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A POLYNOMIAL WITH GALOIS GROUP SL2(F16)

JOHAN BOSMAN

Abstract

In this paper we display an explicit polynomial having Galois
group SL2(F16), filling in a gap in the tables of Jürgen Klüners
and Gunter Malle. Furthermore, the polynomial has small
Galois root discriminant; this fact answers a question of John
Jones and David Roberts. The computation of this polynomial
uses modular forms and their Galois representations.

1. Introduction

It is a computational challenge to construct polynomials with a prescribed Galois
group; see [15] for methods and examples. Here, by the Galois group of a polynomial
f ∈ Q[x] we mean the Galois group of a splitting field of f over Q together with
its natural action on the roots of f in this splitting field. Jürgen Klüners informed
me about an interesting group for which a polynomial had not been found yet,
namely SL2(F16) with its natural action on P1(F16). This action is faithful because of
char(F16) = 2. It must be noted that the existence of such a polynomial was already
known to Mestre (unpublished). In this paper we will give an explicit example.

Proposition 1. The polynomial

P (x) := x17 − 5x16 + 12x15 − 28x14 + 72x13 − 132x12 + 116x11 − 74x9

+ 90x8 − 28x7 − 12x6 + 24x5 − 12x4 − 4x3 − 3x − 1 ∈ Q[x]

has Galois group isomorphic to SL2(F16) with its natural action on P1(F16).

What is still unknown is whether there exists a regular extension of Q(T ) with
Galois group isomorphic to SL2(F16); regular here means that it contains no alge-
braic elements over Q apart from Q itself. In Section 2 we will say some words
about the calculation of the polynomial and the connection with modular forms.
We’ll indicate how one can verify that it has the claimed Galois group in Section 3
using computational Galois theory. We will show in Section 4 that this polynomial
gives a Galois representation associated to an explicitly given modular form.

1.1. Further remarks
In algebraic number theory, the root discriminant of a number field K is defined

as d(K) := |Disc(OK)|1/[K:Q]. This way of measuring number fields appears to be
very useful in asymptotic analysis on the set of all number fields (inside a fixed
algebraic closure of Q, say). An excellent survey paper on this material is [18].
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Let us mention some interesting results here as well. For example it is known that
the bounds

22.38 ≈ 4πeγ � lim inf
K

d(K) � 82.11

hold; see [19, Section 7] for the lower bound and [10, Section 3.2] for the upper
bound. Under the assumption of the Generalised Riemann Hypothesis we even have

lim inf
K

d(K) � Ω := 8πeγ ≈ 44.76,

see [20]. In view of this lower bound, root discriminants below Ω are called small
and it is interesting to construct number fields that have small root discriminant.
A paper focussing on the construction of Galois number fields with small root
discriminant is [12]. A question asked in that paper is whether there exists such
a field of which the Galois group contains a subgroup isomorphic to SL2(F16) (see
[12, Section 13]). The splitting field of the polynomial in Proposition 1 has root
discriminant 215/8 · 1371/2 ≈ 42.93 and thus answers this question affirmatively.

The example given in Proposition 1 is not the only polynomial that the author
could produce. Here are the other examples of polynomials having Galois group
SL2(F16) computed so far:

x17 + x16 − 4x15 − 2x14 + 54x13 + 6x12 − 36x11 − 16x10 + 714x9

− 1238x8 + 484x7 + 764x6 − 1084x5 − 520x4 + 668x3 + 776x2 + 382x + 74

and

x17 + x16 + 18x15 + 10x14 + 194x13 + 250x12 + 442x11 + 1006x10 + 1176x9

− 392x8 + 1178x7 + 4490x6 + 4790x5 + 1606x4 + 286x3 + 38x2 + 25x + 1.

The former polynomial defines a number field that ramifies above 2 and 173 and the
number field defined by the latter polynomial ramifies above 2 and 199. The root
discriminants of their splitting fields are 215/81731/2 ≈ 48.25 and 215/81991/2 ≈
51.74 respectively, hence they are not small.

2. Computation of the polynomial

In this section we will briefly indicate how one can find a polynomial like the
one in Proposition 1. We will make use of modular forms. For an overview as well
as many further references on this subject the reader is referred to [6].

Let N be a positive integer and consider the space S2(Γ0(N)) of holomorphic
cusp forms of weight 2 for Γ0(N). A newform f ∈ S2(Γ0(N)) has a q-expansion
f =

∑
anqn where the coefficients an are in a number field. The smallest number

field containing all the coefficients is denoted by Kf . To a given prime number �
and a place λ of Kf above � one can attach a semi-simple Galois representation
ρf = ρf,λ : Gal(Q/Q) → GL2(Fλ) unramified outside N� satisfying the following
property: for each prime p � N� and any Frobenius element Frobp ∈ Gal(Q/Q)
attached to p we have

Tr(ρf (Frobp)) ≡ ap mod λ and Det(ρf (Frobp)) ≡ p modλ. (1)

The representation ρf is unique up to isomorphism. The fixed field of Ker(ρf ) in
Q is Galois over Q with Galois group isomorphic to Im(ρf ). For � = 2 and any λ
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above � equation (1) together with Chebotarev’s density theorem imply that Im(ρf )
is contained in SL2(Fλ). So to show that there is an extension of Q with Galois
group isomorphic to SL2(F16) it suffices to find an N and a newform f ∈ S2(Γ0(N))
such that there is a prime λ of degree 4 above 2 in Kf and Im(ρf ) is the full group
SL2(Fλ). Using modular symbols we can calculate the coefficients of f , hence traces
of matrices that occur in the image of ρf . For a survey paper on how this works,
see [25]. A subgroup Γ of SL2(F16) contains elements of every trace if and only if
Γ equals SL2(F16); this can be shown in several ways, either by a direct calculation
or by invoking a more general classification result like [27, Theorem III.6.25]. With
this in mind, after a small computer search in which we check the occurring values
of Tr(ρf (Frobp)) up to some moderate bound of p, one finds that a suitable modular
form f exists in S2(Γ0(137)). It turns out that we have Kf

∼= Q(α) with the minimal
polynomial of α equal to x4 +3x3−4x−1 and that f is the form whose q-expansion
starts with

f = q + αq2 + (α3 + α2 − 3α − 2)q3 + (α2 − 2)q4 + · · · .

Now the next question comes in: knowing this modular form, how does one
produce a polynomial? In general, one can use the Jacobian J0(N) to construct ρf .
In this particular case we can do that in the following way. We observe that Kf

is of degree 4 and that the prime 2 is inert in it. Furthermore we can verify that
the subspace of S2(Γ0(137)) fixed by the Atkin-Lehner operator w137 is exactly
the subspace generated by all the complex conjugates of f . These observations
imply that ρf is isomorphic to the action of Gal(Q/Q) on Jac(X0(137)/〈w137〉)[2],
where we give this latter space an F16-vector space structure via the action of the
Hecke operators. Note that Im(ρf ) = SL2(F16) implies surjectivity of the natural
map T → OK,f/(2) ∼= F16, where T is the Hecke algebra attached to S2(Γ0(N)).
The methods described in [8, Sections 11 & 24] allow us now to give complex
approximations of the 2-torsion points of Jac(X0(137)/〈w137〉) to a high precision.
This part of the calculation took by far the most effort; the author will write more
details about how this works in a future paper (or thesis). We use this to give a
real approximation of a polynomial with Galois group isomorphic to SL2(F16). The
results from [8, Sections 14 to 19] do, at least implicitly, give a theoretical upper
bound for the height of the coefficients of the polynomial hence an upper bound for
the calculation precision to get an exact result. Though this upper bound is small
in the sense that it leads to a polynomial time algorithm, it is still far too high to be
of use in practice. However it turns out that we can use a much smaller precision to
obtain our polynomial, the only drawback being that this does not give us a proof
of its correctness, so we have to verify this afterwards.

The polynomial P ′ obtained in this way has coefficients of about 200 digits so we
want to find a polynomial of smaller height defining the same number field K. To do
this, we first compute the ring of integers OK of K. In [2, Section 6] an algorithm
to do this is described, provided that one knows the squarefree factorisation of
Disc(f) [2, Theorem 1.4] and even if we don’t know the squarefree factorisation
of the discriminant, the algorithm produces a ’good’ order in K [2, Theorem 1.1].
Assuming that our polynomial P ′ is correct we know that K is unramified outside
2 · 137 so we can easily calculate the squarefree factorisation of Disc(f) and hence
apply the algorithm. Having done this we obtain an order in K with a discriminant
small enough to be able to factor and hence we know that this is indeed the maximal
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order OK . Explicitly, the discriminant is equal to

Disc(OK) = 230 · 1378. (2)

We embed OK as a lattice into C[K:Q] in the natural way and use lattice basis
reduction, see [16, (1.15)], to compute a short vector α ∈ OK − Z. The minimal
polynomial of α has small coefficients. In our particular case [K : Q] is equal to 17,
which is a prime number, hence this new polynomial must define the full field K.
This method gives us also a way of expressing α as an element of Q(x)/(P ′(x)).

3. Verification of the Galois group

Now that we have computed a polynomial P (x), we want to verify that its
Galois group Gal(P ) is really isomorphic to SL2(F16) and that we can identify the
set Ω(P ) of roots of P with P1(F16) in such a way that the action of Gal(P ) on
Ω(P ) is identified with the action of SL2(F16) on P1(F16).

For completeness let us remark that it is easy to verify that P (x) is irreducible
since it is irreducible modulo 5. The irreducibility of P implies that Gal(P ) is a tran-
sitive permutation group of degree 17. The transitive permutation groups of degree
17 have been classified, see for example [22, Section 5]. From [27, Theorem III.6.25]
it follows that up to conjugacy there is only one subgroup of index 17 in SL2(F16),
namely the group of upper triangular matrices. This implies that up to conjugacy
there is exactly one transitive G < S17 that is isomorphic to SL2(F16). Hence if
Gal(P ) ∼= SL2(F16) is an isomorphism of groups then there is an identification of
Ω(P ) with P1(F16) such that the group actions become compatible.

It follows from the classification in [22, Section 5] that if the order of a transitive
G < S17 is divisible by 5, then G contains a transitive subgroup isomorphic to
SL2(F16). To show 5 | # Gal(P ) we use the fact that for a prime p � Disc(P ) the
decomposition type of P modulo p is equal to the cycle type of any Frobenius
element in Gal(P ) attached to p. One can verify that modulo 7 the polynomial
P has an irreducible factor of degree 15, showing that indeed 5 | # Gal(P ) holds,
hence Gal(P ) contains SL2(F16) as a subgroup.

To show that Gal(P ) cannot be bigger than SL2(F16) it seems inevitable to use
heavy computer calculations. We will use ideas from [9], in particular [9, Algorithm
6.1], which combines the absolute resolvent method from [23] with an improved
version of the relative resolvent method from [24]. It would be interesting to see
how Gal(P ) ∼= SL2(F16) can be proven without using heavy calculations.

Note that the action of SL2(F16) on P1(F16) is sharply 3-transitive. So first we
show that Gal(P ) is not 4-transitive to prove that it does not contain A17. To do
this we start with calculating the polynomial

Q(x) :=
∏

{α1,α2,α3,α4}⊂Ω(P )

(X − α1 − α2 − α3 − α4) , (3)

where the product runs over all subsets of {1, . . . , 17} consisting of exactly 4 ele-
ments. This implies deg(Q) = 2380. One can calculate Q(x) using symbolic methods
(see [5, Section 2.1]). Suppose that Gal(P ) acting on Ω(P ) is 4-transitive. Then the
action on Ω(Q) is transitive hence if Q(x) is squarefree it is irreducible. So if we
can show that Q(x) is reducible and squarefree, we have shown that Gal(P ) is not
4-transitive.
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We have two ways to find a nontrivial factor of Q(x): the first way is use a factori-
sation algorithm and the second way is to produce a candidate factor ourselves. An
algorithm that works very well for our type of polynomial is Van Hoeij’s algorithm
[11, Section 2.2]. One finds that Q(x) is the product of 3 distinct irreducible poly-
nomials of degrees 340, 1020 and 1020 respectively. A more direct way to produce a
candidate factorisation is as follows. The calculation of the 2-torsion in the Jacobian
mentioned in Section 2 gives a bijection between the set of complex roots of P ′ and
the set P1(F16) such that the action of Gal(P ′) on Ω(P ′) corresponds to the action
of SL2(F16) on P1(F16), assuming the outcome is correct. From the previous section
we know how to express the roots of P as rational expressions in the roots of P hence
this gives us a bijection between Ω(P ) and P1(F16), conjecturally compatible with
the group actions of Gal(P ) and SL2(F16) respectively. A calculation shows that
the action of SL2(F16) on the set of unordered four-tuples of elements of P1(F16)
has 3 orbits, of size 340, 1020 and 1020 respectively. Using approximations to a high
precision of the roots, we use these orbits to produce sub-products of (3), round
off the coefficients to the nearest integer and verify afterwards that the obtained
polynomials are indeed factors of Q(x).

Let us remark that the group SL2(F16).4 := SL2(F16)�Aut(F16) with its natural
action on P1(F16) is a transitive permutation group of degree 17, and the same
holds for its normal subgroup SL2(F16).2 := SL2(F16) � 〈Frob2

2〉. Furthermore, it
is well-known that SL2(F16).4 is isomorpic to Aut(SL2(F16)) (where SL2(F16) acts
by conjugation and Aut(F16) acts on matrix entries) and actually inside S17 this
group is the normaliser of both SL2(F16) and itself. According to the classifiation
of transitive permutation groups of degree 17 in [22, Section 5] these two groups
are the only ones that lie strictly between SL2(F16) and A17. Once we have fixed
SL2(F16) inside S17, these two groups are actually unique subgroups of S17, not
just up to conjugacy.

From A17 	< Gal(P ) we can thus conclude Gal(P ) < SL2(F16).4. To proceed we
consult [9, Theorem 2.17], which gives a good computational method to move down
over small steps in a lattice of transitive permutation groups. Using this method
we can easily go from Gal(P )<SL2(F16).4 to Gal(P )<SL2(F16).2 and from there
to Gal(P )<SL2(F16). So indeed we have Gal(P ) ∼= SL2(F16).

4. Does P indeed define ρf?

So now that we have shown Gal(P ) ∼= SL2(F16) we can wonder whether we can
prove that P comes from the modular form f we used to construct it with. Once an
isomorphism of Gal(P ) with SL2(F16) is given, the polynomial P defines a represen-
tation ρP : Gal(Q/Q) → SL2(F16). Above we mentioned that that Out(SL2(F16))
is isomorphic to Aut(F16) acting on matrix entries. Hence, up to an automorphism
of F16, the map sending σ ∈ Gal(Q/Q) to the characteristic polynomial of ρP in
F16[x] is determined by P and in fact the isomorphism class of ρP is well-defined
up to an automorphism of F16. More concretely, we have to show that the splitting
field of P , which we will denote by L, is the fixed field of Ker(ρf ).

A continuous representation ρ : Gal(Q/Q) → GL2(F�) has a level, denoted by
N(ρ), and a weight, denoted by k(ρ). Instead of repeating the full definitions here,
which are lengthy (at least for the weight) and can be found in [21, Sections 1.2 and
2] (see also [7, Section 4] for a discussion on the definition of the weight), we will just
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say that they are defined in terms of the local representations ρp : Gal(Qp/Qp) →
GL2(F�) obtained from ρ. The level is defined in terms of the representations ρp

with p 	= � and the weight is defined in terms of ρ�. The following conjecture is due
to Serre:

Conjecture 1 (Serre’s strong conjecture, [21, Conjecture 3.2.4]). Let � be a prime
and let ρ : Gal(Q/Q) → GL2(F�) be a continuous odd irreducible Galois represen-
tation (a representation is called odd if the image of a complex conjugation has
determinant −1). Then there exists a modular form f of level N(ρ) and weight
k(ρ) which is a normalised eigenform and a prime λ | � of Kf such that ρ and ρf,λ

become isomorphic after a suitable embedding of Fλ into F�.

In 2006, Khare and Wintenberger proved the following part of Serre’s strong
conjecture:

Theorem 1 (Khare & Wintenberger [14, Theorem 1.2]). Conjecture 1 holds in
each of the following cases:

• N(ρ) is odd and � > 2.
• � = 2 and k(ρ) = 2.

With Theorem 1 in mind it is sufficient to prove that a representation ρ =
ρP attached to P has level 137 and weight 2, which are the level and weight of
the modular form f we used to construct it with and that of all eigenforms in
S2(Γ1(137)), the form f is one which gives rise to ρP . Therefore, in the remainder
of this section we will verify the following proposition.

Proposition 2. Let f be the cusp form from Section 2. Up to an automorphism
of F16, the representations ρP and ρf,(2) are isomorphic. In particular, the repre-
sentation ρP has Serre-level 137 and Serre-weight 2.

Let us argue that it is not clear how to prove the modularity of ρP using only
results that are older than Theorem 1. The older results deal with cases that are
’small’ in some sense. For example, [17, Thms 1 & 2] deal with ρ that satisfy
N(ρ) = 1 or k(ρ) = 1 and focus on proving non-existence of Galois representations.
Also, the group SL2(F16) is too big to apply other results. It is a non-solvable
group and in that case there are some old results dealing with Im ρ ⊂ GL2(Fq) for
q ∈ {22, 32, 5, 7}, but not for q = 16 (see [13, Section 1.3] for a survey). Neither
is it clear how to do a computer search of whichever kind that will eliminate the
possibility that ρP is not isomorphic to ρf,(2), as the group SL2(F16) and the degree
17 are simply too big.

4.1. Verification of the level
The level is the easiest of the two to verify. Here we have to do local computations

in p-adic fields with p 	= 2. According to the definition of N(ρ) in [21, Section 1.2] it
suffices to verify that ρ is unramified outside 2 and 137, tamely ramified at 137 and
the local inertia subgroup I at 137 leaves exactly one line of F2

16 pointwise fixed.
That ρP is unramified outside 2 and 137 follows immediately from (2).

From (2) and the fact that 1378‖Disc(P ) it follows that the monogeneous order
defined by P is maximal at 137. Modulo 137, the polynomial P factors as

P = (x+ 14)(x2 + 6x+ 101)2(x2 + 88x+ 97)2(x2 + 106x+ 112)2(x2 + 133x+ 110)2.
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Let v be any prime above 137 in L. From the above factorisation it follows that the
prime 137 decomposes in K as a product of 5 primes; one of them has its inertial
and ramification degree equal to 1 and the other four ones have their inertial and
ramification degrees equal to 2. Thus deg(v) is a power of 2, as L is obtained by
successively adjoining roots of P and in each step the relative inertial and ramifica-
tion degrees of the prime below v are both at most 2. In particular, Gal(Lv/Q137)
is a subgroup of SL2(F16) whose order is a power of 2. Now, {( 1

0
∗
1

)} is a Sylow
2-subgroup of SL2(F16), so Gal(Lv/Q137) is, up to conjugacy, a subgroup of {(1

0
∗
1

)}.
Hence I is also conjugate to a subgroup of {(1

0
∗
1

)} and it is actually nontrivial
because 137 ramifies in L (so I is of order 2 since the tame inertia group of any
finite Galois extension of local fields is cyclic).

It is immediate that ρ is tamely ramified at 137 as no power of 2 is divisible
by 137. Also, it is clear that I leaves exactly one line of F2

16 pointwise fixed since
{(∗

0

)} is the only pointwise fixed line of any nontrivial element of {(1
0

∗
1

)}. This
establishes the verification of N(ρ) = 137.

4.2. Verification of the weight
Because the weight is defined in terms of the induced local representation ρ2,

we will try to compute some relevant properties of the splitting field Lv of P over
Q2, where v is any place of L above 2. In p-adic fields one can only do calculations
with a certain precision, but this does not give any problems since practically all
properties one needs to know can be verified rigorously using a bounded precision
calculation and the error bounds in the calculations can be kept track of exactly.

The polynomial P does not define an order which is maximal at the prime 2.
Instead we use the polynomial

R = x17 − 11x16 + 64x15 − 322x14 + 916x13 + 276x12 − 5380x11 + 2748x10

+ 6904x9 − 23320x8 + 131500x7 − 140744x6 − 16288x5 − 39752x4

− 48840x3 + 102352x2 + 234466x− 1518,

which is the minimal polynomial of(
36863 + 22144α + 123236α2 + 154875α3 − 416913α4 + 436074α5 + 229905α6

− 1698406α7 + 1857625α8 − 467748α9 − 2289954α10 + 2838473α11 − 1565993α12

+ 605054α13 − 263133α14 + 112104α15 − 22586α16
)
/8844,

where α is a root of P . We can factor R over Q2 and see that it has one root in Q2

which happens to be odd, and an Eisenstein factor of degree 16, which we will call
E. This type of decomposition can be read off from the Newton polygon of R and
it also shows that the order defined by R is indeed maximal at 2. From the oddness
of the root and (2) we see

v2(Disc(E)) = 30. (4)

For the action of Gal(Q2/Q2) on P1(F16) the factorisation means that there is one
fixed point and one orbit of degree 16. If we adjoin a root β of E to Q2 and factor E
over Q2(β) then we see that it has an irreducible factor of degree 15; in [4, Section 6]
one can find methods for factorisation and irreducibility testing that can be used
to verify this. This means that [Lv : Q2] is at least 240.
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A subgroup of SL2(F16) that fixes a point of P1(F16) has to be conjugate to a
subgroup of the group

H :=
{(∗

0
∗
∗
)}

⊂ SL2(F16),

which is the stabiliser subgroup of [
(∗
0

)
]. But we have #H = 240 so Gal(Lv/Q2)

is isomorphic to H and from now on we will identify these two groups with each
other. We can filter H by normal subgroups:

H ⊃ I ⊃ I2 ⊃ {e},
where I is the inertia subgroup and I2 is the wild ramification subgroup, which is
the unique Sylow 2-subgroup of I. We wish to determine the groups I and I2. Let
k(v) be the residue class field of Lv. The group H/I is isomorphic to Gal(k(v)/F2)
and I/I2 is isomorphic to a subgroup of k(v)∗. In particular [I : I2] | (2[H:I] − 1)
follows. The group H has the nice property

[H, H ] =
{(

1
0
∗
1

)}
∼= F16,

which is its unique Sylow 2-subgroup. As H/I is abelian, we see that [H, H ] ⊂ I.
We conclude that I2 = [H, H ], since above we remarked that I2 is the unique Sylow
2-subgroup of I. The restriction [I : I2] | (2[H:I] − 1) leaves only one possibility for
I, namely I = I2.

Let L′
v be the subextension of Lv/Q2 fixed by I. Then L′

v is the maximal un-
ramified subextension as well as the maximal tamely ramified subextension. It is
in fact isomorphic to Q215 , the unique unramified extension of Q2 of degree 15
and the Eisenstein polynomial E from above, being irreducible over any unramified
extension of Q2, is a defining polynomial for the extension Lv/Q215 . According to
[17, Theorem 3] we can relate the discriminant of Lv to k(ρ) as follows:

v2(Disc(Lv)) =
{

240 · 15
8 = 450 if k(ρ) = 2

240 · 19
8 = 570 if k(ρ) 	= 2

It follows from (4) that v2(Disc(Lv/Q2)) = 30 · 15 = 450, so indeed k(ρ) = 2.

4.3. Verification of the form f
Now we know N(ρP ) = 137 and k(ρP ) = 2 Theorem 1 shows that there is

an eigenform g ∈ S2(Γ1(137)) giving rise to ρP . Using [3, Corollary 2.7] we see
that if such a g exists, then there actually exists such a g of trivial Nebentypus,
i.e. g ∈ S2(Γ0(137)) (as SL2(F16) is non-solvable ρP cannot be an induced Hecke
character from Q(i)).

A modular symbols calculation shows that there exist two Galois orbits of new-
forms in S2(Γ0(137)): the form f we used for our calculations and another form, g
say. The prime 2 decomposes in Kg as a product λ3μ, where λ has inertial degree
1 and μ has inertial degree 4. So it could be that g mod μ gives rise to ρP . We
will show now that f mod (2) and g mod μ actually give the same representation.
The completions of OKf

and OKg at the primes (2) and μ respectively are both
isomorphic to Z16, the unramified extension of Z2 of degree 4. After a choice of
embeddings of OKf

and OKg into Z16 we obtain two modular forms f ′ and g′ with
coefficients in Z16 and we wish to show that a suitable choice of embeddings exists
such that they are congruent modulo 2. According to [26, Theorem 1], it suffices to
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check there is a suitable choice of embeddings that gives an(f ′) ≡ an(g′)mod 2 for
all n � [SL2(Z) : Γ0(137)]/6 = 23 (in [26] this theorem is formulated for modular
forms with coefficients in the ring of integers of a number field, but the proof also
works for p-adic rings). Using a modular symbols calculation, this can be easily
verified. The bound on the indices up to which one has to check such a congruence
is usually referred to as the Sturm bound or Hecke bound.

Appendix A. Magma code used for computations

All the calculations were done using Magma (see [1]); for most of them the
author used the Medicis cluster (see http://medicis.polytechnique.fr). The
Magma code used for the computation of the polynomials, together with a short
instruction on how to use it, has been included as an add-on to this paper and may
be found at

http://www.lms.ac.uk/jcm/10/lms2007-024/appendix-a
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9. K. Geissler and J. Klüners, ‘Galois group computation for rational
polynomials’, J. Symbolic Comput. 30 (2000) 653–674.

10. F. Hajir and C. Maire, ‘Tamely ramified towers and discriminant bounds
for number fields II’, J. Symbolic Comput. 33 (2002) 415–423.

11. M. van Hoeij, ‘Factoring polynomials and the knapsack problem’, J.
Number Theory 95 (2002) 167–189.

12. J. W. Jones and D. P. Roberts, ‘Galois number fields with small root
discriminant’, J. Number Theory 122 (2007) 379–407.

13. C. Khare, ‘Serre’s modularity conjecture: a survey of the level one case’,
to appear in L-functions and Galois representations (Durham, UK, 2004).

14. C. Khare and J.-P. Wintenberger, ‘Serre’s modularity conjec-
ture: the odd conductor case (I, II)’, preprint, 2006, available at
http://www.math.utah.edu/~shekhar/papers.html
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