A note on Hadamard arrays

Joan Cooper

Let v = mk + 1 be a prime power; we show for m even it is not possible to partition the Galois field GF(v) to give four (0, 1, -1) matrices X_1, X_2, X_3, X_k satisfying:

(i)
$$X_i * X_j = 0$$
, $i \neq j$, $i, j = 1, 2, 3, 4$;

(ii)
$$\sum_{i=1}^{k} X_i$$
 is a (1, -1) matrix;

(iii)
$$\sum_{i=1}^{l_i} X_i X_i^T = vI_v.$$

Thus this method of partitioning the Galois field GF(v), into four matrices satisfying the above conditions, cannot be used to find Baumert-Hall Hadamard arrays BH[4v] for $v=9,\ 11,\ 17,\ 23,\ 27,\ 29,\ \dots$

Terminology and definitions

A $4n \times 4n$ Hadamard array, H, is a square matrix of order 4n with elements $\pm A$, $\pm B$, $\pm C$, $\pm D$ each repeated n times in each row and column. Assuming the indeterminants A, B, C, D commute, the row vectors of H must be orthogonal.

The Hadamard product, \star , of two matrices $A=(a_{ij})$ and $B=(b_{ij})$ which are the same size is given by

$$A * B = (a_{i,j}b_{i,j}) ..$$

The identity matrix will be represented as I and the $v \times v$ matrix Received 1 August 1973. Communicated by Jennifer R.S. Wallis.

of all 1's will be J .

The symbol & represents the result from adjoining two sets with repetition remaining; that is,

$$\{x_1, \ldots, x_s\} \& \{y_1, \ldots, y_t\} = [x_1, \ldots, x_s, y_1, \ldots, y_t]$$

Where repetition occurs the elements resulting from such an adjunction will be called a collection and denoted by square brackets [].

A binary composition A of two sets will be defined as

$$A_1 \wedge A_2 = \begin{bmatrix} x_1, \dots, x_8 \end{bmatrix} \wedge \begin{bmatrix} y_1, \dots, y_t \end{bmatrix}$$
$$= \begin{bmatrix} x_1 + A_2, \dots, x_8 + A_2 \end{bmatrix}.$$

Let $v = mk + 1 = p^{\alpha}$ (a prime power). Let x be a primitive element of F = GF(v) and write $G = \{z_1, \ldots, z_{v-1}\}$ for the multiplicative cyclic group of order v - 1 generated by x.

Choose the cosets C_i of G by

$$C_i = \{x^{kj+i} : 0 \le j \le m-1\} \quad 0 \le i \le k-1$$
,

where the order of C_{i} is m and its index k.

Now let $D_i = (d_{jl})$ be the incidence matrix of the coset C_i . $D_i = (d_{jl})$ is defined as

$$d_{jl} = \begin{cases} 1 & \text{if } z_{l} - z_{j} \in C_{i} \\ 0 & \text{otherwise.} \end{cases}$$

We will denote D_i by $\begin{bmatrix} C_i \end{bmatrix}$.

As $G = C_0 \cup C_1 \cup \ldots \cup C_{k-1} = F \setminus \{0\}$, its incidence matrix is J - I and the incidence matrix of F is J.

Therefore the incidence matrix of $\{0\}$ will be I .

 $X = \begin{bmatrix} k-1 \\ & b & C \\ s=0 \end{bmatrix}$ will mean the matrix X which is a summation of the incidence matrices of the cosets. That is

(1)
$$X = \begin{bmatrix} k-1 \\ & b_s C_s \end{bmatrix} = \sum_{s=0}^{k-1} b_s [C_s] ,$$

 b_{8} \in Z , the integers. Note from the definition of a binary composition

$$\{0\} \wedge C_{i} = C_{i}$$
.

We will define the transpose of a coset $~\mathcal{C}_{oldsymbol{i}}^{T}~$ by:

$$C_{i} = \{x^{kj+i} : 0 \le j \le m-1\}$$
,

$$c_{i}^{T} = \{-x^{kj+i} : 0 \le j \le m-1\}$$
.

LEMMA 1 [1]. If m is even, $C_i^T = C_i$; and if m is odd, $C_i^T = C_{i+\frac{1}{2}k} \ .$

THEOREM 2 [1]. If C_i and C_l are two cosets of order m and index k of the group G, then the binary composition of C_i and C_l is given by:

(i)
$$C_i \wedge C_l = \begin{cases} k-1 \\ k & a \\ k & s \end{cases}$$
 if zero does not occur;

(ii)
$$C_i \wedge C_l = m\{0\} & & a_8 C_8 & if zero does occur;$$

where the a are integers giving multiplicities.

LEMMA 3. If

(i) zero does not occur in $C_i \wedge C_l$ then

$$\sum_{g=0}^{k-1} a_g = m ;$$

(ii) zero does occur in $C_i \wedge C_l$ then

$$\sum_{s=0}^{k-1} a_s = m - 1 .$$

LEMMA 4 [1].
$$C_i \wedge C_l = m\{0\}$$
 & & a_sC_s if and only if $C_l = C_i^T$.

LEMMA 5 [1]. If

(i)
$$C_{l} \neq C_{i}^{T}$$
 in $C_{i} \wedge C_{l}$ then

(ii)
$$C_1 = C_i^T$$
 in $C_i \wedge C_1$ then

Method of partitioning GF(v)

The incidence matrices $\begin{bmatrix} \mathcal{C}_i \end{bmatrix}$ of the cosets \mathcal{C}_i and the identity matrix I are partitioned into four (0, 1, -1) matrices \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{X}_3 , \mathbf{X}_4 such that

$$X_{i} * X_{j} = 0$$
 , $i \neq j$, i , $j = 1$, 2 , 3 , 4 ;
$$\sum_{i=1}^{l_{i}} X_{i} X_{i}^{T} = v I_{v}$$

We show for m even with $X_i * X_j = 0$ it is not possible to get $\sum_{i=1}^{l_4} X_i X_i^T = v I_v \ .$

THEOREM 6. Let $v = mk + 1 = p^{\alpha}$ (p a prime) with m even. Further suppose C_i are cosets of order m defined above.

Let

$$X_{i} = \begin{bmatrix} k-1 \\ & a_{i} & c_{s} \\ s=0 & i_{s} \end{bmatrix}$$
, $i = 1, 2, 3, 4$,

and suppose exactly one of a_{1_s} , a_{2_s} , a_{3_s} , a_{4_s} is 1 or -1 and I

belongs to one of the X_i 's .

Then

$$\sum_{i=1}^{l_i} X_i X_i^T = vI_v$$

is not possible.

Proof. Without loss of generality let I occur in X_1 .

$$X_{1} = \begin{bmatrix} k-1 & & & \\ & & a & C \\ s=0 & 1_{s} & s & 0 \end{bmatrix}$$

$$= \sum_{s=0}^{k-1} a_{1_{s}} \begin{bmatrix} C_{s} \end{bmatrix} + I \quad \text{from (1)};$$

for i = 2, 3, 4,

$$X_i = \sum_{s=0}^{k-1} a_{i_s} [C_s] .$$

Since m is even from Lemma 1,

$$C_i^T = C_i$$
;

thus $\mathbf{X}_{i}\mathbf{X}_{i}^{T}$ becomes \mathbf{X}_{i}^{2} for all i and we have

$$\begin{split} \chi_1^2 &= \left(\sum_{s=0}^{k-1} a_{1_s} [c_s] + I\right)^2 \;, \\ \chi_i^2 &= \left(\sum_{s=0}^{k-1} a_{i_s} [c_s]\right)^2 \;, \quad i \neq 1 \;, \\ \chi_1^2 &= \sum_{s=0}^{k-1} a_{1_s}^2 [c_s]^2 + 2 \sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{1_s} a_{1_p} [c_s] [c_p] + 2 \sum_{s=0}^{k-1} a_{1_s} [c_s] + I \;. \end{split}$$

For i = 2, 3, 4,

$$x_{i}^{2} = \sum_{s=0}^{k-1} a_{i_{s}}^{2} \left[c_{s} \right]^{2} + 2 \sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{i_{s}} a_{i_{p}} \left[c_{s} \right] \left[c_{p} \right] .$$

Now

$$\sum_{i=1}^{k} x_{i} x_{i}^{T} = \sum_{i=1}^{k} x_{i}^{2}$$

$$= \sum_{s=0}^{k-1} \left[c_{s} \right]^{2} \text{ from the conditions of the theorem}$$

$$+ 2 \sum_{i=1}^{k} \left(\sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{i} a_{i} p_{s} \left[c_{s} \right] \left[c_{p} \right] \right) + 2 \sum_{s=0}^{k-1} a_{1} \left[c_{s} \right] + I;$$

$$\sum_{i=1}^{k} x_{i}^{2} = kmI + (m-1) \sum_{s=0}^{k-1} \left[c_{s} \right] \text{ from Lemma 5}$$

$$+ 2 \sum_{i=1}^{k} \left(\sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{i} a_{i} p_{s} \left[\sum_{j=0}^{k-1} b_{j} \left[c_{j} \right] \right] \right) \text{ by Theorem 2 (i)}$$

$$(b_{j}' \text{s depend on } s \text{ and } p)$$

$$+ 2 \sum_{s=0}^{k} a_{1} \left[c_{s} \right] + I ,$$

$$(2) \sum_{i=1}^{k} x_{i}^{2} = (km+1)I + (m-1) \sum_{s=0}^{k-1} \left[c_{s} \right] + 2 \sum_{j=0}^{k-1} d_{j} \left[c_{j} \right] ,$$

where d_{j} comes from collecting all the cosets together from the third and fourth terms of the equation above.

It can be easily seen that it is not possible to get $\sum_{i=1}^{k} X_i^2 = vI_v$ as m-1 is odd and the 2 in front of the last term of equation (2) gives all the cosets from this term an even number of times.

For v=9, 11, 17, ..., m cannot be odd, by a result in [2]. We have just shown m cannot be even. So it is impossible to partition GF(v) by the method of [2] in order to construct Hadamard arrays, for those values of v.

References

[1] Joan Cooper, "A binary composition for collections and sets", Proc. First Austral. Conf. Combinatorial Math., Newcastle, 1972, 145-161 (TUNRA, Newcastle, 1972).

- [2] Joan Cooper and Jennifer Wallis, "A construction for Hadamard arrays", Bull. Austrat. Math. Soc. 7 (1972), 269-277.
- [3] David C. Hunt and Jennifer Wallis, "Cyclotomy, Hadamard arrays and supplementary difference sets", Proc. Second Manitoba Conf. Numerical Mathematics, October 1972, 351-381 (Congressus Numerantium, 7. University of Manitoba, Winnipeg, 1972).
- [4] Thomas Storer, Cyclotomy and difference sets (Lectures in Advanced Mathematics, 2. Markham, Chicago, Illinois, 1967).

Department of Mathematics, University of Newcastle, Newcastle, New South Wales.