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1. Introduction. If f(x) is real-valued and continuous, it 
has the proper ty that it takes on all intermediate values when it 
pa s se s from one value to another. This means that whenever 
f(xj) and f(x^) a r e different and u is any number between them, 
then f(x) = u for at leas t one x between xj and X2 . We shall 
call this the Darboux proper ty . 

Until the work of Darboux in 1875 some mathematicians 
believed that this proper ty actually implied continuity of f(x). 
Darboux showed that there a r e discontinuous functions with the 
proper ty of Darboux. He proved the theorem, which we shall 
call Darboux1 s theorem, that this proper ty holds for every 
derivative function and he constructed a derivative function 
which is discontinuous for all rational x. *) 

Now how badly behaved can a function be and still have 
the Darboux proper ty? Darboux*s function is Riemann-integrable 
but la te r Volt e r r a gave a derivative function which is not Rie ­
mann- in tegrable . 2 ' Then Lebesgue gave <x function with the 
Darboux proper ty which is not a derivative function, and is 
discontinuous for all x . 3) More recent ly, the wr i te r constructed 
functions f(x) which have the Darboux proper ty but which a r e not 
Lebesgue measurab le on any in terval , and for which the equation 

1) G. Darboux, Mémoire sur les fonctions discontinues, 
Annales Scientifiques de l !Ecole Normale Supér ieure , 
2 e s é r i e , 4 (1875), 57-112. 

2) V. Vol te r ra , Giornale de Battaglini, 1881. 

3) H. Lebesgue, Leçons sur l ' intégrat ion, ( P a r i s , 1904). 
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f(x) = u has, for every real a, a continuum number of solutions 
in every interval, indeed in every perfect set 4 ' (necessary and 
sufficient conditions for the Darboux property have been given 
by C s a s z a r *)) . 

T h i s no te r e v i e w s and c o m m e n t s on t h e e x a m p l e s g iven 
by D a r b o u x , V o l t e r r a , L e b e s g u e and t h e w r i t e r . In wha t f o l ­
lows the va lue z e r o i s a s s i g n e d by conven t ion to t h e s y m b o l s 
s i n (£) and cos (o") . 

^ — 00 

2. The E x a m p l e of D a r b o u x . If t h e s e r i e s £ _ n = 1 f n ( x ) 
c o n v e r g e s un i fo rmly and the fn(x) a r e a l l d e r i v a t i v e f u n c t i o n s , 
t h e n the s u m funct ion i s a l s o a d e r i v a t i v e func t ion . A p r o o f of 
t h i s t h e o r e m which d o e s not a s s u m e R i e m a n n - i n t e g r a b i l i t y i s 
g iven by L e b e s g u e . ' 

Now c o n s i d e r t he func t ion Ç?(y) = y ^ s i n ( 1 /y) . The d e r i v a ­
t i ve (p(y) = 2y s in (1 /y ) - c o s (1/y) i s def ined fo r a l l y and h a s 
a s ing le po in t of d i s c o n t i n u i t y , n a m e l y y = 0. D a r b o u x 1 s c o n ­
s t r u c t i o n ?) i s to s e t f(x) = X n = i fn(x) w h e r e 

fn<x> = ï i r f 9 ( s i n n-frx>) = francos mrx) {<p'(y)}y=sin n i r x 

t he a n be ing a r b i t r a r y r e a l c o n s t a n t s wi th Z ^ T 11 an{ < oo. 
S ince |<p'(y)| ^ 3 for | y | 4 1 i t fo l lows t h a t f(x) i s t he s u m of a 
un i fo rmly c o n v e r g e n t s e r i e s of d e r i v a t i v e f u n c t i o n s . H e n c e 
f(x) i s i t s e l f a d e r i v a t i v e funct ion and , by the t h e o r e m of D a r ­
boux , h a s the D a r b o u x p r o p e r t y . 

As for d i s c o n t i n u i t i e s , e a c h fn(x) i s d i s c o n t i n u o u s p r e c i s e l y 
at t h e po in t s x = m / n w h e r e m i s an a r b i t r a r y i n t e g e r . H e n c e , 
a t e v e r y i r r a t i o n a l x , t he fn(x) a r e a l l con t inuous and so i s t h e i r 
un i fo rmly c o n v e r g e n t s u m f(x). D a r b o u x s t a t e s , wi thout proof , 

4) I s r a e l H a l p e r i n , D i s c o n t i n u o u s func t ions wi th t he D a r b o u x 
p r o p e r t y , A m e r i c a n M a t h e m a t i c a l Month ly 57 (1950) , 
5 3 9 - 5 4 0 . 

5) I s r a e l H a l p e r i n , On the D a r b o u x p r o p e r t y , P a c i f i c J o u r n a l 
of M a t h e m a t i c s 5 (1955) , 7 0 3 - 7 0 5 . 

6) L e b e s g u e , l o c . c i t . , p . 8 5 . 

7) D a r b o u x , l o c . c i t . , p . 109. 
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that f(x) is discontinuous at every rational x. L»et us examine 
this statement. 

Suppose x0 = p/q in lowest terms, q > 0. Then fn(x) is 
continuous at xQ unless n = mq for some integer m; if n = mq, 

fmq(x) = TTaTnq(cos mqTTx) { 2 sin mqTTx sin (1/sin mqTTx)} 

+ ïïamq(cos mq7ïx0 -cos mqnx) cos (1/sin mq7Tx) 

+ TTamqcos mqtrx0{ -cos (1/sin mqTfx) -i- cos (l/mq1T(x-x0) )j 

" tfamqcos mqTrx0 cos (l/mqlT(x-x0) ) . 

Of these four terms, the first three are continuous at xQ and 
bounded in absolute value by | a m q | ; hence 

f(x) = {function continuous at x0j- - Tr2_m=l am q(-l) cos(l/mq7r(x-x0)) 

Thus f(x) is continuous at xQ if and only if 

^ r r ï l ^mq ( - l ^ o s U / m t ) - > 0 a s t ^ 0 . 

Now if 2L m= 11 "km I < OD, then, by actual integration, 

rlf JTTl I ^ — m = l k*11 c o s 

(nma)| 2 du =(Tr/2)Zm=l I b j 2 

whejrê N, r are any positive integers and the n m are different 
integers. Hence 

bdrlf £ u £ (r+l)TrlXm=l bm cos(nmu)| > ̂ i ^ - m ^ l ( bml 

Choosing i ^ = Ni /m and setting t = (Ni )u gives 

bdr(N!)TT U 4 (r+l)(Ni)T I 2-m==i b m cos(t/m) I > J^m^l^rd' 
This implies 

ÏÏmt.^ oolZm=l b m cos(t/m)l ^ V i ^ - m = l I bnJZ -

Z oo 
m=l ^m c o s (1/mt) —^ 0 as t ->0 if and only if all b m 

are zero. So the f(x) of Darboux is discontinuous at xQ if and 
only if an^0 for at least one n which is a multiple of q, and is 
discontinuous at all rational x if and only if, for every q, 
some amq#0, in particular if all an/0 . 

A discontinuous derivative function similar to that of 
Darboux but much easier to study would be the sum of any 
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uniformly convergent series of discontinuous derivative functions 
such that no two of them were discontinuous at the same point. 
For example, since cos (1/x) i s a derivative function, in fact 

the derivative of / 2t sin (1/t) dt — xT sin ( 1/x) , it follows 
o 

that the function 

g(x) = 2 1 00
1 n"2 cos ( l / (x-a n ) ) 

— n=l 
is a derivative function with discontinuities at the preassigned 
arbitrary countable set of different points a^, a^, . . . . 

3- The example of Volterra. The example of Darboux 
and the g(x) constructed in the preceding section, are both 
uniformly convergent series of Riemann-integrable functions, 
and hence themselves Riemann-integrable. Thus their points 
of discontinuity are sets of zero Lebesgue measure. Volterra1 s 
example of a discontinuous derivative function is not even 
Riemann-integrable, its discontinuities forming a set of positive 
Lebesgue measure. 

Let £ be any positive number 4 1 and let P be a nowhere 
dense perfect set whose complementary open set O has Lebesgue 
measure l e s s than £ . An example of such a set P i s this: let 
r j , r£, . . . be the rational numbers arranged as a sequence, 
and let i£ be any positive irrational number < £, . Define 1̂  to 
be the open interval (rj — T^/4 , r^ + 7 / 4 ) and by induction 
define In to be the empty set if r n i s contained in a previously 
defined I m (m < n), otherwise as the open interval (rn—5n , rn+ôn) 

where ^ = \ min [ | r n - r m | - - O m , m = 1 , 2 , . . . , n - l ; 7- /2n ] . 
Choose O to be the set union of all I n and P to be the comple­
ment of O . 8) 

Now let Ç>(x) = x^ sin (1/x) and construct a function F(x) 
as follows: If x is in P let F(x) = 0 ; if x i s in one of the 
open intervals, say (a,b) , of which O is composed, let d be 
the maximum number ^ i(b-a) for which (d/dx) { <J?(x)} = 0 and 
define 

8) For this type of construction in n-dimensional space, see 
Hahn and Rosenthal, Set Functions, University of 
New Mexico P r e s s , 1948, p. 98, Theorem 8 , 2 . 8 . 
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F(x) = <?>(x-a) for a < x < a + d 
F(x) = Cp(d) for a + d ^ x 4 b-d 
F(x) = 9(b-x) for b-d < x < b . 

The derivative F !(x) exists and satisfies jF^x)! ^ 3 for al l x, 
it is continuous at every x in O, and at every x in P 
ï ïm F!(x+0) = ï hn F !(x-0) = 1 and iim. F!(x+0) = lim F^x-O) = - 1 , 
ThusF !(x) , which is Vol te r ra ' s function, is a bounded derivative 
function whose points of discontinuity form a set of positive 
Lebesgue measu re ; in fact the points of continuity form a set of 
a rb i t r a r i ly small positive Lebesgue m e a s u r e . 

As suggested by Lebesgue, a derivative function can be 
formed whose points of continuity actually have zero Lebesgue 
m e a s u r e . Let P n , Fn(x) be respectively a perfect set and 
Vol ter ra function corresponding to £ = 1/n , let <P be the set 

union of the Pn> and define a function h(x) = £_ _, a n F^(x) 

n _ i J a n J < oo. 

Then h(x) is the sum of a uniforixily convergent se r ies of der iva­
tive functions and hence itself a derivative function. As for 
discontinuit ies , if x 0 i s in <P and P n o i s the f i rs t P n containing 
x 0 , then 

h(x) - h(xQ) = Z n ° l a n {Fn(x) - F^{XQ)) 

+ £ n = n 0 + l an{Frî(x) - F ^ x 0 ) } + a ^ F ^ x ) - F ^ ) } . 

When x->x 0 , the f irs t sum - > 0 , the second sum has absolute 
value ^ ^Ln=n0+1 6 | a n | » 3-n<^ t n e * a s t t e r m has oscillation 2 | a n | . 
Hence h(x) will be discontinuous at every x in (P if 
]amJ > 6y n = T n + i l a n | for all m , for example if a n = 1 3 " n for all 
n; the points of continuity of such an h(x) will form a set whose 
Lebesgue m e a s u r e is l e s s than 1/n for all n, hence ze ro . 

4- The example of Lebesgue. Every derivative function 
f(x) = (d/dx) F(x) is the l imit as n->oo of the sequence of contin­
uous functions n { F(x + 1/n) — F{x)} , and therefore , by B a i r e ' s 
Theorem, must have some points of continuity, indeed the points 
of continuity must be dense . 9) Lebesgue has given the following 

9) See Lebesgue, loc . cit . , p . 92. 
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example of a function with the Darboux proper ty which has no 
points of continuity and hence is of course not a derivat ive func­
tion. 

Let x be wri t ten as a non-terminating decimal 
I.a]>a2« • . a n . . . . If the decimal . a j ^ . . . a ^ . ^ . • • is not 
per iodic , set f(x) = 0; if it is periodic and the f i rs t period com­
mences with a2n_i> set f(x) = . a-2na2n+2a2n+4* * • * This f(x), 
which is Lebesgue* s function, 10) satisfies 0 $ f(x) ^ 1 for all 
x and in every in terval , no ma t t e r how smal l , takes on every 
value between 0 and 1 inclusive. Hence it has the Darboux 
proper ty but is discontinuous for all x. 

If for periodic « a ^ 3 . . . - a 2 n - l - • • • »*(x) had been defined 
as . a 4 n a 4 n + 2 . • -a4n+2r< • • P l a s t h e integer a 2 n a 2 n + 2 - • - a 4 n - 2 
(respectively, plus the integer ( - l ) n a2n a2n+2# • *a4n-2) *ke 
values of f(x), on every in terval , would have consisted of all 
non-negative numbers (respect ively, al l r ea l numbers ) . 

In each case , the number of solutions of the equation 
f(x) = u for given u with 0 < u ^ 1 (respect ively, Q ^ u < <x> , 
respect ively , —00 < u < + 00) and u ^ 0,is countable infinite, and 
countably infinite on every interval no mat te r how email . Again, 
the x with x = I . a j ^ a ^ . . . . for any fixed per iodic sequence 
a l a 3 a 5 * • • * form a Lebesgue null set . Since there is only a 

countably infinite set of such periodic sequences, it follows that 
f(x) = 0 except on a Lebesgue null set . 

5. Fur the r Examples 4 ' We now construct a function, 
which, like Lebesgue 's f(x), has the Darboux proper ty and is 
discontinuous for all x. But this function will take on every 
rea l number as value a continuum number of t imes on every 
interval; it will be non-Lebesgue measurab le on every m e a s u r ­
able set of positive m e a s u r e , and hence will not coincide with 
a continuous or even derivat ive function on any measurab le set 
of positive m e a s u r e . 

10) Lebesgue, loc . cit . , p . 90. This example is cited in L . M . 
Graves , The Theory of Functions of Real Var iab les , 
McGraw-Hil l , 1946, p . 65. Lebesgue uses this 
example to show that the sum of two functions need 
not have the Darboux proper ty though each of the 
functions has i t . 
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Using the axiom of choice, G. Hamel has constructed a 
bas is for all rea l numbers . H) This is a transfinite sequence 
of continuum many real numbers a^ ,a2>••• « a * , . . . ( <* < Q ) 
such that every rea l number x can be expressed in one and only 

way as x = JL^i* a* with rational coefficients r^ of which only 
a finite number differ from ze ro . Such a basis can be rea r ranged 
into a two-fold sequence 

b 1 , b 2 , . . . . ,b*, . . . ( o c < i l ) ; c j , c 2 ». . • » c*, . . . (<*< j f l ) . 

Now define the function h(x) by setting h(x) = 2L«* r^ a^ for 

x = 5Iccr<*k«>c + ^ g S p C A . For any interval (a,b) and any 

u = tEiu r* a^ we will have h(x) = u if x = ^ZL^r^ b ^ + Z l ^ s^ en 

for all choices of the SQ ; in par t icular if only one s« # 0, say 

s^o , and it is chosen so that a- 2EL* i* b^ < s^0 c ^ < b - X^rocb^ . 

Hence h(x) will equal u for continuum many x in (a ,b) . 

If h(x) were Lebesgue measurable on any measurable set 
E of positive Lebesgue m e a s u r e , then for some number K the 
inequality h(x) < K would hold on a set of positive m e a s u r e , and 
this would imply that h(x) is continuous, since it satisfies the 
functional relat ion h(x-fy) = h(x) + h(y) for all x ,y . *2) 3 ^ \x(x) 
is c lear ly not continuous, so it cannot be even measurable on 
any set of positive m e a s u r e . 

Using another construction, we can define f(x) so as to be 
non-measurable on every set of positive measure and take on 
every rea l number a s value a continuum number of t imes not 
only in every interval but even in every perfect set , including 
those of ze ro Lebesgue m e a s u r e . Le t - f l be the smallest ordinal 
number for which there a r e continuum ordinal numbers ot < _C1 . 
Then, with the axiom of choice, the rea l numbers can be a r ­
ranged as a transfinite sequence uj , u 2 , • . . , u^ , . . . ( oC < SL ). 
Since there a r e continuum many perfect se t s , there exis t s , with 

11) G. Hamel , Eine Bas is a l ler Zahlen und die unstetigen 
Lësungen der Funktionalgleichung: f(x + y) = f(x) + f(y), 
Mathematische Annalen 60 (1905), 459-462. 

12) A. Ostrowski , Uber die Funktionalgleichung der Exponential -
funktion und verwandte Funktionalgleichungen, 
Jahresber ich t der Deutschen Mathematiker Vereinigung 
38 (1929). 
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t h i s -O. , a s e q u e n c e P ^ , P->, . . . , 1 ^ , . . . ( o< < JD. ) in which e a c h 

p e r f e c t se t a p p e a r s con t inuum m a n y t i m e s . Now for e a c h oc 
define p ^ by induc t ion on o< , to be the f i r s t u not p r e v i o u s l y 
s e l e c t e d which i s con ta ined in P ^ . Such a u wil l ex i s t s i n c e , 
for each o(, l e s s t h a n con t inuum u ' s wi l l have b e e n p r e v i o u s l y 
s e l e c t e d and the p e r f e c t se t Pç< con t a in s con t inuum m a n y n u m ­
b e r s . T h i s p r o c e s s of s e l e c t i o n wi l l s e l e c t con t i nuum m a n y p ' s 
f r o m each p e r f e c t se t P s i n c e each P a p p e a r s con t inuum 
m a n y t i m e s a s a P ^ , and t h e p ' s s e l e c t e d f r o m d i f fe ren t p e r ­
fect s e t s wi l l be m u t u a l l y e x c l u s i v e . ^ ) F o r e a c h p e r f e c t s e t 
le t i t s s e l e c t e d p ' s be a r r a n g e d a s a double s e q u e n c e (x^* ; 
ex , p> < JTI ) and se t h f x ^ p ) = u ^ . T h i s h(x) wi l l c l e a r l y t a k e 

on e v e r y r e a l n u m b e r a s va lue a con t inuum n u m b e r of t i m e s in 
e v e r y p e r f e c t s e t . If h(x) w e r e m e a s u r a b l e on any se t of p o s i ­
t ive m e a s u r e , t h e r e would be a K such tha t t he inequa l i t y 
h(x) < K would hold on a se t of p o s i t i v e m e a s u r e , and h e n c e on 
s o m e p e r f e c t s u b s e t of i t . T h i s c o n t r a d i c t s the fact t ha t h(x) 
t a k e s on a l l v a l u e s on e v e r y p e r f e c t se t so t h a t h(x) cannot be 
m e a s u r a b l e on any se t of p o s i t i v e m e a s u r e . 

13) T h i s c o n s t r u c t i o n w a s u s e d by W. S i e r p i n s k i and N . L u s i n to 
subdiv ide an i n t e r v a l into con t i nuum m a n y p a r t s e a c h 
of e x t e r i o r L e b e s g u e m e a s u r e equa l to t h e l eng th of 
the i n t e r v a l . See t h e i r p a p e r i n C o m p t e s R e n d u s 
( P a r i s ) 165 (1917) , 4 2 2 - 4 2 4 . 

Q u e e n ' s U n i v e r s i t y 
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