, then l − k ≡ 0 mod (n). As (U, V ) = 1, either α0 	=
0 or β0 	= 0; so l ≡ 0 mod (n). In this way, if αk 	= 0 or βk 	= 0, then k ≡ 0
mod (n). In this way, ρ(z) = ψ(zn) for a suitable rational map ψ(z).

(2) It follows from (1) that φ(z) = zψ(zn), for ψ ∈ Ratr and suitable r. We next
provide relations between d and r. Let us write

ψ(z) = P(z)
Q(z)

=
∑r

k=0 akzk∑r
k=0 bkzk

,

where (P, Q) = 1 and either ar 	= 0 or br 	= 0. In this way,

φ(z) = zP(zn)
Q(zn)

= z
∑r

k=0 akzkn∑r
k=0 bkzkn

.

Let us first assume that Q(0) 	= 0, equivalently, ψ(0) 	= ∞. Then, φ(0) =
0 and the polynomials zP(zn) and Q(zn) are relatively prime. If deg(P) ≥
deg(Q), then r = deg(P), ψ(∞) 	= 0, φ(∞) = ∞ and deg(φ) = 1 + nr. If
deg(P) < deg(Q), then r = deg(Q), ψ(∞) = 0, φ(∞) = 0 and deg(φ) = nr.

Let us now assume that Q(0) = 0, equivalently, ψ(0) = ∞. Let us write
Q(u) = ulQ̂(u), where l ≥ 1 and Q̂(0) 	= 0; so, deg(Q) = l + deg(Q̂). In this
case,

φ(z) = P(zn)

zln−1Q̂(zn)

and the polynomials P(zn) (of degree ndeg(P)) and zln−1Q̂(zn) (of degree
ndeg(Q) − 1) are relatively prime. If deg(P) ≥ deg(Q), then r = deg(P),
ψ(∞) 	= 0, φ(∞) = ∞ and deg(φ) = nr. If deg(P) < deg(Q), then r =
deg(Q), ψ(∞) = 0, φ(∞) = 0 and deg(φ) = nr − 1.
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Summarizing all the above, we have the following situations:

(i) If φ(0) = 0 and φ(∞) = ∞, then ψ(0) 	= ∞ and ψ(∞) 	= 0; in particular,
d = nr + 1. This case corresponds to have arb0 	= 0.

(ii) If φ(0) = ∞ = φ(∞), then ψ(0) = ∞ and ψ(∞) 	= 0; in which case d = nr.
This case corresponds to have ar 	= 0 and b0 = 0.

(iii) If φ(0) = 0 = φ(∞), then ψ(0) 	= ∞ and ψ(∞) = 0; in particular, d = nr.
This case corresponds to have ar = 0 and b0 	= 0. But in this case, we may
conjugate φ by A(z) = 1/z (which normalizes 〈T〉) in order to be in case (ii)
above.

(iv) If φ(0) = ∞ and φ(∞) = 0, then ψ(0) = ∞ and ψ(∞) = 0; in particular,
d = nr − 1. This case corresponds to have ar = b0 = 0 (in which case br 	= 0
as ψ has degree r).

�
COROLLARY 1. C2 is admissible for every d ≥ 2.

The explicit description provided in Theorem 2 permits to obtain the connectivity
of Bd (Cn) and its dimension (see Proposition 3 in [7]).

COROLLARY 2. If n ≥ 2 and Cn is admissible for d, then Bd (Cn) is connected and

dim�(Bd (Cn)) =
⎧⎨
⎩

2(d − 1)/n, d ≡ 1 mod n
(2d − n)/n, d ≡ 0 mod n
2(d + 1 − n)/n, d ≡ −1 mod n.

Proof.

(1) By Theorem 2, the rational maps in Ratd admitting a holomorphic
automorphism of order n ≥ 2 are conjugated those of the form φ(z) =
zψ(zn) ∈ Ratd for ψ ∈ Ratr as described in the same theorem.
Let us denote by Ratd (n, r) the subset of Ratd formed by all those rational
maps of the φ(z) = zψ(zn), where ψ satisfies the conditions in Theorem 2.
If d = nr + 1, then we may identify Ratd (n, r) with an open Zariski subset
of Ratr; if d = nr, then it is identified with an open Zariski subset of a linear
hypersurface of Ratr; and if d = nr − 1, then it is identified with an open
Zariski subspace of a linear subspace of co-dimension two of Ratr. In each
case, we have that Ratd (n, r) is connected. As the projection of Ratd (n, r) to
Md is exactly Bd (Cn), we obtain its connectivity.

(2) The dimension counting. We may see that, if d = nr + 1, then ψ depends
on 2r + 1 complex parameters; if d = nr, then ψ depends on 2r complex
parameters; and if d = nr − 1, then ψ depends on 2r − 1 complex
parameters. The normalizer in PSL2(�) of 〈T〉 is the 1-complex dimensional
group Nn = 〈Aλ(z) = λz, B(z) = 1/z : λ ∈ � − {0}〉. If U ∈ Nn, then U ◦ φ ◦
U−1 will also have T as a holomorphic automorphism. In fact,

Aλ ◦ φ ◦ A−1
λ (z) = zψ(zn/λn),

B ◦ φ ◦ B(z) = z/ψ(1/zn).
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In this way, there is an action of Nn over Ratr so that the orbit of ψ(u) is
given by the rational maps ψ(u/t), where t ∈ � − {0}, and 1/ψ(1/u). In this
way, we obtain the desired dimensions. �

2.2. Admissibility in the dihedral case. Let us now assume φ ∈ Ratd admits
the dihedral group Dn, n ≥ 2, as a group of holomorphic automorphisms. Up to
conjugation, we may assume that Dn is generated by T(z) = ωnz and A(z) = 1/z. By
Theorem 2, we may assume that φ(z) = zψ(zn), where

ψ(z) =
∑r

k=0 akzk∑r
k=0 bkzk

∈ Ratr,

where either

(a) arb0 	= 0, if d = nr + 1;
(b) ar 	= 0 and b0 = 0, if d = nr;
(c) ar = b0 = 0 and br 	= 0, if d = nr − 1;

with the extra condition that ψ(z) = 1/ψ(1/z). This last condition is equivalent to the
existence of some λ 	= 0 so that

λak = br−k, λbk = ar−k, k = 0, 1, ..., r.

The above is equivalent to have λ ∈ {±1} and bk = λar−k, for k = 0, 1, ..., r. In
particular, this asserts that ar = 0 if and only if b0 = 0 (so case (b) above does not
hold). Also, as the normalizer of the dihedral group Dn = 〈T(z) = ωnz, A(z) = 1/z〉 is
a finite group, the dimension of Bd (Dn) is the same as half the projective dimension
of those rational maps ψ satisfying (a) or (c). So, we may conclude the following
result (this is a more complete description as done in Lemma 5 of [7] which permits to
construct explicit examples as we will need in the proof of Theorem 1).

THEOREM 3. Let d, n ≥ 2 be integers. The dihedral group Dn is admissible for d if
and only if d is congruent to either ±1 modulo n. Moreover, for such values, every rational
map of degree d admitting Dn as a group of holomorphic automorphisms is equivalent to
one of the form φ(z) = zψ(zn), where

ψ(z) = ±
∑r

k=0 akzk∑r
k=0 ar−kzk

∈ Ratr,

satisfies that

(i) ar 	= 0, if d = nr + 1;
(ii) ar = 0 and a0 	= 0, if d = nr − 1.

In the above case, Dn is generated by the rotation T(z) = ωnz and the involution
A(z) = 1/z.

If n ≥ 2 and Dn is admissible for d, then

dim�(Bd (Dn)) =
{

(d − 1)/n, d ≡ 1 mod n
(d + 1 − n)/n, d ≡ −1 mod n.

REMARK 3.

(a) If we are in case (i) and “+” sign for ψ , then φ fixes both fixed points
of T and both fixed points of A. But, if we are in case (i) and “−” sign
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for ψ , then φ fixes both fixed points of T and permutes both fixed points
of A.

(b) If we are in case (ii) and “+” sign for ψ , then φ permutes both fixed points
of T and fixes both fixed points of A. But, if we are in case (ii) and “−” sign
for ψ , then φ permutes both fixed points of T and also both fixed points of
A.

(c) If n ≥ 3, then cases (i) and (ii) cannot happen simultaneously. Also, in either
case, we obtain thatBd (Dn) has two connected components (they correspond
to the choices of the sign “+” or “−”).

2.3. Admissibility of the platonic cases. Let us now assume that φ ∈ Ratd admits
as group of holomorphic automorphisms either A4, A5 or S4. We may assume, up to
conjugation, that (see, for instance, [2])

(1) 〈T3, B : T3
3 = B2 = (T3 ◦ A)3 = I〉 ∼= A4;

(2) 〈T4, C : T4
4 = C2 = (T4 ◦ C)3 = I〉 ∼= S4.

(3) 〈T5, D : T5
5 = D2 = (T5 ◦ D)3 = I〉 ∼= A5;

where

Tn(z) = ωnz, ωn = e2π i/n,

A(z) = 1/z,

B(z) =
(
√

3 − 1)
(

z + (
√

3 − 1)
)

2z − (
√

3 − 1)
,

C(z) =
(
√

2 + 1)
(
−z + (

√
2 + 1)

)
z + (

√
2 + 1)

,

D(z) =

(
1 +

√
2 − ω5 − ω4

5

)(
−z +

(
1 +

√
2 − ω5 − ω4

5

))

(1 − ω5 − ω4
5)z +

(
1 +

√
2 − ω5 − ω4

5

) .

Working in a similar fashion as done for the dihedral situation, one may obtains
the following.

THEOREM 4 ([7]). Let d ≥ 2.

(1) A4 is admissible for d if and only if d is odd.
(2) A5 is admissible for d if and only if d is congruent modulo 30 to either 1, 11, 19, 21.
(3) S4 is admissible for d if and only if d is co-prime to 6.

3. Proof of Theorem 1. It is clear that Bd is equal to the union of all Bd (G), where
G runs over the admissible finite groups for d.
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If G is admissible for d and p is a prime integer dividing the order of G (so that the
cyclic group Cp is a subgroup of G), then Cp is admissible for d and Bd (G) ⊂ Bd (Cp).
In this way, Bd is equal to the union of all Bd (Cp), where p runs over all integer primes
with Cp admissible for d. Corollary 2 asserts that each Bd (Cp) is connected. Now, the
connectivity of Bd will be consequence of Lemma 1 below.

LEMMA 1. If p ≥ 3 is a prime and Cp is admissible for d, then Bd (Cp) ∩ Bd (C2) 	= ∅.

Proof. We only need to check the existence of a rational map φ ∈ Ratd admitting
a holomorphic automorphism of order p and also a holomorphic automorphism of
order 2.

First, let us consider those rational maps of the form φ(z) = zψ(zp), where (by
Theorem 2) we may assume to be of the form

ψ(z) =
∑r

k=0 akzk∑r
k=0 bkzk

∈ Ratr,

with

(a) arb0 	= 0, if d = pr + 1;
(b) ar 	= 0 and b0 = 0, if d = pr;
(c) ar = b0 = 0, if d = pr − 1.

Assume we are in either case (a) or (c). By considering bk = ar−k, for every
k = 0, 1, ..., r, we see that ψ satisfies the relation ψ(1/z) = 1/ψ(z); so φ also admits
the holomorphic automorphism A(z) = 1/z. The automorphisms T(z) = ωpz and A
generate a dihedral group of order 2p.

In case (b), we can consider ψ so that ψ(−z) = ψ(z), which is possible to find
if we assume that (−1)kak = (−1)rak and (−1)kbk = (−1)rbk (which means that ak =
bk = 0 if k and r have different parity). In this case T and V (z) = −z are holomorphic
automorphisms of φ, generating the cyclic group of order 2p. �
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