DISCONTINUOUS FUNCTIONS
WITH THE DARBOUX PROPERTY

Israel Halperin
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1. Introduction. If f{(x) is real-valued and continuous, it
has the property that it takes on all intermediate values when it
passes from one value to another. This means that whenever
f(x1) and f(x;) are different and u is any number between them,
then f(x) = u for at least one x between x] and x2 . We shall
call this the Darboux property.

Until the work of Darboux in 1875 some mathematicians
believed that this property actually implied continuity of f(x).
Darboux showed that there are discontinuous functions with the
property of Darboux. He proved the theorem, which we shall
call Darboux's theorem, that this property holds for every
derivative function and he constructed a derivative function
which is discontinuous for all rational x. 1)

Now how badly behaved can a function be and still have
the Darboux property? Darboux's function is Riemann-integrable
but later Volterra gave a derivative function which is not Rie-
mann-integrable. Then Lebesgue gave o function with the
Darboux property which is not a derivative function, and is
discontinuous for all x .3) More recently, the writer constructed
functions f(x) which have the Darboux property but which are not
Lebesgue measurable on any interval, and for which the equation

1) G. Darboux, Mémoire sur les fonctions discontinues,
Annales Scientifiques de 1'Ecole Normale Supérieure,
2¢€ série, 4 (1875), 57-112.

2) V. Volterra, Giornale de Battaglini, 1881.

3) H. Lebesgue, Lecgons sur l'intégration, (Paris, 1904).
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f(x) = u has, for every real u, a continuum number of solutions
in every interval, indeed in every perfect set 4) (necessary and

sufficient conditions for the Darboux property have been given
by Csaszar 5)).

This note reviews and comments on the examples given
by Darboux, Volterra, Lebesgue and the writer. In what fol-

lows the value zero is assigned by convention to the symbols
sin (-L) and cos(-'-)

2. The Example of Darboux. If the series Z -1 f,(x)
converges uniformly and the f,(x) are all derivative functxons,
then the sum function is also a derivative function. A proof of
this theorem which does not assume Riemann-integrability is

given by Lebesgue.

Now consider the function @(y) = y sin (1/y). The deriva-
tive (p(y) 2y sin (1/y) -cos (1/y) is defined for-all.y and has
a single point of discontinuity, namely y = 0. Darboux's con-
struction ) is to set f(x)=Y °=°1 fa(x) where

(%) =3 dx{fﬂsm nTix)} = Tap(cos ntrx) {¢,(Y)}y=sin nwx

the a being arbitrary real constants with 2 llanl < o,

Since |[@/(y)| € 3 for |y| €1 it follows that f(x) is the sum of a
uniformly convergent series of derivative functions. Hence
f(x) is itself a derivative function and, by the theorem of Dar-
boux, has the Darboux property.

As for discontinuities, each fj(x) is discontinuous precisely
at the points x = m/n where m is an arbitrary integer. Hence,
at every irrational x, the fa(x) are all continuous and so is their
uniformly convergent sum f(x). Darboux states, without proof,

4) Israel Halperin, Discontinuous functions with the Darboux

property, American Mathematical Monthly 57 (1950),
539-540.

5) Israel Halperin, On the Darboux property, Pacific Journal
of Mathematics 5 (1955), 703-705.

6) Lebesgue, loc. cit., p. 85.

7) Darboux, loc. cit., p. 109.
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that f(x) is discontinuvus at every rational x. Let us examine
this statement.

Suppose x5 = p/q in lowest terms, q > 0. Then f,(x) is
continuous at Xp unless n = mq for some integer m; if n = mgq,
fmq(x) = Tra,mq(cos mqrx) { 2 sin mqmx sin (l/sin mqﬁx)}

+ Wamg(cos mqUx, -cos mgmwx) cos (1/sin mqmx)

+ Ty, qCcos mquxy{ -cos (1/sin mqmx) + cos (1/mqm(x-x,) )}
- Way,gCos MqMx, COs (1/mgm(x-x5)) -

Of these four terms, the first three are continuous at 3 and
bounded in absolute value by lamqi ; hence

[0} m
f(x) = {Iunction continuous at xo} - VZm:l amq(-lfcos(llmqw(x-xo))
Thus f(x) is continuous at x if and only if
Zmoil amgq (-1PCos(1/mt) —> 0Oast—>0.

®
Now if Zm=1(bm( < o, then, by actual integration,

Lo

(r+1)m
/r:( I Zmljl bm cos (nm‘l)! 2 du =(1T/2)Z 1:1 ‘bmlz

where N, r are any positive integers and the n, are different
integers. Hence

— 2
—_— N N
bdrr < u < (r+1)n'lZm=1 by cos(nmu)l 2 \/%2- =1 | bm‘
Choosing n,, = N!/m and setting t = (N!)u gives

_ N N 2
bdr(NUT < t < (z+1)(N!)T | Zene1 by cos(t/m)| > JEZmalbml

This implies
— o™

Thus > ey bm cos (1/mt)—> 0 as t —>0 if and only if all by,
are zero. So the f(x) of Darboux is discontinuous at x, if and
only if an#0 for at least one n which is a multiple of q, and is
discontinuous at all rational x if and only if, for every q,
some amq#0, in particular if all a,#0 .

A discontinuous derivative function similar to that of
Darboux but much easier to study would be the sum of any
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uniformly convergent series of discontinuous derivative functions
such that no two of them were discontinuous at the same point.
For example, since cos (1/x) is a derivative function, in fact

x

the derivative of / 2t sin (1/t) dt — x% sin (1/x) , it follows
o

that the function

g(x) = ZnO:I n~?% cos (1/(x-ap))

is a derivative function with discontinuities at the preassigned
arbitrary countable set of different points a;, a;, ... .

3. The example of Volterra. The example of Darboux
and the g(x) constructed in the preceding section, are both
uniformly convergent series of Riemann-integrable functions,
and hence themselves Riemann-integrable. Thus their points

of discontinuity are sets of zero Lebesgue measure. Volterra's
example of a discontinuous derivative function is not even
Riemann-integrable, its discontinuities forming a set of positive

Lebesgue measure.

Let € be any positive number < 1 and let P be a nowhere
dense perfect set whose complementary open set O has Lebesgue
measure less than £€ . An example of such a set P is this: let
ry, r2, ... be the rational numbers arranged as a sequence,
and let n be any positive irrational number < & . Define I; to
be the open interval (r; — /4, r| + 9/4) and by induction
define I, to be the empty set if r | is contained in a previously
defined I, (m < n), otherwise as the open interval (rp— dn,Tot én)

where 611: %min (lrn—rml —-ém,m =1,2,...,n-1; Q/Zn].

Choose O to be the set union of all I and P to be the comple-
ment of O . 8) '

Now let @(x) = x% sin (1/x) and construct a function F(x)
as follows: If x isin P let F(x) = 0; if x is in one of the
open intervals, say (a,b) , of which O is composed, let d be
the maximum number < 3(b-a) for which (d/dx){ @(x)} =0 and
define

8) For this type of construction in n-dimensional space, see
Hahn and Rosenthal, Set Functions, University of
New Mexico Press, 1948, p. 98, Theorem 8.2.8.
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F(x) = @(x-a) fora<x<a+d
F(x) = @(d) fora+d < x £ b-d
F(x) = @(b-x) for b-d < x< b .

The derivative F'(x) exists and satisfies |Fr(x)l < 3 for all x,

it is continuous at every x in O, and at every x in P

Iim F'(x+0) = lim F'(x-0) = 1 and lim F'(x+0) = lim F'(x-0) = 1.
Thus F!(x), which is Volterra's function, is a bounded derivative
function whose points of discontinuity form a set of positive
Lebesgue measure; in fact the points of continuity form a set of
arbitrarily small positive Lebesgue measure.

As suggested by Lebesgue, a derivative function can be
formed whose points of continuity actually have zerc Lebesgue
measure. Let P,, F (x) be respectively a perfect set and
Volterra function corresponding to € = 1/n , let ¢ be the set

e o]
union of the P,, and define a function h(x) = Zn:l an Fh{x)

o
where the a, are any real numbers satisfying anl {anl < o.

Then h{x) is the sum of a uniformly convergent series of deriva-
tive functions and hence itself a derivative function. As for
discontinuities, if xy is in ¢ and Pn, is the first P, containing
Xo » then

ng-1

B(x) - hixo) = & nol  an {Falx) - Fa(xo)}
+ TnZnor1 2n{Futo - Frlxo}+ an fF () - F (xo0)} -

When x->x, , the first sum —> 0, the second sum has absolute
value < anono+1 6]anl, and the last term has oscillation Zlanol .
Hence h(x) will be discontinuous at every x in ® it

- oo . _ -n
faml > 62 4 —my1lanl for all m, for example if ay = 1372 for all

n; the points of continuity of such an h(x) will form a set whose
Lebesgue measure is less than 1/n for all n, hence zero.

4. The example of Lebesgue. Every derivative function
f(x) = (d/dx) F(x) is the limit as n>w of the sequence of contin-

uous functions n {F(x +1/n) — F(x)} » and therefore, by Baire's
Theorem, must have some points of continuity, indeed the points

of continuity must be dense. 9) Lebesgue has given the following

9) See Lebesgue, loc. cit., p. 92.
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example of a function with the Darboux property which has no
points of continuity and hence is of course not a derivative func-
tion.

Let x be written as a non-terminating decimal
I.ajaz...ap... . If thedecimal .aja3...a,, .- is not
periodic, set f(x) = 0; if it is periodic and the first period com-
mences with a1, set f(x) = .azpazp10a004 404 - This 1(Xx),
which is Lebesgue's function, 10) satisfies 0 < f(x) € 1 for all
x and in every interval, no matter how small, takes on every
value between 0 and 1 inclusive. Hence it has the Darboux
property but is discontinuous for all x.

If for periodic .aja3....ap,_1.-...f(x) had been defined

as .agnd4n42- - 34n42r- - - plus the integer azpaz io...agn 2
(respectively, plus the integer (-1)® aj a5,42...34,.2) the

values of f(x), on every interval, would have consisted of all
non-negative numbers (respectively, all real numbers).

In each case, the number of solutions of the equation
f(x) = u for given u with 0 € u € 1 (respectively, @ € u< ®,
respectively, —® <u< + o) and u # 0,is countably infinite, and
countably infinite on every interval no matter how small. Again,
the x with x = I.ajaza3.... for any fixed periodic sequence

ajaszag... , form a Lebesgue null set. Since there is only a
184345 g

countably infinite set of such periodic sequences, it follows that
f(x) = 0 except on a Lebesgue null set. :

5. Further Examples 4) We now construct a function,
which, like Lebesgue's f(x), has the Darboux property and is
discontinuous for all x. But this function will take on every
real number as value a continuum number of times on every
interval; it will be non-Lebesgue measurable on every measur-
able set of positive measure, and hence will not coincide with
a continuous or even derivative function on any measurable set
of positive measure.

10) Lebesgue, loc. cit., p. 90. This example is cited in L.M.
Graves, The Theory of Functions of Real Variables,
McGraw-Hill, 1946, p. 65. Lebesgue uses this
example to show that the sum of two functions need
not have the Darboux property though each of the
functions has it.
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Using the axiom of choice, G. Hamel has constructed a
basis for all real numbers. 11) This is a transfinite sequence
of continuum many real numbers aj,az;... ;axs.-- (¥ <L1)

such that every real number x can be expressed in one and only

way as X = Z“r.x ax With rational coefficients ro of which only

a finite number differ from zero. Such a basis can be rearranged
into a two-fold sequence

by,by, e sbgse.s (<L) cyiCsent,Cxs0 e (X< L)
Now define the function h(x) by setting h(x) = Z,( Ty 2x fOr
x = Zx Ty by + ZF sp ca . For any interval (a,b) and any
u = Z“ Ix a2« We will have h(x) = uif x = Z“ru b + ZF s Ca
for all choices of the sg ; in particular if only one sg # 0, say
Spo and it is chosen so that a- 2_, Ty by < Sg. Cm@, < b- Zar“b,(.

Hence h(x) will equal u for continuum many x in (a,b).

If h(x) were Lebesgue measurable on any measurable set
E of positive Lebesgue measure, then for some number K the
inequality h(x) < K would hold on a set of positive measure, and
this would imply that h(x) is continuous, since it satisfies the
functional relation h(x+y) = h(x) + h(y) for all x,y. 12) But h(x)
is clearly not continuous, so it cannot be even measurable on
any set of positive measure.

Using another construction, we can define f(x) so as to be
non-measurable on every set of positive measure and take on
every real number as value a continuum number of times not
only in every interval but even in every perfect set, including
those of zero Lebesgue measure. Let {) be the smallest ordinal
number for which there are continuum ordinal numbers o < () .
Then, with the axiom of choice, the real numbers can be ar-
ranged as a transfinite sequence uj,up,...,ux,... (X < L0 ).

Since there are continuum many perfect sets, there exists, with

11) G. Hamel, Eine Basis aller Zahlen und die unstetigen
LYsungen der Funktionalgleichung: f(x+ y) = f(x)+ f(y),
Mathematische Annalen 60 (1905), 459-462.

12) A. Ostrowski, Uber die Funktionalgleichung der Exponential-
funktion und verwandte Funktionalgleichungen,

Jahresbericht der Deutschen Mathematiker Vereinigung
38 (1929).
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this LL , a sequence PPy By e (< £l ) in which each

perfect set appears continuum many times. Now for each «
define py by induction on o« , to be the first u not previously
selected which is contained in P . Such a u will exist since,
for each &, less than continuum u's will have been previously
selected and the perfect set Py contains continuum many num-
bers. This process of selection will select continuum many p's
from each perfect set P since each P appears continuum
many times as a Py , and the p's selected from different per-
fect sets will be mutually exclusive. 13) For each perfect set
let its selected p's be arranged as a double sequence (xxa ;
*x,B< {1 )and set h(xxpg) = ux - This h(x) will clearly take
on every real number as value a continuum number of times in
every perfect set. If h(x) were measurable on any set of posi-
tive measure, there would be a K such that the inequality

h(x) < K would hold on a set of positive measure, and hence on
some perfect subset of it. This contradicts the fact that h(x)
takes on all values on every perfect set so that h(x) cannot be
measurable on any set of positive measure.

13) This construction was used by W. Sierpinski and N. Lusin to
subdivide an interval into continuum many parts each
of exterior Lebesgue measure equal to the length of
the interval. See their paper in Comptes Rendus
(Paris) 165 (1917), 422-424.

2ueen's University
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