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Growth Rates of 3-dimensional Hyperbolic
Coxeter Groups are Perron Numbers

Tomoshige Yukita

Abstract. In this paper we consider the growth rates of 3-dimensional hyperbolic Coxeter polyhedra
with at least one dihedral angle of the form π

k for an integer k ≥ 7. Combining a classical result by
Parry with a previous result of ours, we prove that the growth rates of 3-dimensional hyperbolic
Coxeter groups are Perron numbers.

1 Introduction

LetHd denote the upper half-spacemodel of hyperbolic d-space andHd
its closure in

Rd∪{∞}. A convex polyhedron P ⊂ H
d
of ûnite volume is called aCoxeter polyhedron

if all of its dihedral angles are of the form π
k for an integer k ≥ 2 or k = ∞, i.e.,

the intersection of the respective facets is a point on the boundary ∂Hd . _e set S
of re�ections with respect to the facets of P generates a discrete group Γ, called a
hyperbolic Coxeter group, and the pair (Γ, S) is called the Coxeter system associated
with P. _en P becomes a fundamental domain for Γ. If P is compact (resp. non-
compact), the hyperbolic Coxeter group Γ is called cocompact (resp. coûnite). _e
growth series fS(t) of a Coxeter system (Γ, S) is the formal power series ∑∞

l=0 a l t l
where a l is the number of elements of Γ whose word length with respect to S is equal
to l . _en τΓ ∶= lim supl→∞ l

√a l is called the growth rate of the Coxeter system (Γ, S).
Bymeans of theCauchy–Hadamard theorem, τΓ is equal to the reciprocal of the radius
of convergence R of fS(t). _e growth series and the growth rate of a hyperbolic
Coxeter polyhedron P is deûned to be the growth series and the growth rate of the
Coxeter system (Γ, S) associated with P, respectively. It is known that the growth rate
of a hyperbolic Coxeter polyhedron is a real algebraic integer bigger than 1 [3]. Recall
that a real algebraic number τ > 1 is a Perron number if all other algebraic conjugates
are less than τ in absolute value. By results of Parry [13] in the compact case (resp.
by results of [9–12] in the case of certain families of non-compact hyperbolic Coxeter
polyhedra), the growth rate τΓ is a Salem number (resp. a Perron number). In [18],
we proved that the growth rate of any non-compact Coxeter polyhedron in H3 with
all dihedral angles of type π

k for 2 ≤ k ≤ 6 is a Perron number. _e main result of
this work is the extension of our result [18] to non-compact Coxeter polyhedra P in
H3 having at least one dihedral angle of the form π

k for some integer k ≥ 7. More
precisely, we shall prove the following _eorem A, which, together with the results of
Parry [13, 18], can be summarized in _eorem B.
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_eorem A _e growth rates of non-compact 3-dimensional hyperbolic Coxeter poly-
hedra having at least one dihedral angle of the form π

k for some integer k ≥ 7 are Perron
numbers.

_eorem B _e growth rates of 3-dimensional hyperbolic Coxeter groups are Perron
numbers.

_eorem B settles the 3-dimensional case of a conjecture by Kellerhals and Per-
ren [7] and states that the set of growth rates of 3-dimensional hyperbolic Coxeter
polyhedra consists of Perron numbers only. As for their small representatives, no-
tice that the minimal growth rate among all compact Coxeter polyhedra was found
by Kellerhals–Kolpakov [6], while the minimal growth rate among all non-compact
ones was discovered by Kellerhals [5].

In Section 2, we provide the necessary background and review a useful formula
from [18], which allow us to calculate the growth function of a hyperbolic Coxeter
polyhedron. In Section 3, we establish the growth function of a non-compact hy-
perbolic Coxeter polyhedron with at least one dihedral angle of the form π

k for some
k ≥ 7.

2 Preliminaries

In this section, we introduce the relevant notation and review some useful identities
in [18] in order to calculate the growth functions of hyperbolic Coxeter polyhedra.

Deûnition 2.1 (Coxeter system, Coxeter graph, growth rate)
(i) ACoxeter system (Γ, S) consists of a group Γ and a ûnite set of generators S ⊂ Γ,

S = {s i}N
i=1, with relations (s i s j)m i j for each i , j , where m i i = 1 and m i j ≥ 2 or

m i j = ∞ for i /= j. We call Γ a Coxeter group. For any subset I ⊂ S, we deûne ΓI to
be the subgroup of Γ generated by {s i}i∈I . _en ΓI is called the Coxeter subgroup of Γ
generated by I.

(ii) _e Coxeter graph of (Γ, S) is constructed as follows: Its vertex set is S. If
m i j ≥ 3 (s i /= s j ∈ S), we join the pair of vertices by an edge and label it with m i j . If
m i j = ∞ (s i /= s j ∈ S), we join the pair of vertices by a bold edge.

(iii) _e growth series fS(t) of a Coxeter system (Γ, S) is the formal power series
∑∞

l=0 a l t l where a l is the number of elements of Γ whose word length with respect to
S is equal to l . _en τ = lim supl→∞ l

√a l is called the growth rate of (Γ, S).

A Coxeter group Γ is irreducible if the Coxeter graph of (Γ, S) is connected. In this
paper, we are interested in Coxeter groups that act discontinuously on the hyperbolic
spaceHd .

Deûnition 2.2 (hyperbolic polyhedron) A subset P ⊂ H
d

is called a hyperbolic
polyhedron if P can be written as the intersection of ûnitely many closed half spaces:
P = ⋂H−

i , where H−
i is the closed domain ofHd bounded by a hyperplane H i .

Suppose that H i ∩ H j /= ∅ in Hd . _en we deûne the dihedral angle between H i
and H j as follows: let us choose a point x ∈ H i ∩H j and consider the outer normal
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vectors u i and u j . _en the dihedral angle between H i and H j is deûned as the real
number θ ∈ [0, π) satisfying cos θ = −(u i , u j), where ( ⋅ , ⋅ ) denotes the Euclidean
inner product on Rd at x.

If H i ∩ H j = ∅ in Hd , then H i ∩ H j ∈ H
d
is a point at the ideal boundary ∂Hd of

Hd , and we deûne the dihedral angle between H i and H j to be equal to zero.

Deûnition 2.3 (hyperbolic Coxeter polyhedron) A hyperbolic polyhedron P ⊂ Hd

of ûnite volume is called a hyperbolic Coxeter polyhedron if all of its dihedral angles
have the form π

k for an integer k ≥ 2 or k = ∞ if the intersection of the respective
bounding hyperplanes is a point on the boundary ∂Hd .

Notice that a hyperbolic polyhedron in Hd is of ûnite volume if and only if it is
the convex hull of ûnitely many points in H

d
. If P ⊂ Hd is a hyperbolic Coxeter

polyhedron, the set S of re�ections with respect to facet hyperplanes of P generates
the discrete group Γ. We call Γ the d-dimensional hyperbolic Coxeter group associated
with P. Moreover, if P is compact (resp. non-compact), Γ is called cocompact (resp.
coûnite).

We recall Solomon’s formula and Steinberg’s formula, which are very useful for
calculating growth series.

_eorem 2.4 (Solomon’s formula [15]) _egrowth series fS(t) of an irreducible ûnite
Coxeter system (Γ, S) can be written as fS(t) = [m1 + 1 ;m2 + 1 ; . . . ;mp + 1], where
[n] = 1+ t + ⋅ ⋅ ⋅ + tn−1 , [m ; n] = [m][n],etc., and where {m1 ,m2 , . . . ,mp} is the set of
exponents of (Γ, S).

_e exponents of irreducible ûnite Coxeter groups are shown in Table 1 (see [4] for
details).

Coxeter group Exponents Growth series
An 1, 2, . . . , n [2 ; 3 ; . . . ; n + 1]
Bn 1, 3, . . . , 2n − 1 [2 ; 4 ; . . . ; 2n]
Dn 1, 3, . . . , 2n − 3, n − 1 [2 ; 4 ; . . . ; 2n − 2 ; n]
E6 1,4,5,7,8,11 [2 ; 5 ; 6 ; 8 ; 9 ; 12]
E7 1,5,7,9,11,13,17 [2 ; 6 ; 8 ; 10 ; 12 ; 14 ; 18]
E8 1,7,11,13,17,19,23,29 [2 ; 8 ; 12 ; 14 ; 18 ; 20 ; 24 ; 30]
F4 1,5,7,11 [2 ; 6 ; 8 ; 12]
H3 1,5,9 [2 ; 6 ; 10]
H4 1,11,19,29 [2 ; 12 ; 20 ; 30]

I2(m) 1,m − 1 [2 ;m]

Table 1: Exponents
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_eorem 2.5 (Steinberg’s formula [16]) Let (Γ, S) be a Coxeter system. Denote by
ΓT the Coxeter subgroup of Γ generated by the subset T ⊆ S, and denote by fT(t) the
growth series of the Coxeter system (ΓT , T). Set F = {T ⊆ S ∶ ΓT is ûnite }. _en

1
fS(t−1) = ∑

T∈F

(−1)∣T∣

fT(t)
.

By _eorem 2.4 and _eorem 2.5, the growth series of (Γ, S) is represented by a
rational function p(t)

q(t)(p, q ∈ Z[t]). _e rational function p(t)
q(t) is called the growth

function of (Γ, S). _e radius of convergence R of the growth series fS(t) is equal to
the positive real root of q(t) that has the smallest absolute value among all the roots
of q(t).
Fromnowon, we restrict our attention to the 3-dimensional case. Suppose that P is

a Coxeter polyhedron inH3, and let v be a vertex of P. Let F1 , . . . , Fn be adjacent facets
of P incident to v and let π

k i
be the dihedral angle between Fi and Fi+1. By Andreev’s

theorem [1], the number of facets of P incident to v is at most 4 and k1 , . . . , kn satisfy
the following conditions:

k1 = k2 = k3 = k4 = 2 if n = 4,(2.1)
1
k1
+ 1

k2
+ 1

k3
≥ 1 if n = 3.(2.2)

Note that a vertex v of P belongs to ∂H3 if and only if k1 = k2 = k3 = k4 = 2 or
1
k1
+ 1

k2
+ 1

k3
= 1, and we call such a vertex a cusp, for short. We shall use the following

notation and terminology for the rest of the paper:
● If a vertex v of P satisûes the identity (2.1), we call v a cusp of type (2, 2, 2, 2).
● If a vertex v of P satisûes the inequality (2.2), we call v a vertex of type (k1 , k2 , k3).
● v2,2,2,2 denotes the number of cusps of type (2, 2, 2, 2).
● vk1 ,k2 ,k3 denotes the number of vertices of type (k1 , k2 , k3).
● V , E , F denotes the number of vertices, edges and facets of P.
● If an edge e of P has dihedral angle π

k , we call it a
π
k -edge.

● ek denotes the number of π
k -edges.

● _e growth function fS(t) of the Coxeter system (Γ, S) associated with P is called
the growth function of P.

● _e growth rate of the Coxeter system (Γ, S) associated with P is called the growth
rate of P.
It is easy to see (cf. [18], for example) that the following identities and inequality

hold for P:

V − E + F = 2,(2.3)

V = v2,2,2,2 + ∑
k≥2

v2,2,k + v2,3,3 + v2,3,4 + v2,3,5 + v2,3,6 + v2,4,4 + v3,3,3 ,(2.4)

E = ∑
k≥2
ek ,(2.5)
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2e2 = 4v2,2,2,2 + 3v2,2,2 + 2
∞
∑
k=3

v2,2,k + v2,3,3 + v2,3,4 + v2,3,5 + v2,3,6 + v2,4,4 ,(2.6)

2e3 = 3v3,3,3 + 2v2,3,3 + v2,2,3 + v2,3,4 + v2,3,5 + v2,3,6 ,(2.7)
2e4 = 2v2,4,4 + v2,2,4 + v2,3,4 ,(2.8)
2e5 = v2,2,5 + v2,3,5 ,(2.9)
2e6 = v2,2,6 + v2,3,6 ,(2.10)
2ek = v2,2,k k ≥ 7,(2.11)
v2,2,2,2 + v2,3,6 + v2,4,4 + v3,3,3 ≥ 1.(2.12)

We use these identities and the last inequality to express growth functions of the
3-dimensional hyperbolic Coxeter polyhedra under consideration. _e following
proposition due to Komori–Umemoto [9] will be of fundamental importance when
showing that their growth rates are Perron numbers.

Proposition 2.6 ([9, Lemma 1]) Let g(t) be a polynomial of degree n ≥ 2 having the
form

g(t) =
n

∑
k=1

nk tk − 1,

where nk are non-negative integers. We assume that the greatest common divisor of
{k ∈ N ∣ nk /= 0} is 1. _en there exists a real number r0, 0 < r0 < 1 that is the unique
zero of g(t) having the smallest absolute value among all zeros of g(t).

Our aim is to express the growth functions of non-compact hyperbolic Coxeter
polyhedra with at least one dihedral angle of type π

k for k ≥ 7 as rational functions
whose denominator polynomials satisfy the conditions of Proposition 2.6. _is will
be done by using Steinberg’s formula (see_eorem 2.5) and the relations (2.3)–(2.12).
_is strategy was already successfully applied in [18].

3 Non-compact Coxeter Polyhedra Some of Whose Dihedral An-
gles are π

k for k ≥ 7

In this section, we calculate the growth function fS(t) of a non-compact hyperbolic
Coxeter polyhedron P some of whose dihedral angles are π

k for k ≥ 7 and prove the
growth rate of P is a Perron number.

_eorem 3.1 Let σ be the sum of the π
k -edges for k ≥ 7 of a non-compact hyperbolic

polyhedron P, that is, σ = ∑k≥7 ek . _en we obtain the inequality σ ≤ F − 3. Moreover,
if the equality σ = F −3 holds, then P has a unique cusp of type (2, 2, 2, 2), and all other
vertices of P are of type (2, 2, k) for k ≥ 7.

In order to prove _eorem 3.1, we use the following deformation argument for
Coxeter polyhedra studied by Kolpakov in [8]. We present it in a modiûed form that
is more suitable for further account.
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_eorem 3.2 ([8, Propositions 1 and 2])
(i) Suppose that a non-compact hyperbolic Coxeter polyhedron P ⊂ H3 has some

π
k -edges for k ≥ 7. _en all of the π

k -edges can be contracted to cusps of type (2, 2, 2, 2).
_e hyperbolic Coxeter polyhedron P̂ that is obtained from P by contracting all π

k -edges
for k ≥ 7 of P is called the pinched Coxeter polyhedron of P.

(ii) If a hyperbolic Coxeter polyhedron P has some cusps of type (2, 2, 2, 2), then
there exists a unique Coxeter polyhedron that is obtained from P by opening one cusp of
type (2, 2, 2, 2). (See Fig. 1.)

⇆
k

２

２

２

２
２

２
２ ２

Contraction

Opening cusp

P P^

Figure 1

In the sequel, P̂ denotes the pinched Coxeter polyhedron obtained from P, and
V̂ , Ê , F̂, v̂2,2,2,2 , v̂k1 ,k2 ,k3 , and êk denote respectively the number of vertices, edges,
facets, cusps of type (2, 2, 2, 2), vertices of type (k1 , k2 , k3), and π

k -edges of P̂.

Proof of_eorem 3.1 Suppose that P is a non-compact hyperbolic Coxeter polyhe-
dron and the sum of the numbers of the π

k -edges for k ≥ 7 of P is σ . By substituting
identities (2.4)–(2.10) for identity (2.3), we can see the following identity for P̂:

(3.1) F̂ − 2 = v̂2,2,2,2 +
1
2
(the number of vertices of P̂ with valency 3).

Even if we contract the all π
k -edges for k ≥ 7 of P, the number of facets of P̂ is equal

to the number of faces of P, so that we obtain the following relations for P̂:
F = F̂ ,(3.2)

v̂2,2,2,2 = v2,2,2,2 + σ .(3.3)

_en, by substituting identities (3.2) and (3.3) for (3.1), we see that

(3.4) F − 2 = v2,2,2,2 + σ + 1
2
(the number of vertices of P̂ with valency 3).

Identity (3.4) implies that σ ≤ F − 2. Moreover, if P satisûes the identity σ = F−2, then
all of the vertices of P̂ are cusps of type (2, 2, 2, 2) obtained from P by contracting all
π
k -edges for k ≥ 7 of P. _is observation means that all of the vertices of P are of type
(2, 2, k) for k ≥ 7. _erefore, P has no cusps. _is fact contradicts to the assumption
that P is non-compact. _us, we obtain the inequality. σ ≤ F − 3.

Suppose that σ = F − 3. _en, identity (3.4) is rewritten as

(3.5) F − 2 = v2,2,2,2 + F − 3 + 1
2
(the number of vertices of P̂ with valency 3).

https://doi.org/10.4153/CMB-2017-052-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-052-5


Growth Rates of 3-dimensional Hyperbolic Coxeter Groups are Perron Numbers 411

Since any π
k -edge for k ≥ 3 is adjacent to two vertices with valency 3, if P has at least

one cusp of type (2, 3, 6) or (2, 4, 4) or (3, 3, 3), then P has at least three vertices with
valency 3.

_erefore, by identity (3.5), we obtain the inequality

F − 2 ≥ v2,2,2,2 + F − 3 + 3
2
= v2,2,2,2 + F −

3
2
.

Hence, if P has at least one cusp of type (2, 3, 6) or (2, 4, 4) or (3, 3, 3), we arrive at a
contradiction. _is implies that if σ = F − 3, P has a unique cusp of type (2, 2, 2, 2),
and all other vertices of P are of type (2, 2, k) for k ≥ 7.

3.1 The Growth Rates in the Case of σ = F − 3

By _eorem 3.1, P has a unique cusp which is furthermore of type (2, 2, 2, 2). Apply
_eorem 3.2(ii) and consider the unique hyperbolic polyhedron P̃ obtained by open-
ing this cusp in P. _en P̃ is a compact Coxeter polyhedron whose growth rate is a
Salem number. By a result of Kolpakov [8, _eorem 5], the growth rate of P is then a
Pisot number and therefore also a Perron number.

3.2 The Growth Rates in the Case of σ ≤ F − 4

In this subsection, we prove the following theorem.

_eorem 3.3 Suppose that σ ≤ F − 4 and P satisûes the following inequality

(3.6) v2,2,2,2 + e3 + e4 + e5 + e6 + F − 8 ≥ 0.

_en the growth rate of P is a Perron number.

In order to prove_eorem 3.3, we shall use the following notation and terminology
introduced in [14].

Deûnition 3.4 (abstract polyhedron) An abstract polyhedron C is a simple graph on
the 2-dimensional sphere S2 all of its vertices are 3-valent or 4-valent. If each edge of
an abstract polyhedron C is labeled with π

k for an integer k ≥ 2, C is called an abstract
Coxeter polyhedron.

For any hyperbolic Coxeter polyhedron P, the boundary ∂P is homeomorphic to
S2. _is implies that the 1-skeleton of P provides an abstract Coxeter polyhedron C.
We call C the abstract Coxeter polyhedron associated with P. Suppose that C is an
abstract Coxeter polyhedron and that v is a vertex with valency i for i = 3 or i = 4.
Let c1 , . . . , c i be the edges of C incident to v and denote by π

k i
the label of the edge c i .

● If a vertex v of C with valency 3 satisûes the inequality 1
k1
+ 1

k2
+ 1

k3
> 1, we call v a

spherical vertex of type (k1 , k2 , k3).
● If a vertex v of C with valency 3 satisûes the equality 1

k1
+ 1

k2
+ 1

k3
= 1, we call v a

Euclidean vertex of type (k1 , k2 , k3).
● If a vertex v of C with valency 3 satisûes the inequality 1

k1
+ 1

k2
+ 1

k3
< 1, we call v a

hyperbolic vertex of type (k1 , k2 , k3).
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● If a vertex v of C with valency 4 satisûes the equality k1 = k2 = k3 = k4 = 2, we call
v a Euclidean vertex of type (2, 2, 2, 2).

● Avertex v ofC with valency 4 diòerent from aEuclidean vertex is called a hyperbolic
vertex of valency 4.

● Vk1 ,k2 ,k3 denotes the number of spherical vertices of type (k1 , k2 , k3) of C.
● Ek denotes the number of edges labeled by π

k of C.
● F denotes the number of faces of C.
A spherical, Euclidean or hyperbolic vertex v of type (k1 , k2 , k3) ofC corresponds to a
spherical, Euclidean or hyperbolic Coxeter triangle ∆k1 ,k2 ,k3 whose interior angles are
π
k1
, π
k2
and π

k3
, respectively. We denote by fk1 ,k2 ,k3(t) the growth function of ∆k1 ,k2 ,k3 .

_en the abstract growth function fC(t) of C is deûned by the identity

1
fC(t−1) ∶= 1 − F

[2] + ∑k≥2
Ek

[2 ; k] − ∑
1
k1
+ 1

k2
+ 1

k3
>1

Vk1 ,k2 ,k3

fk1 ,k2 ,k3(t)
.

In the sequel, let P be a non-compact ûnite volume hyperbolic Coxeter polyhedron
and C be the abstract Coxeter polyhedron associated with P. _en we can see that the
abstract growth function fC(t) of C is equal to the growth function fS(t) of P.

Suppose that P has some dihedral angles π
k for k ≥ 7 and C is the abstract Coxeter

polyhedron associated with P. Let C′ be the abstract Coxeter polyhedron obtained
from C by changing one of the labels of C from π

k to π
6 (see Fig. 2).

_eorem 3.5 ([1], Andreev’s theorem) Let C be an abstract polyhedron other than a
tetrahedron or a triangular prism, and suppose that non-obtuse labels are given corre-
sponding to each edge of C. _ere is a hyperbolic polyhedron P of ûnite volume in H3

whose 1-skeleton provides C if and only if the following conditions are satisûed:
(i) if three distinct edges of C meet at a vertex, then the sum of the labels is greater

than or equal to π;
(ii) if four distinct edges of C meet at a vertex, then all the labels equal π

2 ;
(iii) if three faces of C are pairwise adjacent but do not meet at a vertex, then the sum

of the labels on the edges formed by adjacent faces is less than π ;
(iv) if four faces of C are cyclically adjacent but do not meet at a vertex, then the sum

of the labels on the edges formed by adjacent faces is less than 2π;
(v) if a face Fi is adjacent to faces F j and Fk , while F j and Fk are not adjacent but

have a common vertex which Fi does not share, then at least one of the labels on
the edges formed by Fi with F j or with Fk is diòerent from π

2 .

By Andreev’s theorem [1], the endpoints of a π
k -edge of P are vertices of type

(2, 2, k) for k ≥ 7 so that the abstract polyhedron C′ has at least one Euclidean vertex
and no hyperbolic vertices of valency 4. _en the growth function fS(t) of P diòers
from the abstract growth function fC′(t) of C′ in the terms related to changing the la-
bel. _is implies the following identity by using the relation 1/([k](t−1)) = tk−1/[k]:
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1
fS(t)

= 1
fC′(t)

+ {(− t6

[2 ; 6] +
2t7

[2 ; 2 ; 6]) + ( tk

[2 ; k] −
2tk+1

[2 ; 2 ; k])}

= 1
fC′(t)

+ (t − 1)
[2 ; 2 ; 6 ; k]

k−1

∑
n=6

tn .

(3.7)

Proof of_eorem 3.3 Let P ⊂ H3 be a non-compact ûnite volume Coxeter polyhe-
dron with F ≥ 4 faces. Observe that the theorem holds for F = 4 without any further
restriction, since the growth rate of a ûnite volume Coxeter tetrahedron P has been
shown to be a Perron number by [9]. _erefore, assume that F ≥ 5. _e proof of the
theorem proceeds by induction on the number σ of π

k -edges with k ≥ 7 of P. More
speciûcally, denote by Pσ such a polyhedron with dihedral angles π

k1
, . . . , π

kσ
where

k1 , . . . , kσ ≥ 7. In order to prove that the growth rate of Pσ is a Perron number, we
show that the growth function fSσ (t) of Pσ satisûes the identity

1
fSσ (t)

= (t − 1)Qσ(t)
[2 ; 2 ; 6 ; k1 ; . . . ; kσ](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10) ,

where Qσ(t) is the integer polynomial of degree k1 + ⋅ ⋅ ⋅ + kσ + 16− σ whose constant
term is equal to −1 and the coeõcients of Qσ(t) except its constant term are non-
negative.

Step 1: In the case where σ = 1, consider the abstract Coxeter polyhedron C′1 whose
labels lie in the set { π

k ∣ k = 2, 3, 4, 5, 6} by construction. By the calculation of [18,
subsection 3.5], 1

fC′1
(t) is written as

1
fC′1(t)

= (t − 1)
[2 ; 4 ; 6 ; 10]H2,3,4,5,6(t),

where H2,3,4,5,6(t) is the integer polynomial of degree 17. _en, by using mathemat-
ica, we see that the polynomial H2,3,4,5,6 is divisible by the polynomial [2] = t + 1:

1
fC′1(t)

= (t − 1)
[4 ; 6 ; 10]G2,3,4,5,6(t),

P

2

2
2

2k

C

2

2
2

2

→ ６

‘

Figure 2
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whereG2,3,4,5,6(t) ∶= H2,3,4,5,6(t)
[2] is the integer polynomial of degree 16. By usingmath-

ematica, G2,3,4,5,6(t) can be rewritten as follows:

G2,3,4,5,6(t) = (v′2,3,6 + v′2,4,4 + v′3,3,3 + v′2,2,2,2 − 1)t16

+ (v′2,3,6 + v′2,4,4 + v′3,3,3 + F′ − 4)t15

+ ( 1
2v

′
2,2,3 + 1

2v
′
2,2,4 + 1

2v
′
2,2,5 + 1

2v
′
2,2,6 + v′2,3,3

+ v′2,3,4 + v′2,3,5 + 3v′2,3,6 + 3v′2,4,4 + 5
2v

′
3,3,3 + 3v′2,2,2,2 − 4)t14

+ ( 1
2v

′
2,2,2 + 1

2v
′
2,2,4 + 1

2v
′
2,2,5 + 1

2v
′
2,2,6 + 1

2v
′
2,3,3 + v′2,3,4

+ v′2,3,5 + 3v′2,3,6 + 5
2v

′
2,4,4 + 3v′3,3,3 + v′2,2,2,2 + 2F′ − 10)t13

+ ( 3
2v

′
2,2,3 + v′2,2,4 + 3

2v
′
2,2,5 + 3

2v
′
2,2,6 + 2v′2,3,3

+ 5
2v

′
2,3,4 + 3v′2,3,5 + 5v′2,3,6 + 5v′2,4,4 + 9

2v
′
3,3,3 + 5v′2,2,2,2 − 8)t12

+ (v′2,2,2 + v′2,2,4 + 1
2v

′
2,2,5 + v′2,2,6 + v′2,3,3 + 2v′2,3,4

+ 5
2v

′
2,3,5 + 4v′2,3,6 + 4v′2,4,4 + 4v′3,3,3 + 2v′2,2,2,2 + 3F′ − 16)t11

+ (2v′2,2,3 + 3
2v

′
2,2,4 + 5

2v
′
2,2,5 + 2v′2,2,6 + 3v′2,3,3

+ 7
2v

′
2,3,4 + 9

2v
′
2,3,5 + 6v′2,3,6 + 6v′2,4,4 + 6v′3,3,3 + 6v′2,2,2,2 − 11)t10

+ (v′2,2,2 + v′2,2,4 + v′2,2,6 + v′2,3,3 + 2v′2,3,4
+ 3v′2,3,5 + 4v′2,3,6 + 4v′2,4,4 + 4v′3,3,3 + 2v′2,2,2,2 + 4F′ − 20)t9

+ (2v′2,2,3 + 3
2v

′
2,2,4 + 3v′2,2,5 + 2v′2,2,6 + 3v′2,3,3

+ 7
2v

′
2,3,4 + 5v′2,3,5 + 6v′2,3,6 + 6v′2,4,4 + 6v′3,3,3 + 6v′2,2,2,2 − 12)t8

+ (v′2,2,2 + v′2,2,4 + v′2,2,6 + v′2,3,3 + 2v′2,3,4
+ 3v′2,3,5 + 4v′2,3,6 + 4v′2,4,4 + 4v′3,3,3 + 2v′2,2,2,2 + 4F′ − 20)t7

+ (2v′2,2,3 + 3
2v

′
2,2,4 + 5

2v
′
2,2,5 + 2v′2,2,6 + 3v′2,3,3

+ 7
2v

′
2,3,4 + 9

2v
′
2,3,5 + 5v′2,3,6 + 5v′2,4,4 + 5v′3,3,3 + 5v′2,2,2,2 − 11)t6

+ (v′2,2,2 + v′2,2,4 + 1
2v

′
2,2,5 + v′2,2,6 + v′2,3,3 + 2v′2,3,4

+ 5
2v

′
2,3,5 + 3v′2,3,6 + 3v′2,4,4 + 3v′3,3,3 + 2v′2,2,2,2 + 3F′ − 16)t5

+ ( 3
2v

′
2,2,3 + v′2,2,4 + 3

2v
′
2,2,5 + 3

2v
′
2,2,6 + 2v′2,3,3

+ 5
2v

′
2,3,4 + 3v′2,3,5 + 3v′2,3,6 + 3v′2,4,4 + 7

2v
′
3,3,3 + 3v′2,2,2,2 − 8)t4

+ ( 1
2v

′
2,2,2 + 1

2v
′
2,2,4 + 1

2v
′
2,2,5 + 1

2v
′
2,2,6 + 1

2v
′
2,3,3

+ v′2,3,4 + v′2,3,5 + v′2,3,6 + 3
2v

′
2,4,4 + v′3,3,3 + v′2,2,2,2 + 2F′ − 10)t3

+ ( 1
2v

′
2,2,3 + 1

2v
′
2,2,4 + 1

2v
′
2,2,5 + 1

2v
′
2,2,6 + v′2,3,3

+ v′2,3,4 + v′2,3,5 + v′2,3,6 + v′2,4,4 + 3
2v

′
3,3,3 + v′2,2,2,2 − 4)t2

+ (F′ − 4)t − 1,

where F′ , v′2,2,2,2 and v′k1 ,k2 ,k3 denote respectively the number of faces, Euclidean ver-
tices of type (2, 2, 2, 2) and spherical vertices of type (k1 , k2 , k3) of C′1. We denote n i
by the i-th coeõcient of the polynomial G2,3,4,5,6(t). By using identities (2.3)–(2.10)
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and inequality (2.12), we can see that the following inequalities:

n i ≥ 0 (i = 1, 3, 5, 7, 9, 11, 13, 15),(3.8)
n i + n i+1 ≥ 0 (i = 1, . . . , 15),(3.9)
n i + n i+1 + n i+2 ≥ 0 (i = 1, . . . , 14).(3.10)

Using identity (3.7), we can see that

1
fS1(t)

= 1
fC′1(t)

+ (t − 1)
[2 ; 2 ; 6 ; k1]

k1−1

∑
i=6

t i

= (t − 1)
[4 ; 6 ; 10]G2,3,4,5,6(t) +

(t − 1)
[2 ; 2 ; 6 ; k1]

k1−1

∑
i=6

t i

= (t − 1)
[2 ; 2 ; 5 ; 6](1 + t2)(1 − t + t2 − t3 + t4)G2,3,4,5,6(t) +

(t − 1)
[2 ; 2 ; 6 ; k1]

k1−1

∑
i=6

t i

=
(t − 1){[k1]G2,3,4,5,6(t) + (1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)∑k1−1

i=6 t i}
[2 ; 2 ; 6 ; k1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10) .

Let Q1(t) ∶= [k1]G2,3,4,5,6(t) + (1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)∑k1−1
i=6 t i ,

[k1]G2,3,4,5,6(t) = (
k1−1

∑
j=0

t j)(
16

∑
i=1

n i t i − 1)

=
k=1−1

∑
j=0

16

∑
i=1

n i t i+ j −
k1−1

∑
j=0

t j

=
k1+15

∑
i=1

{ χ[1,k1](i)n1 + ⋅ ⋅ ⋅ + χ[16,k1+15](i)n16} t i −
k1−1

∑
j=0

t j ,

and

(1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)
k1−1

∑
i=6

t i =

k1+9

∑
i=8

{2( χ[8,k1+1] + χ[10,k1+3] + χ[12,k1+5] + χ[14,k1+7])(i) + χ[16,k1+9](i)} t i +
k1−1

∑
j=6

t j ,

where χ[p,q] is deûned to be the simple function on the closed interval [p, q]. _en
the degree of Q1(t) is k1 + 15, so that we can represent Q1(t) as∑k1+15

i=1 n(1)
i t i − 1 and

n(1)
i is written as follows:

n(1)
i =

16

∑
j=1
χ[ j,k1+ j−1](i)n j + 2( χ[8,k1+1] + χ[10,k1+3] + χ[12,k1+5] + χ[14,k1+7])(i)

+ χ[16,k1+9](i) − χ[1,5](i).
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_erefore, by combining inequalities (3.8), (3.9), and (3.10), we can obtain the fol-
lowing inequalities and identities:

n(1)
i ≥ 0 6 ≤ i ≤ k1 + 15),

n(1)
5 = n5 + n4 + n3 + n2 + n1 − 1,

n(1)
4 = n4 + n3 + n2 + n1 − 1,

n(1)
3 = n3 + n2 + n1 − 1,

n(1)
2 = n2 + n1 − 1 = v′2,2,2,2 + e′3 + e′4 + e′5 + e′6 + F′ − 9,

n(1)
1 = n1 − 1 = F′ − 5.

Since C′1 is obtained from P1 by changing one dihedral angle from π
k1

to π
6 , n

(1)
2 can

be rewritten as

(3.11) n(1)
2 = v2,2,2,2 + e3 + e4 + e5 + e6 + F − 8.

Equality (3.11) together with F′ = F ≥ 5 mean that the coeõcients of Q1(t) except
its constant term are non-negative under the assumption of _eorem 3.3. _erefore,
by Proposition 2.6, the growth rate of P1 is a Perron number.

Step 2: We assume that the following identity holds for the growth function fSσ−1(t)
of Pσ−1 for σ ≥ 2 as inductive hypothesis:

1
fSσ−1(t)

= (t − 1)Qσ−1(t)
[2 ; 2 ; 5 ; 6 ; k1 ; . . . ; kσ−1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10) ,

whereQσ−1(t) is a polynomial of degree k1+⋅ ⋅ ⋅+kσ−1+16−(σ−1) and the coeõcients
of Qσ−1(t) except its constant term are non-negative. By identity (3.7) we deduce that
the following identities hold:

1
fSσ (t)

= (t − 1)
[2 ; 2 ; 6]{

Qσ−1(t)
[k1 ; . . . ; kσ−1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10) +

∑kσ−1
n=6 tn

[kσ]
}

= (t − 1){[kσ]Qσ−1(t) + [k1 ; . . . ; kσ−1](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10)∑kσ−1
n=6 tn}

[2 ; 2 ; 6 ; k1 ; . . . ; kσ](1 + 2t2 + 2t4 + 2t6 + 2t8 + t10) .

LetQσ(t) ∶= [kσ]Qσ−1(t)+[k1 ; . . . ; kσ−1](1+2t2+2t4+2t6+2t8+t10)∑kσ−1
n=6 tn and

R(t) ∶= [k1 ; . . . ; kσ−1](1+2t2+2t4+2t6+2t8+ t10)∑kσ−1
n=6 tn . Note that the coeõcients

of R(t) is non-negative. Moreover, the coeõcients of i-th terms are positive for 6 ≤
i ≤ kσ − 1:

deg [kσ]Qσ(t) = (kσ − 1) + degQσ−1(3.12)
= k1 + ⋅ ⋅ ⋅ + kσ + 16 − σ ,

degR(t) = (k1 − 1) + ⋅ ⋅ ⋅ + (kσ−1 − 1) + 10 + (kσ − 1)(3.13)
= k1 + ⋅ ⋅ ⋅ + kσ + 10 − σ .
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Equalities (3.12) and (3.13) imply that the degree ofQσ(t) is equal to k1+⋅ ⋅ ⋅+kσ+16−σ .
We denote by n(σ−1)

i the i-th coeõcient of the polynomial Qσ−1(t), so that Qσ−1(t)
can be rewritten as∑i≥1 n

(σ−1)
i t i − 1:

Qσ(t) = [kσ](∑
i≥1

n(σ−1)
i t i) − [kσ] + R(t)

= (
6

∑
i=0

t i +
kσ−1

∑
i=7

t i)(∑
i≥1

n(σ−1)
i t i) − ( 1 +

5

∑
i=1

t i +
kσ−1

∑
i=6

t i) + R(t)

= (∑
i≥1

n(σ−1)
i t i) + (∑

i≥2
n(σ−1)

i−1 t i) + (∑
i≥3

n(σ−1)
i−2 t i) + (∑

i≥4
n(σ−1)

i−3 t i)

+ (∑
i≥5

n(σ−1)
i−4 t i) + (∑

i≥6
n(σ−1)

i−5 t i) + (∑
i≥7

n(σ−1)
i−6 t i)

+
kσ−1

∑
j=7
∑
i≥1

n(σ−1)
i t i+ j + {R(t) −

kσ−1

∑
i=6

t i} −
5

∑
i=1

t i − 1,

and hence we obtain the following inequality and identities once we represent Qk(t)
as∑ n(σ)

i t i − 1:

n(σ)
i ≥ 0 (i ≥ 6),

n(σ)
5 = n(σ−1)

5 + n(σ−1)
4 + n(σ−1)

3 + n(σ−1)
2 + n(σ−1)

1 − 1,

n(σ)
4 = n(σ−1)

4 + n(σ−1)
3 + n(σ−1)

2 + n(σ−1)
1 − 1,

n(σ)
3 = n(σ−1)

3 + n(σ−1)
2 + n(σ−1)

1 − 1,

n(σ)
2 = n(σ−1)

2 + n(σ−1)
1 − 1,

n(σ)
1 = n(σ−1)

1 − 1 = n(1)
1 − (σ − 1).

By the result of Step 1,

n(σ)
1 = n(1)

1 − (σ − 1) = F − 4 − σ .

_erefore, the coeõcients of Qσ(t) except its constant term are non-negative and
the constant term of Qσ(t) is equal to −1 if P satisûes the inequality F − 4 ≥ k. _ere-
fore, by Proposition 2.6, the growth rate of Pσ is a Perron number.

3.3 The Proof of Theorem A

By _eorem 3.3, condition (3.6) is suõcient in order to deduce that the growth rate
of P is a Perron number when F − 4 ≥ σ . First, suppose that P is a non-compact
hyperbolic Coxeter polyhedron with F ≥ 7. Since P has at least 1 cusp, we get the
inequality

v2,2,2,2 + e3 + e4 + e5 + e6 + F − 8 ≥ 1 + 7 − 8 = 0
which allows us to conclude. _erefore, it remains to consider non-compact Coxeter
polyhedra with F = 5 or F = 6 faces and that do not satisfy inequality (3.6) of _eo-
rem 3.3. Figure 3 shows all possible combinatorial structures of acute-angled convex
polyhedra with 4, 5 or 6 faces [2].
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(ⅱ)

(ⅲ)
(ⅳ)

(ⅴ) (ⅵ)

(ⅶ)

(ⅸ)

(ⅷ)

(ⅹ)

(ⅰ)

Figure 3

We use Andreev’s _eorem (see Section 3.2) in order to describe a non-compact
hyperbolic Coxeter polyhedron with 5 or 6 faces that does not satisfy inequality (3.6).
By_eorem3.2 andAndreev’s_eorem, it is not diõcult to see that a non-compact

ûnite volume hyperbolic Coxeter polyhedron P with 5 or 6 faces and with at least one
π
k -edge for k ≥ 7 has to be of combinatorial type (ii), (iv), (v), (viii), (ix), (x). If
the combinatorial structure of P is (viii), P has 2 cusps of type (2, 2, 2, 2), and if the
combinatorial structure is (ix) or (x), P has at least one of cusps of type (2, 3, 6) or
(2, 4, 4) or (3, 3, 3). Hence, inequality (3.6) holds for polyhedra P of type (viii), (iv),
or (x), and by _eorem 3.3, their growth rates are Perron numbers.
Consider ûnally Coxeter polyhedra P of type (ii), (iv), or (v). First and by means

of _eorem 3.2, we determine which edges of P subject to (ii), (iv), or (v) can be of
the form π

k for k ≥ 7. In this way, we can deduce that each such polyhedron P results
from opening cusps of type (2, 2, 2, 2) as shown in Figure 4.

In Figure 4, labels on edges mean the dihedral angles and k, k1 , k2 ≥ 7. If the
inequality (3.6) does not hold for the case of (iv) or (v), all of the dihedral angles
other than π

k1
, π
k2
are π

2 , since v2,2,2,2 = 1.

https://doi.org/10.4153/CMB-2017-052-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-052-5


Growth Rates of 3-dimensional Hyperbolic Coxeter Groups are Perron Numbers 419

k

→

(iii) (ii)

(vii)

(viii)

(v) (iv)

←

← ←

k1

k1 k1

k2
k2

Figure 4

Proposition 3.6 Suppose that the combinatorial structure of P is (iv) or (v). _en the
growth rate of P is a Perron number.

Proof By means of Steinberg’s formula (see _eorem 2.5), we can calculate the
growth function fS(t) of P as follows:

1
fS(t)

= 1 − 6t
[2] +

9t2

[2 ; 2] +
tk1

[2 ;m1]
+ tk2

[2 ; k2]
− 2t3

[2 ; 2 ; 2] −
2tk1+1

[2 ; 2 ; k1]
− 2tk2+1

[2 ; 2 ; k2]

=
(t − 1){(2t + 1)[k1 ; k2] − (t + 1)([k1] + [k2])}

[2 ; 2 ; 2 ; k1 ; k2]
.

Let Q(t) ∶= (2t+ 1)[k1 ; k2]−(t+ 1)([k1]+[k2]). We can assume that k1 ≥ k2 without
loss in generality.

If k1 = k2, Q(t) can be rewritten as,

Q(t) = [k1]{(2t + 1)[k1] − (2t + 2)}

= [k1](2
k1−1

∑
i=0

t i+1 +
k1−1

∑
i=0

t i − 2t − 2)

= [k1](2tk1 + 3tk1−1 + 3tk1−2 + ⋅ ⋅ ⋅ + 3t2 + t − 1).
If k1 > k2, Q(t) can be rewritten as

Q(t) = (2t + 1){(tk1−1 + ⋅ ⋅ ⋅ + tk2)[k2] + [k2]2}

− (t + 1){(tk1−1 + ⋅ ⋅ ⋅ + tk2) + 2[k2]}

= (2t + 1)(tk1−1 + ⋅ ⋅ ⋅ + tk2)[k2] − (t + 1)(tk1−1 + ⋅ ⋅ ⋅ + tk2)
+ [k2]{(2t + 1)[k2] − (2t + 2)}

= [k1](2tk2 + 3tk2−1 + ⋅ ⋅ ⋅ + 3t2 + t) + t(tk1−1 + ⋅ ⋅ ⋅ + tk2) − [k2].
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Figure 5

By the above calculation, the coeõcients of Q(t) except its constant term are non-
negative.

_erefore, we can apply Proposition 2.6 to conclude that the growth rate is a Perron
number.

It remains to study the growth rates of non-compact Coxeter triangular prisms P
(see Figure 4). Since P has at least one vertex at inûnity, P has precisely one π

k -edge for
k ≥ 7. By contraction of this edge to a vertex of type (2, 2, 2, 2) (see _eorem 3.2), P
deforms into exactly one among the hyperbolic Coxeter pyramid P̂ which have been
entirely classiûed by Tumarkin [17]. In this way, we can deduce a precise conûguration
for P (see Figure 5) and prove the following result.

Proposition 3.7 Suppose that P is a Coxeter triangular prism and P does not satisfy
the inequality (3.6). _en P has the dihedral angles as in Figure 5, and the growth rate
of P is a Perron number.

Proof
Case (I): By means of Steinberg’s formula, we can calculate the growth function fS(t)
of P, and hence the growth function is written as

1
fS(t)

= (t − 1)(2tk+2 + 3tk+1 + 4tk + ⋅ ⋅ ⋅ + 4t4 + 3t3 + t2 − 1)
[2 ; 2 ; 4 ; k] .

Case (II):_e growth function is calculated in the same manner:

1
fS(t)

= R(t)
[2 ; 2 ; 2 ; 3 ; 6 ; k] ,

where

R(t) = 2tk+8 + 5tk+7 + 7tk+6 + 7tk+5 + 6tk+4 + 5tk+3 + 3tk+2 + tk+1

− t9 − 4t8 − 7t7 − 8t6 − 7t5 − 6t4 − 4t3 − t2 + t + 1.
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_erefore fS(t) can be rewritten as

1
fS(t)

=

(t − 1)(2tk+4 + 3tk+3 + 4tk+2 + 5tk+1 + 6tk + ⋅ ⋅ ⋅ + 6t6 + 5t5 + 3t4 + 2t3 + t2 − 1)
[2 ; 2 ; 6 ; k]

Hence, we can apply Proposition 2.6 to conclude that the growth rate is a Perron
number.

Proof of_eorem A Let P be a non-compact hyperbolic Coxeter polyhedron hav-
ing at least one dihedral angle of the form π

k for some integer k ≥ 7 and let σ be
the number of π

k -edges of P with k ≥ 7. By _eorem 3.1, P satisûes the inequality
σ ≤ F − 3. If the equality σ = F − 3 holds for P, by combining with the observation
in Section 3.1, the growth rate of P is a Perron number. If the inequality σ ≤ F − 4
holds for P, there are two cases that can be considered. First, the case where P sat-
isûes inequality (3.6). In this case, by _eorem 3.3, the growth rate of P is a Perron
number. Second, the case where P does not satisfy the inequality (3.6). In this case,
P has to be of combinatorial type (ii), (iv), or (v) (see Figure 3). By Proposition 3.6
(resp. Proposition 3.7), if the combinatorial structure of P is (iv) or (v) (resp. (ii)), the
growth rate of P is a Perron number.

Acknowledgment _eauthor thanks Professor Yohei Komori for helpful comments
when calculating the growth functions of non-compact Coxeter polyhedra with some
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